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ABSTRACT 

Understanding dynamics of an infectious disease helps in designing appropriate strategies for containing its 

spread in a population. In this work, a deterministic and stochastic model of the transmission dynamics of 

Tuberculosis is developed and analyzed. The models involve the Susceptible, Exposed, Infectious and 

Recovered individuals. We computed the basic reproduction number R0  and showed that for R0 < 1, the 

disease-free equilibrium is globally asymptotically stable. The resulting deterministic model was transformed 

into an equivalent stochastic model resulting in stochastic differential equation. The drift coefficient, the 

covariance matrix and the diffusion matrix were determined using the method proposed by Allen et al. (2008).  
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INTRODUCTION 

Tuberculosis is an infectious bacterial disease caused by 

Mycobacterium tuberculosis, also known as the tubercle 

bacillus. This disease has been affecting the human 

population since as far back as 2400 BC (Adetunde, 2008). It 

is one of the most prevalent infectious diseases and typically 

targets various parts of the body, including the lungs, central 

nervous system, lymphatic system, brain, and kidneys. 

Infection occurs when individuals inhale tuberculosis germs, 

which are released into the air when infected individuals 

cough, spit, sneeze, or talk. Those at high risk of infection are 

individuals frequently exposed to infectious individuals over 

extended periods. Some infected individuals may remain 

asymptomatic throughout their lives, a condition known as 

latent TB. Active TB, which is the clinical disease, can 

manifest in pulmonary and extra-pulmonary forms. Extra-

pulmonary TB is more common in children, while pulmonary 

TB is more prevalent in adults. Children aged 0-5 years are 

particularly susceptible to developing active TB due to their 

less developed immune systems (World Health Organization, 

2007). 

Many mathematical models of disease epidemiology 

primarily used deterministic ordinary differential equations, 

which did not account for uncertainties in disease 

transmission. These uncertainties stem from various sources, 

including assumptions about disease parameters, population 

heterogeneity, behavioral changes, interventions, external 

factors, and unforeseen events. Stochastic models, on the 

other hand, embrace the randomness and uncertainty inherent 

in disease transmission. On the contrary, stochastic models 

take into account the randomness and uncertainty inherent in 

disease transmission. This approach considers the 

probabilistic nature of events, such as infection and recovery 

which can provide insights into the variability and uncertainty 

of disease spread. While the conventional ODE models is 

better for a large population, stochastic models are 

particularly useful for capturing the effects of small 

population sizes or rare events. 

This work put into cognizance uncertainties that may arise in 

disease epidemiological models by introducing a random 

white noise modelled as a Wiener process which results in 

Stochastic Differential Equation (SDE) instead of the 

convention deterministic ordinary differential equations 

(ODE). We considered the model resulting in ODE and later 

formulate an equivalent SDE model for the spread of 

tuberculosis. The population under study is divided into four 

disjoint classes which change with time t using Susceptible 

Exposed Infected Recovered Susceptible (SEIRS) model. In 

the work, a deterministic model using ordinary differential 

equations (ODEs), and afterward transform it into a stochastic 

model considering the random changes and the transition 

probabilities, to investigate the transmission dynamics of TB 

is developed.  

 

Review of Related Literature 

The increasing rate of tuberculosis (TB) cases in many 

countries of Sub-Saharan Africa over the past decade is 

largely attributed to the human immunodeficiency virus 

(HIV) and other emerging infections. Meanwhile, 

Mathematical models for transmission dynamics of 

tuberculosis within human populations have been 

acknowledged in helping policy makers and epidemiologists 

interpret epidemiological trends and understand the dynamics 

of disease spread with efficiency of disease prevention and 

control. A number of stochastic and deterministic 

mathematical models have analyzed the transmission 

dynamics of tuberculosis. 

Waller, Geser and Anderson (1962) pioneered mathematical 

modelling for the transmission dynamics of TB. Their model 

comprises of a system of linear difference equations. They 

divided the population in three different epidemiological 

classes namely, the non-infected (susceptible); latent 

(infected but not infectious) and infectious (infected cases). 

They expressed the rate of infection as a function of the 

number of individuals that are infectious. Their study 

provided many researchers with the basic starting point in 

Mathematical modelling of the transmission dynamics of TB 

in communities. Other models which were improvements on 

this prime approach based on factors like heterogeneity (age), 

mode of transmission, assumption of nonlinearity and so on 

has continued to emerge unabatedly over time.  

Allen (2007) presented a primer on stochastic epidemic 

models. In her primer, she provided a brief introduction to the 

formulation, numerical simulation, and analysis of stochastic 

epidemic models for a newcomer to the field. A background 

in modeling with ordinary differential equations (ODEs) was 

assumed. The ODE epidemic models served as a framework 

for formulating analogous stochastic models and as a source 
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of comparison with the stochastic models. The primer was 

restricted to two types of stochastic settings, continuous-time 

Markov chains (CTMCs) and stochastic differential equations 

(SDEs). Some well-known examples were used for 

illustration such as an SIR epidemic model and a host-vector 

malaria model. 

Kalu and Inyama (2012) developed a Mathematical Model of 

the Role of Vaccination and Treatment on the Transmission 

Dynamics of Tuberculosis. In their model, the role of 

vaccination of new born babies against tuberculosis and 

treatment of both latently and activity infected individuals in 

controlling the spread of tuberculosis was mathematically 

modelled based on the standard SEIR model. The disease - 

free equilibrium state of the model was established and its 

stability analyzed using the Routh-Hurwitz theorem. The 

result of the analysis of the stability of the disease-free 

equilibrium state shows that tuberculosis can totally be 

eradicated if effort is made to ensure that the sum of the rate 

of recovery of the latent class, the rate at which latently 

infected individuals become actively infected and the rate of 

natural death , must have a lower bound. 

