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ABSTRACT 

Mineral exploration must include the mapping of hydrothermally altered regions, which are typically 

connected to mineralization. This study presents a strategy for integrating remote sensing data with the 

geochemical characteristics of Precambrian rocks from the Mambilla Plateau in northern Nigeria. Tectonically, 

the lineaments were fractures with the following orientations: NE-SW, NW-SE, ENE-WSW, and N-S. The 

distinct spectral reflectance and absorption properties of remotely sensed Landsat 8 data in the visible, near-

infrared, shortwave-infrared, and thermal infrared portions of the electromagnetic spectrum were exploited in 

various digital image processing approaches. Mapping hydrothermal alteration minerals was done effectively 

and efficiently using band ratios (red/blue, SWIR 2/NIR, SWIR 1/NIR), spectral band combinations 

(Kaufmann and Sabins ratios), and principal component analysis. Ferric, phyllic, propylitic, and argillic iron 

all underwent changes as a result of hydrothermal alteration. Regional metamorphism also resulted in 

important alteration processes such as epidotization, sericitization, muscovititization, kaolinitization, and 

chloritization. Geochemically, on average, the Al2O3, SiO2, Fe2O3, CaO, MgO, K2O, Na2O, Li2O content are 

12.04 %; 54.83%; 4.76%,  7.16%,  3.02%, 10.22%, 4.53%, 1.35%  while MnO, P2O5  and TiO2 are less than 

1%. The average base metal composition revealed that 60% of them had positive anomalies, which indicate 

mineralization, and 40% had negative anomalies. About 50% of the samples had positive anomalies, which 

indicated strong potential for harbouring mineralization based on the makeup of trace elements. Geochemical 

studies revealed the presence of lithium, titanium, and silica oxides in substantial concentrations. The local 

mineralization is governed by structural factors.  

 

Keywords: Remote sensing datasets, Hydrothermal alteration mapping, Geochemical characteristics,  

Mineralization potentials, Precambrian rocks 

 

INTRODUCTION 

Mineral exploitation and exploration are crucial for the 

economic development of many emerging nations. In general, 

traditional mineral exploration techniques are expensive, 

time-consuming, and labour-intensive, especially in remote 

areas. Mineral exploration requires geological, geochemical, 

and geophysical datasets, but they may not always be 

available or may not exist in places that are difficult to access 

(Kaiser et al., 2002; Bemis et al., 2014; Maduaka, 2014). 

Exploration of minerals also involves state-of-the-art 

techniques and expertise. Modern remote sensing technology 

has proven to be one of the most efficient and trustworthy 

approaches for mineral exploration. When using remote 

sensing satellite images for geological mapping and mineral 

exploration, it is usually necessary to study the 

physicochemical properties of rocks and weathering soils, 

including mineralogy, landforms, geochemical signs, and the 

spatial distribution of lineaments (Bhattacharya et al., 2012). 

The idea that undiscovered minerals could exist alongside 

discovered ones is a cornerstone of the mineral exploration 

field. For example, similar minerals will probably be found 

closer to the discovered deposit if mining is planned there, and 

the likelihood of finding new deposits will decrease with 

increasing distance. When that occurs, remote sensing—

mostly through multi- or hyperspectral remote sensing 

images—can be effectively used to identify areas with higher 

odds of mineralization before drilling exploratory boreholes 

at new locations (Gholamie et al., 2012; Ciampalinie et al., 

2013). Reflectance spectroscopic data generated from remote 

sensing data reduces the time and cost of fieldwork needed for 

geological, geophysical, and geochemical studies (Short and 

Lowman Jr., 1973; Tedesco, 2012; Marjoribanks, 2010). 

Numerous remote sensing studies for lithological mapping 

and mineral prospecting have been carried out in arid and 

semi-arid environments. In areas with favourable geological 

exposure, satellites in orbit can directly gather data on spectral 

reflectance from rocks or soils (Sabins, 1999; DiTommaso 

and Rubinstein, 2007; Zhang et al., 2007; Pour and Hashim, 

2012; Mahboob et al., 2015). 

As a tool for the early stages of porphyry copper and 

epithermal gold exploration, multispectral and hyperspectral 

remote sensing data can be used to identify hydrothermal 

alteration minerals with diagnostic spectral absorption 

properties in the visible, near-infrared, and shortwave length 

infrared regions (Di Tommaso and Rubinstein, 2007; Zhang, 

Pazner, and Duke, 2007; Ramakrishnan and Bharti, 2015). 

Fluids are often modified hydrothermally to produce 

porphyry copper deposits. Pour and Hashim (2012) claim that 

these altered rocks can be recognised by their visible and 

infrared spectral characteristics. With a certain amount of 

electromagnetic (EM) radiation reflected and/or absorbed at a 

specific wavelength, many minerals have unique and 

recognisable spectral characteristics that can be used to 

confidently identify them. This part of the electromagnetic 

spectrum (between 0.4 and 2.5 m; visible, near-infrared, and 

shortwave-infrared) is where most sunlight is reflected, so it 
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can be used to identify geological features that have low- and 

moderate-temperature characteristics (Mahboob et al., 

2015a). In this region of the electromagnetic spectrum, iron 

oxides, oxyhydroxides, and ligands can usually be mapped 

very well because of their properties that alter at high or low 

temperatures (Clark et al., 1990). This part of the spectrum 

can also be used to differentiate between silicate (clay) 

minerals and other characteristics. The spectral differentiation 

of minerals has been the driving force behind the application 

of this technology in mineral discovery (Calvin et al., 2015). 

The wavelength of the thermal infrared (TIR) component of 

the spectrum, which usually spans from 7 to 14 m, is used to 

detect the energy emitted from Earth's surface. In addition to 

water, carbonates, and sulphates, this part of the 

electromagnetic spectrum is sensitive to Si-O bonding in 

silicates (Repacholi, 2012; Udvardiet al., 2017; Manley, 

2014). Calcite, orthoclase feldspar, kaolinite, 

montmorillonite, and haematite are among the common 

minerals whose spectral characteristics can be reliably and 

clearly mapped using reflectance spectroscopy data. The 

underlying or surface evidence of these deformation events is 

rarely found or mapped. But this problem presents an 

opportunity for our research, so we use an integrated approach 

of remote sensing datasets with hydrothermal alteration 

mapping and geochemical features of the metals in the rear 

Earth to propose solutions to the problems mentioned above. 