Kipruto, Mung’atu, Ogila, and Mwalili (2015) sought to 

establish how long under different frameworks will TB 

disease recede to extinction. In the study, deterministic and 

stochastic models for the trends of tuberculosis cases over 

time in Kenya were developed. Susceptible Infective (SI), 

Susceptible Infective and Recovered (SIR) and Susceptible 

Exposed Infective and Recovered (SEIR) models were 

considered. The models were modified in order to fit the data 

more precisely (age structure and predisposing factors of the 

incident cases). The SIR and SEIR model with non-linear 

incidence rates were further looked at and the stability of their 

solutions were evaluated. The results indicated that both 

deterministic and stochastic models can give not only an 

insight but also an integral description of TB transmission 

dynamics. 

Omame, Umana and Inyama (2015) developed a stochastic 

model and analyzed for the dynamics of Tuberculosis. The 

model, which was a multidimensional diffusion process, 

includes susceptible, latent, infected and treated or recovered 

individuals. The model used was based on a deterministic 

model. The model was modified by introducing a vaccination 

parameter and the resulting deterministic model was 

transformed into a stochastic model and solved with the aid of 

MATLAB. Real data for the simulation was based on the 

immunization exercise administered on 41 children at 

Ahmadu Bello University Teaching Hospital (ABUTH), 

Zaria between the months of November and December, 2003. 

From their work, the result showed that increased vaccination 

rate will lead to Tuberculosis disease reduction and possible 

extinction. 

Umana, Omame  and Inyama (2016) formulated a 

deterministic and stochastic model of the dynamics of drug 

resistant tuberculosis. In their work, they attempted to develop 

a mathematical model for the dynamics of drug resistant 

tuberculosis with the assumption that exposed individuals 

develop active tuberculosis due to endogenous reactivation 

and exogenous re-infection. They took the numerical and 

qualitative analyses of the model and discuss the impact of 

diagnosis, treatment and health education rates on the 

different epidemiological compartments. Results from their 

work showed that the disease-free equilibrium is locally 

asymptotically stable whenever the effective reproduction 

number is less than unity and the endemic equilibrium is 

locally asymptotically stable provided that the effective 

reproduction number is greater than unity. They concluded 

from their results that treatment of sensitive TB results in the 

reduction of Drug Resistant TB as most Drug Resistant TB 

cases come from failure to properly administer TB drugs. 

They further suggested that, diagnosis and health education of 

infectives with sensitive TB are very important in the 

reduction of new Drug Resistant TB cases because they lead 

to appropriate treatment.  

Mbakoma and Oukouomi (2017), presented a Mathematical 

analysis of a stochastic tuberculosis model. In their model, 

they focused to include randomness into the model for 

dynamics of tuberculosis. Stochasticity to the model was 

introduced through perturbation of parameters which is a 

standard method in stochastic population modelling. The well 

posedness analysis of SDEs included the existence of non-

negative solutions as required in the dynamics of population 

modelling. A detailed stability analysis of results, analytical 

properties and asymptotical behavior of solutions was also 

done. The mean reverting process was approximated for one 

of the variables and the mean and variance of the process was 

found. 

Olabode, Cup and Fisher (2021)  formulated a deterministic 

and stochastic models are proposed to study the transmission 

dynamics of the Coronavirus Disease 2019 (COVID-19) in 

Wuhan, China. The deterministic model is formulated by a 

system of ordinary differential equations (ODEs) that is built 

upon the classical SEIR framework. The stochastic model is 

formulated by a continuous-time Markov chain (CTMC) that 

is derived based on the ODE model with constant parameters.  

In this work, we will formulate a deterministic model using 

SEIRS compartment for transmission of TB. The 

deterministic model will then be transformed to stochastic 

model to study the transmission dynamics of TB epidemic.  

 

MATERIALS AND METHODS 

Assumptions of SEIRS Model 

The model formulated is based on the following assumptions: 

i. all unvaccinated individuals of the population are in 

the susceptible class; 

ii. susceptible individuals has equal chances to be 

infected when contact with  by the infectious 

individuals is established; 

iii. recovered individuals can be re-infected; 

iv. Tuberculosis induced death can occur in the infected 

class and 

v. immigration/emigration of individuals is not taken 

into consideration. 

Based on the assumptions above, the following parameters 

were use as shown in Table 1.

 

Table 1:    Parameters used in the model and their description 

Variable/Parameter Description 

S(t) Number of susceptible individuals at time     

E(t) Number of Exposed individuals at time t 

I(t) Number of Infectious individuals at time t 

R(t) Number of recovered individuals at time t 

  Recruitment rate of newborns 
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  Vaccination rate 

  per capita natural death rate 

  contact rate 

  rate at which exposed individuals becomes infected 

  recovery rate for the infectious individuals 

  Tuberculosis induced mortality rate 

  Waning vaccination rate 

 

 

Deterministic Model of Transmission of TB 

The dynamics for the transmission of TB is illustrated by Figure 1. 

 
Figure 1: Flow diagram for the model 

 

The population under consideration is divided into disjoint 

classes which change with time t as shown in Figure 1. The 

disjoint classes include; the Susceptible class (S), the Latent 

or Exposed class (E), the Infectious class (I), and the 

Recovered class (R). The population of susceptible 

individuals (S) is increased by recruitment of newborns who 

are not vaccinated, into the population at a rate (1 − 𝜃)𝜔, 

where 𝜔  is the recruitment rate and 𝜃  is the proportion of 

vaccinated newborns. It is further increased by loss of 

infection acquired immunity of recovered individuals into the 

population at a rate 𝜀. It decreased by infection, following the 

effective contacts with the infected individuals at a rate 𝛿 , 

where 𝛿 = 𝛽𝑆𝐼 . It is further decreased by vaccination of 

susceptible at a rate 𝜃. The susceptible population is also 

decreased by the natural death of susceptible at a rate 𝛾.  

Thus, 

 
𝑑𝑆

𝑑𝑡
= (1 − 𝜃)𝜔 − (𝛿 + 𝜃 + 𝛾)𝑆 +  𝜀𝑅   (1) 

The population of Exposed individuals (E) is increased by the 

infection of susceptible individuals at a rate 𝛿 and decreased 

by progression of Exposed individuals into infectious at a rate 

𝜇 or natural death at a rate 𝛾. It is further decreased by the 

recovery of Exposed as a result of treatment and/or 

vaccination at a rate 𝛼. 

Hence,  

 
𝑑𝐸

𝑑𝑡
= 𝛿𝑆 − (𝜇 + 𝛾 + 𝛼)𝐸   (2) 

The population of Infectious (I) is increased by the 

progression of Exposed individuals into the infectious class at 

a rate 𝜇 . It is decreased by the recovery of infectious 

individuals at a rate 𝛼. It is further decreased by natural death 

at a rate 𝛾 or Tuberculosis induced natural death at a rate 𝜌.  

This implies, 

 
𝑑𝐼

𝑑𝑡
= 𝜇𝐸 − (𝛼 + 𝛾 + 𝜌)𝐼  (3) 

The Recovered population (R) is increased by vaccination of 

newborns. It is further increased by the recovery of Exposed 

and Infectious individuals at a rate 𝛼 . It is decreased by 

natural death at a rate 𝛾 or loss of infection acquired immunity 

at a rate 𝜀. 

Hence,   
𝑑𝑅

𝑑𝑡
= 𝜃𝜔 + 𝛼(𝐸 + 𝐼) − (𝛾 + 𝜀)𝑅  (4) 

Based on the above assumptions and observations, the model 

is given by following deterministic system of non-linear 

differential equations.  
𝑑𝑆

𝑑𝑡
= (1 − 𝜃)𝜔 − (𝛿 + 𝜃 + 𝛾)𝑆 + 𝜀𝑅

𝑑𝐸

𝑑𝑡
=  𝛿𝑆 − (𝜇 + 𝛾 + 𝛼)𝐸

𝑑𝐼

𝑑𝑡
= 𝜇𝐸 − (𝛼 + 𝛾 + 𝜌)𝐼

𝑑𝑅

𝑑𝑡
= 𝜃𝜔 + 𝛼(𝐸 + 𝐼) − (𝛾 + 𝜀)𝑅

   

}
  
 

  
 

  (5) 

 

Basic property of the deterministic model 

Invariant PROPERTY 

Theorem 3.1: The closed set 𝐷 = {(𝑆, 𝐸, 𝐼, 𝑅) 𝜖 𝑅+
4 :𝑁 ≤

𝜔

𝛾
} 

is positively invariant and attracting with respect to the model 

(3.5). 

Proof. Considering the entire population, 

N =  S +  𝐸 + 𝐼 + 𝑅         (6) 

Differentiating equation (3.6) with respect to time, yields; 
𝑑𝑁

𝑑𝑡
 =  

𝑑𝑆

𝑑𝑡
 +  

𝑑𝐸

𝑑𝑡
 +  

𝑑𝐼

𝑑𝑡
 +  

𝑑𝑅

𝑑𝑡
       (7) 

Substituting equation (3.5) into equation (3.7) gives, 
𝑑𝑁

𝑑𝑡
 =  (1 − 𝜃)𝜔 − (𝛿 + 𝜃 + 𝛾)𝑆 + 𝜀𝑅 +  𝛿𝑆

− (𝜇 + 𝛾 + 𝛼)𝐸 +  𝜇𝐸 − (𝛼 + 𝛾 + 𝜌)𝐼 
+  𝜃𝜔 + 𝛼(𝐸 + 𝐼) − (𝛾 + 𝜀)𝑅    

𝑑𝑁

𝑑𝑡
 =  𝜔 −  𝛾𝑆 − 𝛾𝐸 −  𝛾𝐼 −  𝜌𝐼 −  𝛾𝑅 

𝑑𝑁

𝑑𝑡
 =  𝜔 −  𝛾(𝑆 + 𝐸 + 𝐼 + 𝑅) −  𝜌𝐼 

𝑑𝑁

𝑑𝑡
 =  𝜔 −  𝛾𝑁 −  𝜌𝐼   

In the absence of infection, i.e., 𝐼 = 0, 
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𝑑𝑁

𝑑𝑡
 ≤  𝜔 − 𝛾𝑁 

By separation of variable of the differential inequality, 
𝑑𝑁

𝜔 − 𝛾𝑁
 ≤ 𝑑𝑡 

Integrating both sides, 

∫
𝑑𝑁

𝜔 − 𝛾𝑁
 ≤  ∫𝑑𝑡 

⟹ −
1

𝛾
ln(𝜔 − 𝛾𝑁) ≤ 𝑡 + 𝑘 

Multiply both sides by  −𝛾, 

⟹ −𝛾 ∙
1

𝛾
ln(𝜔 − 𝛾𝑁) ≥  −𝛾(𝑡 + 𝑘) 