The geochemical characteristics were utilised to identify the 

primary alteration processes responsible for the 

mineralization potentials found in the Pre-Cambrian rocks of 

the Mambilla plateau in northeastern Nigeria, as well as to 

calculate the crustal abundance of base metals. The tectonic 

history, surface lithology, lineament mapping, and structural 

mapping of the study area were all conducted using the remote 

sensing datasets. 

 

Study area Location and its Geological settings 

The study area is located in northeastern Nigeria, in the 

Taraba State parts of Sardauna and Gashaka. With a total 

landmass of around 6160 km2, its boundaries are determined 

by the longitudes 6° 30' 00'' E and 7°30' 00''E and the latitudes 

11° 00' 00'' N and 11°30' 00''N (Fig. 1). The Mambilla plateau 

forms the southernmost tip of the eastern part of northern 

Nigeria in the sub-Saharan Sudan area of West Africa (Frantz, 

1981; Tukuret al., 2005). The area has an average annual 

rainfall of roughly 30 inches, and the wet season spans from 

April through October. The environment and vegetation are 

reminiscent of a Savannah. The long dry season, which spans 

from November to March, is characterised by dusty harmattan 

breezes from the northeast. With occasional highs of 105 °F, 

April and May are the hottest months. The Basement 

Complex rocks, which span from the Precambrian to the early 

Paleozoic, overlay the plateau. The plateau and its environs 

are also composed of volcanic rocks that date from the upper 

Cenozoic to the Tertiary and Quaternary ages (Jeje, 1983; 

Mubi and Tukur, 2005). These rocks were extruded from 

tectonic fault lines within the plateau and are volcanic in 

origin. This volcanic rock is composed of olivine basalt, 

basalt suite, and trachyte basalt, all of which contain various 

combinations of amphiboles, pyroxenes, and other free quartz 

minerals (Mould, 1960). Tertiary basalts, primarily formed by 

trachytic lavas and widespread basalts, are found on the 

Mambilla Plateau (Dupreez and Barber, 1995). These 

crystalline basement rocks underwent progressive 

deformation of varying intensities over time, resulting in the 

formation of major fractures. Consequently, N to S, NE to 

SW, NW to SE, NNE to SSW, NNW to SSE, and, to a lesser 

extent, E to W are the trends of the fractured (Obaje, 2009). 

The Basement Complex (Fig. 2) is one of the three primary 

litho-petrological components that comprise Nigeria's 

geology. The Nigerian Basement Complex is part of the Pan-

African mobile belt; it is situated between the West African 

and Congo Cratons, south of the Tuareg Shield. The 

Cretaceous and more recent sediments are unevenly layered 

on top of the Mesozoic calc-alkaline ring complexes, or newer 

granites, that penetrate the Jos Plateau. The Nigerian 

basement was influenced by the 600 Ma Pan-African 

orogeny. It is situated in the reactivated zone formed by plate 

collisions between the active Pharusian continental margin 

and the passive continental margin of the West African craton 

(Burke and Dewey, 1972; Dada, 2006). The deformation, 

metamorphism, and remobilization of the basement rocks are 

believed to have been greatly influenced by the Liberian 

(2,700 Ma), Eburnean (2,000 Ma), Kibaran (1,100 Ma), and 

Pan-African (600 Ma) cycles. Among the ore minerals found 

in the Oban-Obudu-Mandara-Gwoza region in the eastern 

part of the Nigerian Basement Complex are gem minerals and 

cassiterite, wolframite, galena, chalcopyrite, and barite 

(Obaje, 2009).
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Figure 1: Map showing the location of the Study area (Adopted from Arch-GIS, 2019) 

 
Figure 2: The Geological map of the Study area, Showing the rock types, and their lithologies (Modified after Dada, 2006; 

Obaje, 2009) 

 

MATERIALS AND METHODS 

Digital Elevation Model 

As an endless spatial representation of the ground's 

topography or elevation, digital elevation models (DEMs) are 

easiest to define (Abrams et al., 2020). Their application to 

geology is very valuable in understanding the local structural 

architecture of rocks and areas (Fig. 3). In order to obtain the 

ASTER DEM, which was launched in 1999 and used for 

lineament generation in this study, the United States 

Geological Survey Agency Earth Resource Observation and 

Science (USGS-EROS) website was consulted (accessed on 

August 29, 2021). The elevation data for the latitudes 83oN 

and 83oS in the ASTER DEM, which is freely accessible from 

NASA and Japan's MITI, has a tile size of 1o x 1o and a spatial 

resolution of 30 m. To create these data, 1.3 million Level 1A 

scene photos that were taken between March 1, 2000, and 

November 30, 2013, were combined. Stacking all of the 

individual cloud masks and non-cloud mask scenes was the 

first step in creating a DEM. The appropriate algorithm was 

subsequently used to apply unwanted data. A DEM was used 
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in this work to extract lineament data from the study area. 

DEM was chosen because of its high resolution and ability to 

extract lineaments with a geological origin (Dos Santos et al., 

2016).

 

 
Figure 3: Map of digital elevation model (DEM) of the study area, showing low elevations within the northern parts and 

surrounded by high elevations (south to west regions) indicative of exposed basement. 

 

Remote Sensing data 

The most often used satellite data for mapping and 

investigating hydrothermal minerals is usually ASTER. 

However, due to malfunctions, six of ASTER's SWIR sensors 

have not been used since 2008 (Wesselset et al., 2013). Free 

Landsat data is used for research and mapping of 

hydrothermally altered minerals and rocks. This study used 

cloud-free level 1T (L1T) information collected in August 

2017 (path 170/row 78) of the Landsat 8 satellite. Absolute 

radiance units are computed using 32-bit floating-point 

estimations during the processing of Landsat images. These 

data are transformed into 16-bit integer values in the final 

Level 1 product (Chander and Markham, 2003). Table 1 lists 

the spectrum and geographic properties of the functional 

Landsat 8 Thermal Infrared Sensor (TIRS) and Land Imager 

(OLI). A region measuring 170 km by 183 km (north to south) 

is covered by a single Landsat 8 image. 