⟹ ln(𝜔 − 𝛾𝑁) ≥  −𝛾(𝑡 + 𝑘) 
Taking the exponential of both sides, 

𝑒ln(𝜔−𝛾𝑁) ≥ 𝑒−𝛾𝑡 + 𝑒−𝛾𝑘  

⟹  𝜔 − 𝛾𝑁 ≥  𝑒−𝛾𝑘𝑒−𝛾𝑡 
Since the exponential of a constant gives a constant, we have; 

𝜔 − 𝛾𝑁 ≥ 𝐴𝑒−𝛾𝑡 where,  𝐴 = 𝑒−𝛾𝑘 = constant 

Now, for 𝑁(0) = 𝑁0, it yields; 

𝐴 =  𝜔 − 𝛾𝑁0 

⟹  𝜔 − 𝛾𝑁 ≥ (𝜔 − 𝛾𝑁0)𝑒
−𝛾𝑡 

Solving for 𝑁, 

−𝛾𝑁 ≥ −𝜔 + (𝜔 − 𝛾𝑁0)𝑒
−𝛾𝑡  

Divide both sides by −𝛾, 

𝑁 ≤
𝜔

𝛾
− (

𝜔 − 𝛾𝑁0
𝛾

) 𝑒−𝛾𝑡 

As 𝑡 → ∞ in the population, 0 ≤ 𝑁 ≤
𝜔

𝛾
 

Therefore, the model for human population from the 

epidemiological concept in the feasible region, enters the 

region 𝐷 = {(𝑆, 𝐸, 𝐼, 𝑅) 𝜖 𝑅+
4 : 𝑁 ≤

𝜔

𝛾
}. 

 In this case, whenever 𝑁 >
𝜔

𝛾
, then 

𝑑𝑁

𝑑𝑡
< 0, which means that 

the population reduces asymptotically to the carrying 

capacity. Again, whenever, 𝑁 ≤
𝜔

𝛾
, every solution with initial 

condition in 𝑅+
4  remains in that region for 𝑡 > 0. Since the 

domain 𝐷 is positively invariant, it is enough to investigate 

the dynamics of the flow generated by the model equations in 

𝐷. Hence, the model is both mathematically and biologically 

modelled. 

 

Model Analysis 

In analyzing the model, the following were considered: 

 

i. Existence of equilibrium points for non-special case 

This represents a stable state in which the disease persists at a 

relatively constant level within the population over a long 

period. In the case of many infectious diseases, an endemic 

equilibrium occurs when the number of new infections is 

balanced by the number of individuals recovering from the 

disease. At this equilibrium point, the prevalence of the 

disease remains stable, neither increasing nor decreasing 

significantly. This is the at which the differential equations of 

the system (5) are equal to zero are referred to equilibrium 

points solutions. 

(
𝑑𝑆

𝑑𝑡
+
𝑑𝐸

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
) = 0 

(1 − 𝜃)𝜔 − (𝛿 + 𝜃 + 𝛾)𝑆 + 𝜀𝑅 = 0

                       𝛿𝑆 − (𝜇 + 𝛾 + 𝛼)𝐸 = 0

                        𝜇𝐸 − (𝛼 + 𝛾 + 𝜌)𝐼 = 0

         𝜃𝜔 + 𝛼(𝐸 + 𝐼) − (𝛾 + 𝜀)𝑅 = 0

      

}
 

 
   (11) 

Solving for equations of (3.11) above, yields; 

𝑆∗ =
(1 − 𝜃)𝜔 + 𝜀𝑅

𝛿 + 𝜃 + 𝛾
 

𝐸∗ =
𝛿𝑆

𝜇 + 𝛾 + 𝛼
 

𝐼∗ =
𝜇𝐸

𝛼 + 𝛾 + 𝜌
 

𝑅∗ =
𝜃𝜔 + 𝛼(𝐸 + 𝐼)

𝛾 + 𝜀
 

Then it is obvious to note that there is no trivial equilibrium 

point as long as the recruitment parameter 𝜔 is not zero. This 

means that (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗ ≠ (0,0,0,0)) and the population will 

not be nonexistent. 

 

ii. Local stability of the disease-free equilibrium 

This represents a stable state in which the disease has been 

eradicated or does not exist within the population. In other 

words, there are no infected individuals in the population. 

Disease-free equilibrium is often an important goal in public 

health efforts to control and eliminate infectious diseases.  

In the absence of infection, i.e., (𝐼0 = 𝐸0 = 𝑅0), the model 

has a steady state E0, called the disease-free equilibrium. This 

statement will reduce the system (11) to 

(1 − 𝜃)𝜔 − 𝛾𝑆0 

⟹ 𝑆0 =
(1 − 𝜃)𝜔

𝛾
 

𝑆0 =
(1−𝜃)𝜔

𝛾
  is defined as the carrying capacity of the 

population. Therefore, the disease- free equilibrium of the 

model is given by; 

𝐸0 = (𝑆0, 0,0,0) = (
(1 − 𝜃)𝜔

𝛾
, 0,0,0). 

 

iii. Basic Reproduction Number 𝑹𝟎 

The basic reproduction number 𝑅0 is defined as the average 

number of secondary infections that can occur when one 

infected individual is introduced into an entirely susceptible 

human population (Van den Driessche & Watmough, 2002). 

𝑅0 is obtained by using the next generation matrix developed 

by Van de D. & Watmough (2002). The largest Eigenvalue or 

spectral radius of 𝐹𝑉−1 is the 𝑅0. 

Where, 𝐹 and 𝑉 are 𝑚 ×𝑚 matrices defined as; 

𝐹 = [
𝜕𝐹𝑖(𝐸

0)

𝜕𝑋𝑗
] , 𝑣 = [

𝜕𝑉𝑖(𝐸
0)

𝜕𝑋𝑗
] 

Let 𝑥𝑖=(𝐸, 𝐼), be the set of all the disease compartments. The 

model can be written as; 
𝑑𝑥𝑖

𝑑𝑡
= 𝐹𝑖(𝑥) − 𝑉𝑖(𝑥)    (12)  

where, 𝑉𝑖(𝑥) = [𝑉𝑖
−(𝑥) − 𝑉𝑖

+(𝑥)]. 
 

𝑖 is the component of disease compartment 

𝐹𝑖(𝑥)  is the rate of appearance of new infections in the 

compartment 𝑖 
𝑉𝑖
−(𝑥)  represents the rate of transfer of individuals out of 

component 𝑖 
𝑉𝑖
+(𝑥)  represents the rate of transfer of individuals into 

compartment 𝑖 by all other means. 

The above model (3.12) can also be written as; 
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥) −

𝑉(𝑥) 
Rewriting the model equations for the disease compartments 

only, i.e., for (E&I) only, gives; 
𝑑𝐸

𝑑𝑡
= 𝛿𝑆 − (𝜇 + 𝛾 + 𝛼)𝐸 

𝑑𝐼

𝑑𝑡
= 𝜇𝐸 − (𝛼 + 𝛾 + 𝜌)𝐼 

𝐹𝑖 = [
𝛽𝑆𝐼
0
],  𝑉𝑖

− = [
(𝜇 + 𝛾 + 𝛼)𝐸
(𝛼 + 𝛾 + 𝜌)𝐼

],  𝑉𝑖
+ = [

0
𝜇𝐸
] 

𝑉𝑖 = 𝑉𝑖
− − 𝑉𝑖

+ = [
(𝜇 + 𝛾 + 𝛼)𝐸
(𝛼 + 𝛾 + 𝜌)𝐼

] − [
0
𝜇𝐸
]  
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𝑉𝑖  = [
(𝜇 + 𝛾 + 𝛼)𝐸

(𝛼 + 𝛾 + 𝜌)𝐼 − 𝜇𝐸
] 

𝐹 = (
0
0

𝛽𝑆0

0
)   𝐵𝑢𝑡 𝑆0 =

(1−𝜃)𝜔

𝛾
   

∴  𝐹 = (
0

0

𝛽
(1 − 𝜃)𝜔

𝛾
0

) 

𝑉 = (
𝜇 + 𝛾 + 𝛼

−𝜇
     

0
𝛼 + 𝛾 + 𝜌

)  

𝑉−1 =
1

(𝜇+𝛾+𝛼)(𝛼+𝛾+𝜌)
(
𝛼 + 𝛾 + 𝜌

𝜇
       

0
𝜇 + 𝛾 + 𝛼

  )  

𝑉−1 = (

1

(𝜇+𝛾+𝛼)

𝜇

(𝜇+𝛾+𝛼)(𝛼+𝛾+𝜌)

      

0

1

(𝛼+𝛾+𝜌)

  )  

𝐹𝑉−1 = (
0

0

𝛽
(1−𝜃)𝜔

𝛾

0
)(

1

(𝜇+𝛾+𝛼)

𝜇

(𝜇+𝛾+𝛼)(𝛼+𝛾+𝜌)

      

0

1

(𝛼+𝛾+𝜌)

 )  

𝐹𝑉−1 = (

𝜇𝛽(1−𝜃)𝜔

𝛾(𝜇+𝛾+𝛼)(𝛼+𝛾+𝜌)

0

                

𝛽(1−𝜃)𝜔

𝛾(𝛼+𝛾+𝜌)

0

)  

The eigenvalues are 𝜆1 =
𝜇𝛽(1−𝜃)𝜔

𝛾(𝜇+𝛾+𝛼)(𝛼+𝛾+𝜌)
 , 𝜆2 = 0 

Clearly, the largest eigenvalue or spectral radius is 𝜆1. 

Thus, 𝑅0 =
𝜇𝛽(1−𝜃)𝜔

𝛾(𝜇+𝛾+𝛼)(𝛼+𝛾+𝜌)
. 

If 𝑅0 ≤ 1 then the infection in the community dies out, while 

if 𝑅0 > 1 

then there is a unique positive epidemic equilibrium. Using 

the 𝑅0 obtained, the following are established; 

 

Local asymptotic stability for Disease-free equilibrium 

The disease-free equilibrium 𝐸0  is locally asymptotically 

stable if 𝑅0 < 1 and unstable if 𝑅0 > 1 for both special and 

non-special cases. 

 

Global Asymptotic stability for disease-free equilibrium 

If the reproduction number 𝑅0 ≤ 1 , then, the disease-free 

equilibrium of the model is globally asymptotically stable. 

 

Stochastic Model Formulation 

The stochastic model for the deterministic model in equation 

(3.5) above is derived using the first modelling procedure 

developed by Allen et al (2008).  

Let S(t), E(t), I(t) and R(t) represent the susceptible, exposed, 

infected and recovered class respectively. We assume that in 

a small time interval t , S(t), E(t), I(t) and R(t) can change 

by 1, 0 or -1 where 1 represent the likelihood of the birth of 

an individual into the compartment, 0 represent non-existence 

of birth or death in the compartment, while -1 represent the 

death of an individual in the compartment. The possible 

changes and their probabilities are shown in Table 2. For 

example, [1 0 0 0]T represent the birth of an individual into 

the susceptible class while [0 −1 1 0] 𝑇  represent the 

death of an exposed individual and the birth of infected 

individuals. 