 

Satellite image pre-processing 

Pre-processing is required in order to create geometrically and 

atmospherically corrected satellite images, which are then 

used to extract and analyse the spectral data. The method 

known as geometric correction involves the use of 

georeferencing satellite images with respect to terrestrial 

control points for the purpose of generating pixels of the same 

size. There are two other approaches to atmospheric 

corrections: total correction (Chavez, 1996; Song and 

Woodcock, 2003) and comparison normalisation (Schroeder 

et al., 2006). Relative normalisation, according to Song et al. 

(2001), is the process of radiometrically adjusting the Landsat 

data sets with respect to a reference image using the Pearson 

correlation between objects that are pseudo-invariant through 

various dates. Empirical and physical-based approaches are 

two further categories into which absolute correction can be 

separated. The empirical method converts the spectrum data 

from the sensor's luminescence to ground reflectance using 
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the spectral characteristics of the ground attributes. While 

empirical approaches are simple to use, they do not take into 

consideration the variation in atmospheric influence from 

pixel to pixel. On the other hand, the heterogene is accounted 

for by physical-based techniques like the Satellite Signal in 

the Solar Spectrum (6S) code (Vermoteet al., 1997), 

MODERATE-resolution atmospheric TRANsmission 

(MODTRAN) (Berket al., 1998), and 

Atmospheric/Topographic Correction (ATCOR) (Richter, 

1997). However, because the Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) software (Maseket et 

al., 2006) implemented the 6S code, atmospheric correction 

for Landsats 4–7 was fully automated. Vermote et al. (2016) 

have developed an enhanced atmospheric correction 

algorithm for Landsat 8 (L8SR) that shows promise over the 

haphazard Landsat 5-7 LEDAPS product (Table 1).

 

Table 1: Landsat 8 satellite spectral and spatial detail 

Spectral band number Spectral band name Wave length(μm) Spatial resolution(m) 

1 Coastal aerosol 0.43 - 0.45 30 

2 Blue 0.45 - 0.51 30 

3 Green 0.53 - 0.59 30 

4 Red 0.64 - 0.67 30 

5 Near-Infrared (NIR) 0.85 - 0.88 30 

6 Shortwave-Infrared (SWIR) 1 1.57 - 1.65 30 

7 Shortwave-Infrared (SWIR) 2 2.11 - 2.29 30 

8 Panchromatic 0.50 - 0.68 15 

9 Cirrus 1.36 - 1.38 30 

10 Thermal-Infrared (TIRS) 1 10.60 - 11.19 100 

11 Thermal-Infrared (TIRS) 2 11.50 - 12.51 100 

 

Spectral sub setting 

Since OLI band 1 (coastal aerosol) is useful for imaging 

shallow waters and band 9 (cirrus) is useful for spotting high-

altitude clouds and monitoring small particles like dust and 

smoke, these two bands were excluded from the analysis 

afterwards. Moreover, research indicates that the best bands 

for mineral exploration mapping are found in the visible, near-

infrared, and shortwave ranges. In this investigation, OLI 

bands 2–7 and TIRS bands 10–11 were utilised for additional 

processing. All of these bands were merged into a single 

image using the layer stacking digital image processing 

technique (Mahboob et al., 2015). 

 

Digital number conversion to reflectance 

The Landsat 8 L1T pictures often contain digital quantities 

(DNs), which must be translated to surface reflectance 

because they lack any physically significant information. 

Since it takes into account the solar circumstances (lighting, 

intensity, and geometry) at the time the photos were taken, 

this conversion is necessary for quantifying various attributes 

in remote sensing data. The data in this study were converted 

to top-of-atmosphere (TOA) reflectance using radiometric 

coefficients, as recommended by Roy et al. (2016). After that, 

DNs were transformed into reflectance, as seen in Figure 4, 

which is the ratio of radiation striking a surface to radiation 

reflected from it (Han and Nelson, 2015). DN data were 

transformed to TOA reflectance using Equation (1) (Zanter, 

2016): 

 

𝜌𝜆 =
𝑀𝜌×𝑄cal  +𝐴𝜌

sin 𝜃
        (1) 

Where 𝜃 = Solar elevation angle (degrees), Q cal = Level 1 

pixel value in DN, Aρ = Reflectance additive scaling factor 

for the band, Mρ = Reflectance multiplicative scaling factor 

for the band,  and ρλ = Top of Atmosphere Planetary 

Reflectance (dimensionless). 

 

Reflectance spectroscopy of satellite imagery 

Based on the spectral absorption characteristics, the data 

gathered by Landsat 8 can be used to identify various 

components and surface features. It shows the reflected and/or 

emitted spectrum energy. The EM spectrum absorption 

properties of certain minerals and mineral groups in 

hydrothermally altered rocks are unique. Several alunite and 

clay ores, for example, exhibit characteristic absorption at 

approximately 2.1 m, and their spectral responses are 

significantly stronger at approximately 1.7 m (Sabins, 1999). 

Iron oxide and sulphate, according to Johnson et al. (2016), 

usually show low and high reflectances in the ultraviolet/blue 

and near-infrared regions of the electromagnetic spectrum, 

respectively. Consequently, in an image with natural colours, 

these minerals seem rusty. 