 

 Table 2: The possible changes and their probabilities 

Change Probability Event 

[1 0 0 0] 𝑇 𝑝1 = (1 − 𝜃)𝜔∆𝑡   Susceptible dies naturally 

[−1 0 0 0] 𝑇         𝑝3 = 𝛽𝑆𝐼∆𝑡                  Susceptible becomes Exposed 

[−1 0 0 1] 𝑇   𝑝4 = 𝜃𝜔∆𝑡                    Vaccination of susceptible 

[0 −1 0 0] 𝑇         𝑝5 = 𝛾𝐸∆𝑡                    Exposed dies a natural death 

[0 −1 1 0] 𝑇         𝑝6 = 𝜇𝐸∆𝑡                    Exposed becomes infectious 

[0 −1 0 1] 𝑇        𝑝7 = 𝛼𝐸∆𝑡                    Exposed recovers 

[0 0 −1 0] 𝑇         𝑝8 = (𝛾 + 𝜌)𝐼∆𝑡        Natural death of infectious or death of  

[0 0 −1 1] 𝑇        𝑝9 = 𝛼𝐼∆𝑡                      Infectious as a result of infection   

[0 0 0 −1] 𝑇         𝑝10 = 𝛾𝑅∆𝑡                   Natural death of recovered 

[1 0 0 −1] 𝑇 𝑝11 = 𝜀𝑅∆𝑡                  Recovered becomes susceptible 

 

 From the first modelling procedure by Allen et al (2008), the stochastic model equations are given by; 

𝑑�⃗� = 𝑓(𝑡, �⃗�(𝑡))𝑑𝑡 + 𝐵(𝑡, �⃗�(𝑡))𝑑�⃗⃗⃗⃗�(𝑡)   

�⃗�(0) =  [𝑋1(0), 𝑋2(0), 𝑋3(0),  𝑋4(0)]
𝑇
}                        (4.1) 

Where B = 𝑉
1
2⁄ , �⃗⃗⃗⃗�(t) is a vector of Wiener processes and 𝑓 is a drift vector defined by; 

𝑓 =  ∑𝑝𝑗𝜆𝑗

11

𝑗=1

 

Where 𝜆𝑗  and 𝑝𝑗 are the random changes and the transition probabilities respectively. 

𝑓 =  𝑝1𝜆1 + 𝑝2𝜆2 + 𝑝3𝜆3 + 𝑝4𝜆4 + 𝑝5𝜆5 + 𝑝6𝜆6 + 𝑝7𝜆7 + 𝑝8𝜆8 + 𝑝9𝜆9 + 𝑝10𝜆10 + 𝑝11𝜆11      

𝑓 =  𝑝1

(

 
 

 

1

0
0

0

 )

 
 
+ 𝑝2(

 
−1
0
0
0
 

) + 𝑝3(

 
−1
1
0
0
 

) +  𝑝4(

 
−1
0
0
1
 

)+ 𝑝5(

 
0
−1
0
0
 

) + 𝑝6(

 
0
−1
1
0
 

) + 𝑝7(

 
0
−1
0
1
 

)    +  𝑝8(

 
0
0
−1
0
 

)+ 𝑝9(

 
0
0
−1
1
 

)  + 𝑝10(

 
0
0
0
−1
 

)  

+  𝑝11(

 
1
0
0
−1
 

) 
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𝑓 =  (1 − 𝜃)𝜔(

 
1
0
0
0
 

) +  𝛾𝑆 (

 
−1
0
0
0
 

)+  𝛿𝑆 (

 
−1
1
0
0
 

) +  𝜃𝜔(

 
−1
0
0
1
 

) +  𝛾𝐸 (

 
0
−1
0
0
 

)+  𝜇𝐸 (

 
0
−1
1
0
 

) +   𝛼𝐸 (

 
0
−1
0
1
 

)   +  (𝛾 + 𝜌)𝐼 (

 
0
0
−1
0
 

) + 

𝛼𝐼 (

 
0
0
−1
1
 

)  +  𝛾𝑅 (

 
0
0
0
−1
 

)  +  𝜀𝑅 (

 
1
0
0
−1
 

) 

Hence, the drift vector 𝑓 of order 4×1 is; 

𝑓 = 

[
 
 
 
 

 
(1 − 𝜃)𝜔 − 𝛾𝑆 − 𝛿𝑆 − 𝜃𝜔 + 𝜀𝑅

𝛿𝑆 − (𝛾 + 𝜇 + 𝛼)𝐸

𝜇𝐸 − (𝛼 + 𝛾 + 𝜌)𝐼

𝜃𝜔 + 𝛼(𝐸 + 𝐼) − (𝛾 + 𝜀)𝑅
 ]

 
 
 
 

     (13) 

The covariance matrix V is defined by;  

 V= ∑ 𝑝𝑗𝜆𝑗(𝜆𝑗)
𝑇

11
𝑗=1      

V =  𝑝1(

 
1
0
0
0
 

)[1 0 0 0]  +  𝑝2(

 
−1
0
0
0
 

)[−1 0 0 0]  +   𝑝3(

 
−1
1
0
0
 

) [−1 1 0 0]  + 𝑝4(

 
−1
0
0
1
 

) [−1 0 0 1]  +

 𝑝5(

 
0
−1
0
0
 

)[0 −1 0 0]       +  𝑝6(

 
0
−1
1
0
 

)[0 −1 1 0]  + 𝑝7(

 
0
−1
0
1
 

) [0 −1 0 1]  +  𝑝8(

 
0
0
−1
0
 

)[0 0 −1 0]  