 

Band rationing of satellite imagery 

Band-ratioing is a digital image-processing technique that 

enhances the contrast between features by dividing the 

reflectance for the pixels in one band of the same satellite 

image by the reflectance for the pixels in another band. This 

technique has been widely used to map and visualise rocks 

that have experienced hydrothermal alteration. For example, 

Han and Nelson (2015) used Landsat Thematic Mapper (TM) 

band 5 (1.55–1.75 m) image ratios over band 7 (2.09–2.35 m) 

to successfully distinguish between areas with significant 

concentrations of alunite and clay, where pixels in the satellite 

image appear bright. In a different study, Van der Meer (2004) 

used the ratio image of band 3 (0.63-0.69 m) over band 1 

(0.45–0.515 m) to pinpoint areas that are rich in iron ores. For 

enhanced lithological units and rocks that had undergone 

hydrothermal alteration, various band ratios were developed 

in the current research work, as indicated in Table 2. The 

bands selected are determined by the location of the 

absorption bands and the spectral reflectance of the mineral 

or mineral assemblage under mapping. The band-ratioing 

method is a great way to visualise data, but it is not able to 

map or measure the area's characteristics. Part of the reason 

for this limitation is that most optical multispectral remote 

sensing devices have bandwidths > 0.05 m, which are too big 

to effectively discriminate between the numerous spectral 

absorptions connected to different alteration minerals (van 

derMeer, 2004). Furthermore, many band ratio methods only 

employ two or three bands, but multispectral remote sensing 

instruments provide far more bands than those mentioned 

above. Due to these limitations, a more sophisticated digital 

satellite image analysis technique that is capable of 

simultaneously utilising all of the satellite bands must be used.
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Table 2:Band ratio of enhancement of hydrothermally altered rocks 

S/N Spectral band name Wave length(nm) Type of mineral enhanced 

1 red

blue
 

640–670 

450–510 

Iron oxide 

2 Shortwave − Infrared (SWIR) 1

Shortwave − Infrared (SWIR) 2
 

1570–1650 

2110–2290 

Hydroxyl- bearing rock 

3 Shortwave − Infrared (SWIR) 2

Near − Infrared (NIR)
 

2110–2290 

850–880 

Clay minerals 

4 Shortwave − Infrared (SWIR) 1

Near − Infrared (NIR)
 

1570–1650 

850–880 

Ferrous mineral 

 

Spectral band combination 

The spectral band combination approach, also known as red-

green-blue (RGB) combination, is a very useful image-

enhancement technique that offers powerful ways to visually 

comprehend multispectral satellite data (Novak and 

Soulakellis, 2000). Satellite data band combinations can be 

real (natural) or false-colour composites (FCC) based on 

particular bands or band ratios. Over time, a variety of band 

ratios and band combinations have been developed to help 

distinguish lithologies in satellite images (Table 3). The 

hydrothermally altered rocks were mapped using the 

Kaufmann and Sabins ratios in relation to the local minerals. 

These two ratios have been applied to determine altered 

places and the minerals contained within a rock. The 

Kaufmann ratio was used by Mia and Fujimitsu (2012) and 

Abhary and Hassani (2016) to map minerals that contained 

iron and hydroxyl ions. In order to identify sulphide deposits 

associated with iron oxide alteration zones, Da Cunha 

Frutuoso (2015) used the Sabins ratio. This technique was 

used in this study. 

 

(a)Principal Component analysis 

Principal component analysis (PCA) yields proficient 

information that is regularly used in the earth sciences (Cheng 

et al., 2011; El-Makky, 2011). PCA is a widely used 

multivariate statistical method that is commonly employed to 

examine correlations between variables. Many correlated 

variables can be orthogonally transformed into uncorrelated 

combinations (eigenvector loadings) of principal components 

(PCs) based on their covariance or correlation matrix (Horel, 

1984; Loughlin, 1991). The highest degree of variability in 

the original data set is usually not highlighted by many PCs 

(Panahi et al., 2004). Because PCA reduces the 

dimensionality and redundancy of data sets, it is therefore 

widely used to improve the interpretability of information 

(Cheng et al., 2011; Horel, 1984; Jolliffe, 2002). According 

to the PCA algorithm, which states that PCs are linear 

combinations of the original variables, PCs integrate the input 

variable uniquely and indicate only a small amount of 

information within the entire dataset (Abdi and Williams, 

2010). Because PCA can handle multivariate data sets, it has 

been extensively used in remote sensing for geological 

mapping of ores and igneous rock strata (Grunsky et al., 

2014). The spectral characteristics of different features in the 

area, like plants, rocks, and soils, usually cause the statistical 

variance mapped onto each PC, which is the foundation of the 

Crosta technique (Tangestani and Moore, 2001). This work 

has applied the method based on highly fluctuating non-

correlated satellite bands for hydrothermally altered rocks.

 

Table 3:Landsat TM spectral band combinations, RGB combinations for enhancement of hydrothermally altered rocks 

S/N Analysis 

type 

Spectral bands Type of mineral enhanced References 

1 Kaufmann 

ratio 

 
7

4
:
4

3
:
5

7
 

 

Iron-ion-containing minerals are represented by red, 

vegetated areas by green, and hydroxyl-bearing 

minerals by blue. 

(Kaufmann, 1988) 

2 Chica–

Olma ratio 

5

7
:
5

4
:
3

1
 

Color-wise, red stands for clay, green ferrous ions, and 

blue for ferric ions. 

(Mia and Fujimitsu, 

2012b) 

3 Sabins 

ratio 

5

7
:
3

1
:
3

5
 

Areas of hydrothermal alteration are shown by yellow; 

water is indicated by black; vegetation is shown by dark 

green, rocks rich in clay by lighter green; sand is shown 

by blue; and iron oxides are indicated by red, pink, or 

magenta. 

(Sabins, 2007) 

4 Sultan’s 

ratio 

5

7
:
5

1
:
5

4
×

3

4
 

The hydroxyl minerals are represented by deep violet, 

ferric ions by green, and ferrous oxides by blue. 

(Gad and Kusky, 

2006) 

5 Abrams 

ratio 

5

7
:
3

1
:
4

5
 

Clay minerals are red, and hydrothermally changed iron 

oxide is green.. 

(Pour and Hashim, 

2012) 

 

(b)Lineament Extraction Analysis 

Since geological structures are essential to the formation of 

mineral deposits, they were mapped using a variety of spatial 

data on a regional scale (Tripp & Vearncombe, 2004). 

Previous research (Sadiq et al., 2022; Abdul Malik et al., 

2018) indicates that manual, automatic, or semi-automated 

methods have been used to extract geological lineaments. 