 +  𝑝9(

 
0
0
−1
1
 

) [0 0 −1 1]       +   𝑝10(

 
0
0
0
−1
 

)[0 0 0 −1] +  𝑝11(

 
1
0
0
−1
 

) [1 0 0 −1] 

𝑉 = (1 − 𝜃)𝜔(

 
1
0
0
0
 

)[1 0 0 0]  +  𝛾𝑆 (

 
−1
0
0
0
 

) [−1 0 0 0]  +  𝛿𝑆 (

 
−1
1
0
0
 

)[−1 1 0 0]  

+ 𝜃𝜔(

 
−1
0
0
1
 

) [−1 0 0 1]    +  𝛾𝐸 (

 
0
−1
0
0
 

) [0 −1 0 0]   +  𝜇𝐸 (

 
0
−1
1
0
 

)[0 −1 1 0]   +  𝛼𝐸 (

 
0
−1
0
1
 

) [0 −1 0 1]  

+  (𝛾 + 𝜌)𝐼 (

 
0
0
−1
0
 

) [0 0 −1 0]  + 𝛼𝐼 (

 
0
0
−1
1
 

)[0 0 −1 1]  + 𝛾𝑅 (

 
0
0
0
−1
 

)[0 0 0 −1]  + 𝜀𝑅 (

 
1
0
0
−1
 

)[1 0 0 −1] 

Multiplying the covariance matrix, it yields; 

V =  [

(1 − 𝜃)𝜔 0 0 0
0 0 0 0
0
0

0
0

0 0
0 0

]  +      [

𝛾𝑆 0 0 0
0 0 0 0
0
0

0
0

0 0
0 0

]     +       [

𝛿𝑆 −𝛿𝑆 0 0
−𝛿𝑆 𝛿𝑆 0 0
0
0

0
0

0 0
0 0

]   

      + [

𝜃𝜔 0 0 −𝜃𝜔
0 0 0 0
0

−𝜃𝜔
0
0

0 0
0 𝜃𝜔

]  +        [

0 0 0 0
0 𝛾𝐸 0 0
0
0

0
0

0 0
0 0

]    +      [

0 0 0      0
0 𝜇𝐸 −𝜇𝐸 0

0
0

−𝜇𝐸
0

𝜇𝐸    𝑂

0       0

]           

    +  [

0 0 0      0
0 𝛼𝐸 0 −𝛼𝐸
0
0

0
−𝛼𝐸

0       0
0     𝛼𝐸

]   +  [

0 0 0              0
0 0 0              0
0
0

0
0

(𝛾 + 𝜌)𝐼 0
0               0

]    +  [

0 0 0 0
0 0 0 0
0
0

0
0

𝛼𝐼 −𝛼𝐼
−𝛼𝐼 𝛼𝐼

]      

      +  [

0 0 0 0
0 0 0 0
0
0

0
0

0 0
0 𝛾𝑅

]          +      [

𝜀𝑅 0 0 −𝜀𝑅
0 0 0 0
0
−𝜀𝑅

0
0

0 0
0 𝜀𝑅

] 

Hence, the covariance matrix V of order 4×4 is; 

𝑉 = [

(1 − 𝜃)𝜔 + 𝛾𝑆 + 𝛿𝑆 + 𝜃𝜔 + 𝜀𝑅  
−𝛿𝑆  
0  

−𝜃𝜔 − 𝜀𝑅 

  

−𝛿𝑆  
 𝛿𝑆 + 𝛾𝐸 + 𝜇𝐸 + 𝛼𝐸  

−𝜇𝐸  
−𝛼𝐸 

    

0  
−𝜇𝐸  

𝜇𝐸 + (𝛾 + 𝜌)𝐼 + 𝛼𝐼  
−𝛼𝐼 

     

  −𝜃𝜔 − 𝜀𝑅  
−𝛼𝐸  
  −𝛼𝐼  

 𝜃𝜔 + 𝛼𝐸 + 𝛼𝐼 + (𝛾 + 𝜀)𝑅 

]     

The resulting SDE is therefore 

𝑑�⃗� = 𝑓(𝑡, �⃗�(𝑡))𝑑𝑡 + 𝑉(𝑡, �⃗�(𝑡))𝑑�⃗⃗⃗⃗�(𝑡)

�⃗�(0) =  [𝑋1(0), 𝑋2(0), 𝑋3(0),  𝑋4(0)]
𝑇
}                               
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Numerical Simulation 

The Milstein numerical method for of SDEs was used for the 

simulation.  The method is a numerical scheme used for 

approximating the solutions of stochastic differential 

equations (SDEs). It is designed for simulating systems that 

involve both deterministic and stochastic components. It is a 

more accurate and refined method compared to Euler-

Maruyama, particularly when dealing with SDEs that have 

strong or nonlinear stochastic terms. It is an extension of the 

Euler-Maruyama method. It introduces a correction term for 

the stochastic part. The method can be implemented through 

the following steps:  

i. Choose a time step Δt and divide the interval [0, T] into 

smaller time steps: 0 = t0 < t1 < t2 < ... < tn = T. 

ii. Initialize the process at t0 with an initial value 𝑋0 

iii. For each time step i from 1 to n, do the following: 

a. Calculate the deterministic drift term 

𝑓(𝑋(𝑡𝑖−1), 𝑡𝑖−1)  

b. Calculate the stochastic diffusion term 

𝑉(𝑋(𝑡𝑖−1), 𝑡𝑖−1) 
c. Generate a random increment ∆𝑊(𝑡𝑖−1) ∼

𝑁(0, ∆𝑡)  where 𝑁(0, ∆𝑡) represents a normal 

distribution with mean 0 and variance ∆𝑡. 

d. Calculate the correction term  
𝜕𝑉

𝜕𝑋
∗

𝑉(𝑋(𝑡𝑖−1), 𝑡𝑖−1) ∗ ∆𝑊(𝑡𝑖−1)
2 − ∆𝑡  

e. Update the process value at ti:  

𝑋(𝑡𝑖) = 𝑋(𝑡𝑖−1) + 𝑓(𝑋(𝑡𝑖−1), 𝑡𝑖−1) ∗ ∆𝑡 + 𝑉(𝑋(𝑡𝑖−1), 𝑡𝑖−1)

∗ ∆𝑊(𝑡𝑖−1) +
𝜕𝑉

𝜕𝑋
∗ 𝑉(𝑋(𝑡𝑖−1), 𝑡𝑖−1)

∗ ∆𝑊(𝑡𝑖−1)
2 − ∆𝑡 

The correction term 
𝜕𝑉

𝜕𝑋
∗ 𝑉(𝑋(𝑡𝑖−1), 𝑡𝑖−1) ∗ ∆𝑊(𝑡𝑖−1)

2 − ∆𝑡 

accounts for the second-order expansion of the stochastic 

term, resulting in increased accuracy compared to the Euler-

Maruyama method. 

Although the Milstein method is known to improve accuracy, 

especially for SDEs with nonlinear or strong stochastic terms, 

it is however computationally more expensive than the Euler-

Maruyama method due to the additional calculations involved 

in estimating the correction term. The choice between the 

Euler-Maruyama and Milstein methods depends on the 

specific characteristics of the SDE and the desired level of 

accuracy in the simulation. 

The algorithm for the method is as follows:

 

Algorithm for the Milstine Method 

 

Function MilsteinMethod(a, b, X0, T, dt): 

1.  Input the following: 

             𝑓(𝑡, 𝑋(𝑡))- Drift term function 

             𝑉(𝑡, 𝑋(𝑡)) - Diffusion term function 

             𝑋0- Initial value of the process 

             𝑇- Total simulation time 

             𝑑𝑡- Time step size 

 

2. Determine the number of time steps 

             𝑛𝑢𝑚𝑠𝑡𝑒𝑝𝑠 = 𝑖𝑛𝑡(
𝑇

𝑑𝑡
)     

3. Initialize arrays to store the time and process values 

    times = [0.0] * (num_steps + 1) 

     X = [0.0] * (num_steps + 1) 

4.   Set initial values 

     times[0] = 0.0 

     X[0] = X0 

5.  Perform the Milstein simulation 

    for i in range(1, num_steps + 1): 

a.  Current time 

          t = i * dt 

          times[i] = t 

b.  Calculate the deterministic and stochastic terms 

          drift_term = 𝑓(𝑡, 𝑋(𝑡) 
          diffusion_term = 𝑉(𝑡, 𝑋(𝑡))- 

c. Generate a random increment (sampled from N(0, dt)) 

d. 𝑑𝑊 = 𝑠𝑞𝑟𝑡(𝑑𝑡) ∗ 𝑟𝑎𝑛𝑑_𝑛𝑜𝑟𝑚𝑎𝑙( ) 
         Calculate the correction term due to second-order expansion 

                        correction_term = 0.5 ∗ 𝑓(𝑡, 𝑋(𝑡𝑖−1) ∗ 𝑉(𝑡, 𝑋(𝑡𝑖−1) ∗ 𝑑𝑊
2 − 𝑑𝑡 

          Update the process value using the Milstein scheme 

                       𝑋𝑖 = 𝑋𝑖−1 + 𝑑𝑟𝑖𝑓𝑡_𝑡𝑒𝑟𝑚 ∗ 𝑑𝑡 + 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛_𝑡𝑒𝑟𝑚 ∗ 𝑑𝑊 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑡𝑒𝑟𝑚 

6. return times, X 

 

 

The algorithm was implemented in Python programing language. The following values were used for the parameters 
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Deterministic and stochastic models for the transmission 

dynamics of tuberculosis were studied. A deterministic 

mathematical model for the transmission dynamics was 

formulated. An equivalent stochastic model resulting in a 

system stochastic differential equations was derived. The 

population under consideration was divided into four 

compartments namely, the Susceptible, the Exposed, the 

Infected and the Recovered compartment leading to a typical 

SEIR model. The existence of equilibrium points for non-

special case, local stability of the disease free -equilibrium 

and reproduction number R0 were determined It was observed 

that for R0 < 1, the disease free-equilibrium is locally stable 

and unstable if R0 > 1 for both special and non-special cases. 

In transforming the deterministic model to the equivalent SDE 

model, both the drift vector and the co-variance matrix for the 

SDE were determined resulting to a system of SDE.  

 

CONCLUSION 

This work has shown that the transmission of tuberculosis can 

be studied through the use of mathematical model. The work 

further demonstrated that an equivalent stochastic differential 

equation model for the dynamics of the remission of 

tuberculosis can be formulated.  The procedure proposed by 

Allen et.al. (2008) can be adequately used to formulate a 

stochastic model for transmission of diseases from its 

equivalent deterministic model. This work can be used in 

interactive workshops with health planners and other 

stakeholders in TB control so that participants could gain a 

better understanding of how BCG could be used to control the 

disease. 
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