However, for this study, lineaments were automatically 

extracted. Automated methods have received recognition for 

their efficacy and reproducibility (Weerasekara et al., 2014). 

Specific software settings (Table 4) on PCI Geomatica v10.0 

aided in the spatial extraction of lineaments from DEM 

(Figure 1). Lineament extraction was followed by statistical 

and spatial analyses, such as orientation and lineament density 

analyses using rose plots (Hung et al., 2005) and dip 

histograms (Immaculate et al., 2020). 
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Fieldwork and Laboratory Techniques 

The field study included a description of the structural 

contexts and field relationships of the exposed rock units in 

the area. Ten distinct rock samples (Table 5) were collected 

in total. On ten selected samples, comprehensive megascopic 

analyses were performed. Major and uncommon base metals 

were analysed in each sample using a Philips X-ray 

fluorescence (XRF) spectrometer (PW/2404) equipped with a 

Rh radiation tube and eight analysing crystals (EMRA).

 

Table 5: Description of rock samples and their coordinates in the study area 

S/No. Samples Type Latitudes 

(N) 

Longitudes 

(E) 

Elevation                      

(m) 

Rocks Type/Remarks 

1 S01 11o21′30.9′′  7o29′54.4′′ 363 Vein 

2 S02 11o21′ 30.9′′  7o24′34.4′′ 365 Vein 

3 S03 11o21′ 30.9′′  7o21′05.6′′ 418 Vein 

4 S04 11o21′ 30.9′′  7o19′00′′ 518 Quartz vein 

5 S05 11o21′ 30.9′′ 7o15′31.3′′ 622 Vein 

6 S06 11o21′ 30.9′′  7o12′31.2′′ 1543 Vein 

7 S07 11o21′ 30.9′′  7o14′22.7′′ 1501 Vein 

8 S08 11o21′ 30.9′′  7o 7′53.5′′ 1469 Vein 6 inches thick. 

9 S09 11o21′ 30.9′′  7o7′38.4′′ 1790 Vein 

10 S10 11o21′ 30.9′′  7o 04′51.1′′ 1603 Vein 

 

RESULTS AND DISCUSSION 

Lithological mapping in the Study Area 

(a) Principal Component analysis (PCA) 

In order to characterise the lithologies, the colour composition 

(CP3, CP6, CP1) RGB created from eight Landsat OLI bands 

was utilised. The results correspond with the geological map 

of Figure 2 and include the following lithologies: younger 

basalt, porphyritic granite, granite gneisses, and migmatite 

gneisses (Fig. 4). This technique is widely applied in remote 

sensing to compress the data dispersed across our Landsat 8 

OLI image's multiple spectral bands. The new components of 

this technique often represent up to 97% of the original dataset 

(Deslandes, 1989).

 

 
Figure 4: Color composite of the Landsat OLI image, using (CP3, CP6, and CP1, in RGB) showing younger basalt (yb), 

porphyritic granite (pg), granite gneisses (Gn) and migmatite gneiss (Mg). 
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(b) Band ratios (BR) and Supervised Classification 

approach 

Three band ratios (7/6, 6/5, 4/2; 7/2, 4/2, 6/7); and (6/4, 6/2, 

7/6) were effectively employed in the current study. Figure 5 

shows the lithologies that were identified: migmatite gneiss, 

porphyritic granite, younger basalt, and granite gneisses. 

According to Kruse, Fred et al. (1993), the result corresponds 

with the geological map in Figure 2. The results show that 

these band ratios are highly helpful in distinguishing between 

the different rock types in the study area. Its basis is a physical 

principle called prototype spectra, also referred to as "end 

members," which determines the degree of similarity between 

each picture pixel's spectrum and the reference spectra. A 

spectroradiometer can be used to directly measure both of 

these in the field based on an image (Plaza and Chang, 2005; 

Kruse et al., 1993; Richards, 1999). It considers all of the 

image's spectral bands in a "N-dimensional" spectral space 

and requires radiometrically and atmospherically calibrated 

and standardised image data (Boardman and Kruse 1994). 

The basic goal of band ratios is to enhance the spectral 

dissimilarities between lithological units. New colour 

compositions can now be added to the band ratio calculations.

 

 
Figure 5: The RGB colored compound of the divisions (ratio) of bands: [(7/6); (6/5); (4/2)] showing Younger basalt (Yb), 

porphyritic granite (Pg), granite gneisses (Gn) and migmatite gneisses (Mg) 

 

Hydrothermal alteration mapping 

Remote sensing for the identification and mapping of 

hydrothermal minerals is only beneficial if it is possible to 

discriminate clearly between the reflected spectra of altered 

bedrock and those of other objects. The true colour composite 

of bands 2, 3, and 1, which were red, green, and blue, 

respectively, emphasised the textural characteristics of the 

rocks, which set them apart from other rocks. Pournamdari et 

al. (2014) tested the same combinations of satellite bands and 

found that they could be used to distinguish between igneous 

and non-igneous rocks. The false-colour composite was 

assigned to bands 4, 3, and 2 as red, green, and blue, 

respectively, in order to analyse the reflected satellite 

spectroscopic data (Fig. 5). The false-colour composite is 
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essential for emphasising the regional geological and 

geomorphological features, according to Bedini (2009) and 

other sources. The vegetation appeared to be in red tones due 

to the presence of the near-infrared (0.7–1.2 m) band, where 

the vegetation reflects most of the light and is emphasised 

with a red colour. 

 
Figure 6: Band ratio for enhancement of potential mineralization in the study area. Red and blue band represent soil with 

potential for iron mineralization, yellow and purple enhance areas with potential clay minerals and orange to yellow represent 

areas with potential ferrous oxides. 

 

Hydrothermally altered clay and carbonate minerals can be 

identified by yellow patches in crystalline igneous rocks 

(Fig.  6).This could be due to the reflectance of clay and 

carbonate minerals at 1.55–1.75 m (Landsat 8 band 6) and 

absorption in the 2.1–2.4 m range. Van der Meer (2004) also 

reported the same absorption and reflectance bands for the 

clay minerals using data from NASA's Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS). Another 

study by Zainiet al. (2016) found that clay and carbonates 

share the same absorption and reflectance bands, which were 

used to map them using reflectance spectroscopy. The 

investigation conducted by Holmes and Lu (2015) 

corroborated the results of this study. No remotely detected 

satellite image can be used to "see" sapphire, quartz, or 

tourmaline up close. This precious metal's distribution can be 

mapped by combining it with various other minerals based on 

their spectral reflectances (Kotnise and Chennabasappa, 

2015). Clay minerals such as illite, dioctahedral smectite, and 

kaolinite are generally found in the alteration zones associated 

with mineral deposits such as sapphire and tourmaline 

(Drews-Armitage et al., 1996). Specific electromagnetic 

spectral signatures, mainly in the shortwave infrared range, 

are present in these minerals. These spectral fingerprints are a 

very economical and efficient way for mineral exploration 

programmes to map the probable locations of sapphire, 

tourmaline, and lithium deposits. The band combination of 

short-wave infrared 2, which has a wavelength of 2.11-2.29 

m, and near-infrared, which has a wavelength of 0.85-0.88 m, 

The iron oxides that were present in the study locations were 

highlighted by the red-to-blue band ratio, as shown in Table 

2. Rich soils with iron oxides reflect more light in the red 

spectrum (0.64-0.67 m) and absorb more light in the blue 

spectrum (0.45-2.51 m), according to Schwertmann (1993). 

The typical reflectance of iron oxide-rich soils is shown in 

Figure 7. The significance of the red and blue bands of 

Landsat data for mapping iron oxides has also been 

demonstrated by Pour and Hashim (2015). Using spectral 

band ratio approaches, Pour and Harshim (2012) also 

recognised the iron-rich mineralized zones of distant 

Antarctica in Landsat imagery.
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Figure 7: Landsat TM spectral band combinations map of the study area using Kaufmann and Sabins ratio for enhancement of 

hydrothermally altered rocks. Red represents minerals containing iron; green represents vegetated zones, and blue represent 

hydroxyl-bearing minerals, and lighter green signifies clay-rich rocks 

 

Application of lineament analysis and its significant to 

mineralization 

 Figure 8 displays the main lineament map of the study area. 

Visual inspection of Figures 8 and 9 indicates that the 

lineaments in this image appear to be oriented in different 

directions, but mainly trend in the NE-SW, N-S, NNW-SSE, 

and NW-SE directions. These dips are most noticeable at 30° 

to 40° (Figure 10). Diverse lineament patterns within the 

research area suggest a complex tectonic past, according to 

Yusuf et al. (2019). Per the results of the lineament density 

study, the lineaments were concentrated in the centre of the 

area (at the artisanal mining areas), from which the 

compression gradually expanded northeastward. This area 

had a high degree of fracturing and lineament density. Zones 

of high lineament density (Ananaba and Ajakaiye, 1987) are 

crucial for the mineral deposits' location (Fig. 11). According 

to the analysis of rose diagram plots (Figs. 8 and 9) for these 

lineaments, the NE-SW and NW-SE directions are more 

common than the N-S and NNW-SSE trends. Ibrahim (2013) 

regarded the ENE-WSW lineaments as right and left lateral 

slip faults and the NW-SE lineaments as left-lateral strike slip 

faults. Additionally, the main dips' histograms (Figure10) 

show a 30o–40o.
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Figure 8: Structural lineaments map of the study area extracted from satellite data 

 

 
Figure 8: Rose diagram extracted from Satellite imagery, showing the main trend 
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Figure 9:  Rose diagram showing the structural trends from field measurement 

 

 
Figure 10: Histogram plot for dips angle in the area of study. 
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Figure 11: Lineament density map of the study area 

 

Geochemical Characterization of veins in the study area 

Ten representative samples of the analysed rocks were 

subjected to chemical analyses in order to ascertain the major, 

base metals, and base metals   ratios. The analytical data for 

main oxides,base metals and anticipated trace element ratios 

are shown in Tables 6, 7, and 8. The analysed samples' 

average SiO2 and Al2O3 contents range from 37.20 to 73.65% 

and 13.19 to 9.57%, respectively, according to analysis. 

Additionally, Fe2O3 percentage ranges from 9.4% to 2.3%, 

whereas TiO2 content ranges from (5.13% to 0.11%). They 

have low concentrations of MnO and P2O5, which range from 

(0.02% to 0.07%) and (0.06% to 0.01%), whereas L2O varies 

from (3.85% to 0.01%), CaO ranges from (16.64% to 2.72%), 

MgO ranges from (0.02% - 3.38%), Na2O ranges from 

(15.91% to 1.85%), and K2O ranges from (14.21% to 2.99%. 

The outcomes of SiO2 and Al2O3 were found to be the most 

prevalent major oxides in the rocks according to the 

geochemical investigation for the major oxides. Because of 

their mode of occurrence, other oxides like CaO, Fe2O3, K2O, 

MgO, MnO, Na2O, P2O5, and TiO2 are present in the rocks in 

minute to trace amounts. Whereas Al2O3 suggested the 

presence of aluminosilicate-bearing minerals like feldspar, 

micas, and feldspathoids, SiO2 indicated that the rocks are 

siliceous (Parker 1967, Fortescue, 1992, Friedrich et al., 

1992). Rocks typically range from felsic to intermediate in 

SiO2 content, between 37.20% and 73.65%. With 

compositional ranges of 13.19% - 9.65% and 10.12% - 2.33%, 

respectively, there are notable enrichments in Al2O3 and 

Fe2O3, respectively. In all the samples, their distribution 

patterns are fairly stable. 

According to the rock geochemical analysis for base metals, 

nickel content ranges from 23.2 to 5.75 ppm with a mean 

value of 19.87 ppm, copper content ranges from 36.5 to 110 

ppm with a mean value of 59.93 ppm, zinc content ranges 

from 13.30 to 245 ppm with a mean value of 61.84 ppm, 

gallium content ranges from 20.00 to 59.6 ppm with a mean 

value of 2.18 ppm, and germanium content ranges from 1.40 

to 3.59 ppm with a mean value of 2.18 ppm.Arsenic content 

ranges from 3.57 to 18.10 ppm with a mean value of 10.77 

ppm; Rubidium content ranges from 156 to 2090 ppm with a 

mean value of 550.45 ppm; Strontium content ranges from 

23.6 to 961 ppm with a mean value of 333.62 ppm; Zircon 

content ranges from 13.90 ppm to 13.90 ppm. Silver content 

ranges from 7.51 to 10.3 ppm with a mean value of 8.87 ppm; 
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Yttrium content ranges from 6.10 to 77.9 ppm with a mean 

value of 21.64 ppm; Niobium content ranges from 3.33 to 

24.7 ppm with a mean value of 18.67 ppm; and Barium 

content ranges from 26.2 to 832 ppm with a mean value of 

298.27 ppm. Molybdenum content was detected in only one 

sample with a concentration of 3.2 ppm, and the contents of 

the other samples range from 7.51 to 10.3 ppm for silver, 4.75 

to 17.41 ppm for tin, 18.3 to 48.7 ppm for cesium, and 9.20 to 

126 ppm for lead, with a mean value of 56.90 ppm. There is 

only one sample with a concentration of 3.2 ppm for 

concentration.The concept of a geochemical background is 

crucial to mineral exploration. Background is described as 

"the normal crustal abundance of material naturally" or "the 

normal abundance of an element in barren earth material." 

The normal crustal abundance values for Au 0.0035 ppm, Sn 

2.1 ppm, As 1.8 ppm, Cs 2.6 ppm, Mo 1.2 ppm, Y 31.0 ppm, 

V 13.60 ppm, Zr 162.0 ppm, Sr 384.0 ppm, Ba 390.0 ppm, Nb 

20.0 ppm, Rb 78.3 ppm, Ni 99.0 ppm, Co 29 ppm, Cu 68 ppm, 

Pb 13 ppm, Ag 0.075 ppm, and Zn 76 ppm (Fortescue, 1992; 

Parker, 1967) A geochemical anomaly is a value that differs 

from the background crustal abundance and can be either 

positive or negative. In order to detect, characterise, and 

determine relative abundances of indicators, for instance, they 

must be present in a small number of rocks that are relatively 

resistant to weathering so that a reasonable dispersal train can 

form in rocks, sediments, or soil, be sufficiently abundant, and 

be visually distinct or amenable to concentrating. These 

minerals can reveal the type of bedrock geology (Friedrich et 

al., 1992). 

Tin (Sn), arsenic (As), cesium (Cs), molebdenum (Mo), 

zircon (Zr), rubidium (Rb), nickel (Ni), lead (Pb), and silver 

(Ag) are the rare earth elements that, according to the results, 

have levels greater than their crustal abundance. While MO, 

Ge, Cu, Sr, Nb, Ba, Y, Au, Ga, and Zn have values below their 

crustal abundance, their anomaly is negative because their 

geochemical values do not match the background crustal 

abundance. Because the mineralized samples had higher 

values for tin (Sn), arsenic (As), ceasium (Cs), molebdenum 

(Mo), zircon (Zr), rubidium (Rb), nickel (Ni), lead (Pb), and 

silver (Ag), geochemical data studies show that the area has 

significant mineral resources (Steiner, 2019).

 

Table 6: Major element composition of veins along transition zone of Mambilla and environs 

Sample ID 1(%) 2(%) 3(%) 4(%) 5(%) 6(%) 7(%) 8(%) 

SiO2 38.89 70.16 71.24 47.2 62 46.12 65.11 75.35 

Al203 9.65 11.52 10.07 9.57 11.52 10.57 11.07 10.77 

TiO2 0.11 0.12 0.22 0.23 0.12 0.11 0.14 0.12 

Fe203 4.21 1.22 2.34 5.78 2.56 8.78 10.12 4.24 

MnO 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.04 

MgO 0.02 1.98 0.37 0.32 3.33 0.34 0.53 1.34 

CaO 16.64 5.71 5.92 12.71 2.72 5.73 7.75 2.77 

K2O 11.52 6.72 6.63 13.76 12.68 14.21 3.77 2.90 

Na2O 15.91 3.81 3.88 5.86 4.87 3.85 3.88 2.90 

P2O5 0.03 0.04 0.01 0.03 0.05 0.05 0.06 0.02 

Li2O 3.50 0.02 0.00 3.45 0.12 3.13 0.00 0.00 

Total 99.9 99.70 99.60 99.60 99.87 100 99.90 99.80 

 

Based on the base metal ratio results (Table 8), the K/Rb ratios 

of samples 1, 4, 6, 9, and 10 are 4.8 ppm or higher. Thus, they 

are pointing to bedrock that has been fractionated and may 

contain a lithium deposit. The lithium-bearing pegmatites are 

called lithium-cesium-tantalum pegmatites because of their 

enrichment in the incompatible elements Li, Cs, Sn, Rb, and 

Ta (Steiner, 2019). The result is consistent with the 

geochemistry of major oxides, base metal composition ratio, 

and concentration. Samples related to mineralization were 

found in Samples 1, 4, 6, 9, and 10 (Table 8) (Meima et al., 

197; Kampang (2010); Plimer and Elliott, 2019). According 

to Filzmoser et al. (2005), the rocks are of crustal origin and 

typically have silica contents of more than 60%.
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Table 7: Base metals composition of veins along transition zone of Mambilla and environs 

Sample ID 

Ni 

(ppm) 

Cu 

(ppm) 

Zn 

(ppm) 

Ga 

(ppm) 

Ge 

(ppm) 

As 

(ppm) 

Rb 

(ppm) 

Sr 

(ppm) 

Zr 

(ppm) 

Y 

(ppm) 

Nb 

(ppm) 

Mo 

(ppm) 

Ag 

(ppm) 

Sn 

(ppm) 

Cs 

(ppm) 

Ba 

(ppm) 

 1 13.7 39.2 59.1 38.2 1.93 8.71 694 24.6 32.4 21.2 24.5 1.3 8.29 14.4 ND 41.8 

 2 9.34 38.4 29.8 38.6 1.4 18.1 288 23.3 84.1 23.9 15.5 ND 8.58 12.2 ND 41.2 

 3 21.8 110 43.3 20.1 ND ND 167 642 84.9 32.2 3.33 1.9 8.71 ND ND 574 

4 87.5 67.7 247 40.1 ND 16.5 520 781 434 77.9 17 ND 9.61 5.69 18.3 399 

5 12.6 46.3 33 47.3 ND ND 156 466 121 12.7 ND 4.1 8.11 ND ND 140 

6 13.3 33.6 30.1 59.5 3.3 ND 590 23.1 46.3 11.4 43.4 ND ND 66.3 ND 31.1 

7 5.75 36.5 13.3 30.7 ND 10.5 616 66.5 50.4 14.7 4.3 3.2 7.47 12.5 ND 178 

8 24.5 79 189 45.3 ND ND 358 961 358 23.9 8.35 ND 10.5 4.75 ND 832 

9 23.2 68.2 150 41.1 ND ND 305 900 349 27.7 11.8 ND 7.51 ND ND 738 

10 15.4 46.6 23.9 40.8 2.14 11.1 196 35.8 84.8 18.6 17.3 3.1 ND 17.4 ND 52.8 

Crustal 

abundance 

(Fortescue, 

1992)  99 68 76 10.5 1.2 1.8 78.3 384 162 31 20 1.2 0.75 2.1 2.6 390 
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Table 8: Base metals ratios used as finger prints in understanding the origin, mineralization and evolution of rocks in 

the study area 

Sample ID Rb/Nb 

(ppm) 

K/Rb 

(ppm) 

Sr/Cu 

(ppm) 

Rb/Zr 

(ppm) 

Y+Nb 

(ppm) 

Rb/Sr 

(ppm) 

1 154.22 8.20 0.62 21.42 45.7 28.21 

2 18.58 1.62 0.60 3.42 39.40 0.67 

3 50.15 2.74 5.83 1.97 35.53 0.26 

4 30.59 10.63 11.53 12.06 94.90 12.38 

5 156 2.81 10.06 1.29 12.70 0.33 

6 13.72 7.10 0.08 12.83 54.80 25.54 

7 143.26 3.87 10.40 20.28 19.00 9.26 

8 42.87 2.41 12.16 1.02 32.25 0.37 

9 25.85 9.78 13.20 0.87 39.50 0.34 

10 11.33 4.10 0.77 2.31 35.90 5.47 

 

CONCLUSION 

This work discusses how to characterise the hydrothermal 

alteration zone across the Mambilla Plateau and its 

surroundings by combining remote sensing datasets, field 

measurement, and geochemical data. The primary goal of the 

planned Landsat 8 and ASTER studies was to classify the 

different types of hydrothermal alteration and structural 

lineaments in the area. Band ratios 6/7 and 6/5 were used to 

show changes in clay, 6/5 and 4/2 to identify zones of change 

in ferrous ion, and 4/2 and 4/2 to highlight variations in ferric 

ion, in accordance with Landsat 8 imagery. However, for 

ASTER mapping of hydrothermal alteration, band ratios of 

4/6, 5/6, 5/8, 2/1, and (5/3+1/2) were employed. Four distinct 

band ratio changes were observed: argillic on band ratio 4/6, 

phyllic on band ratio 5/6, propylitic on band ratio 5/8, and 

ferric iron on band ratio 2/1. The band ratio (5/3+1/2) was 

used to show the variation in ferrous ion alteration by region. 

A rose diagram analysis was used to identify the main 

structure directions, with N-S, NE-SW, and NNE-SSW being 

the most noticeable. Significant tectonic changes have 

occurred in the studied area, especially those related to the 

Pan-African orogeny. These led to the nearby formation of 

multiple joints, faults, and fractures. The basement rocks in 

the area are mostly made up of younger volcanic basalts, 

migmatite gneiss, and granite gneiss. Field geological 

research has revealed three types of alteration: phyllic, 

argillic, and propylitic. Numerous notable alteration 

processes, such as epidotization, sericitization, 

muscovitization, kaolinitization, and chloritization, have been 

identified as a result of the area's significant deformation 

following regional metamorphism.. Geochemically, on 

average, the Al2O3, SiO2, Fe2O3, CaO, MgO, K2O, Na2O, Li2O 

content are 12.04%; 54.83%; 4.76%,  7.16 %,  3.02 %, 

10.22%, 4.53%, 1.35%  correspondently while MnO, P2O5  

and TiO2 are less than 1%. suggesting an oxide facies type for 

the deposit. The average base metal composition ranges from 

Ni (19.87 ppm), Cu (59.93 ppm), Zn (61.84 ppm), Ga (37.30 

ppm), Nb (18.67 ppm), Ge (2.18 ppm), As (10.77 ppm), Rb 

(550.45 ppm), Sr (333.62 ppm), Y (21.64 ppm), Ba (298.27 

ppm), Mo (3.2 ppm), Ag (8.87 ppm), Sn (14.0 ppm), and Zr 

(134.55 ppm). Base metals such as tin (Sn), arsenic (As), 

ceasium (Cs), molebdenum (Mo), zircon (Zr), rubidium (Rb), 

nickel (Ni), lead (Pb), and silver (Ag) have have positive 

anomaly because their values are higher than the background 

crustal abundance, while Mo, Ge, Cu, Sr, Nb, Ba, Y, Au, Ga, 

and Zn have values below their crustal abundance; their 

anomaly is negative. From their ratios, samples 1, 4, 6, 9, and 

10 showed high Sr/Cu, Rb/Zr, Y+Nb, Rb/Nb, and K/Rb ratios 

of 4.8 ppm and above. They are indicating high potential for 

host mineralization. Tectonically, the major trends in the area 

are NE-SW, NNE-SSW, and N-S. Lithium, titanium, and 

silica oxides were present in significant amounts, based on the 

geochemical analysis of the samples. The mineralization in 

the area is structurally controlled. 
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