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ABSTRACT 

A suction/injection controlled mixed convection flow of an incompressible and viscous fluid in a vertical 

SurvivalAnalysis is pivotal in understanding the effects of covariates on potentially censored failure times and 

in the joint modelling of clustered data. It is used in the context of incomplete repeated measures and failure 

times in longitudinal studies. Survival data are often subject to right censoring and to a subsequent loss of 

information about the effect of explanatory variables. Frailty models are one common approach to handle such 

data.Three frailty models are used to analyze bivariate time-to-event data. All approaches accommodate right 

censored lifetime data and account for heterogeneity in the study population. A Modified Gamma Frailty Model 

is compared with two existing Frailty Models. The survival-analysis was performed using the Python.The 

newly derived MGF was analyzed using Python which is more robust when sample size is more than forty.The 

MGF model performs better than the existing models in the presence of clustering. However the CGF is 

preferable in the absence of clusters in a given data set.  
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INTRODUCTION 

The design of optimal experiments is crucial in the analysis of 

survival data. When studying time-to-event data or survival 

data, frailty models, including the Gamma frailty model are 

essential for capturing unobserved heterogeneity among 

subjects. Abdulazeez, (2020).  Hazard models have become 

widespread in their use for the analysis of durationtimedata in 

many scientific disciplines, including biology and medicine 

(Cox,1972; Kalbfleisch & Prentice, 1980), sociology 

(Petersen, 1998, Vermunt, 1996), marketing research 

(Vilcassim & Jain, 1991; Wedel et al., 1995), (Getachew & 

Bekele 2016) andeconomics (Kiefer, 1988; Lancaster, 1990). 

These models overcome theproblems of accounting for 

censored observations of duration and time-

varyingexplanatory variables, which arise in applying 

standard regression type models toduration data. The basic 

concept in hazard models is the probability of the occurrence 

of an event during a certain time interval, says t to t+ t , 

given that it has not occurredbefore t, specified as: 

 

𝜆(𝑡|𝑁𝑖(𝑡−), 𝑍𝑖(𝑡)) =
𝑙𝑖𝑚

Δ𝑡 → 0
𝑃𝑟(𝑡 ≤ 𝑇𝑖,𝑁𝑖(𝑡−)+1 < 𝑡 + Δ𝑡|𝑁𝑖(𝑡−),𝑍𝑖(𝑡))/∆𝑡 

=
𝑙𝑖𝑚

Δ𝑡 → 0
𝑃𝑟(Δ𝑁𝑖(𝑡) = 1|𝑁𝑖(𝑡−),𝑍𝑖(𝑡))/∆𝑡        (1) 

 

The Cox proportional hazards model (Cox, 1972) is 

commonly used in the analysis of survival time data. An often 

unstated assumption of the proportional hazards model and of 

traditional frailty models (with the exception of those that use 

the compound Poisson distribution (Rakhmawati  et al 

(2021)) is that all individuals will experience the event of 

interest. However, in some situation a fraction of individuals 

is not expected toexperience the event of interest; that is, these 

individuals are not at risk. (Anthony et al (2019). The 

terminologyto describe the never-at-risk group varies from 

field to field, but includes ‘long-term survivors’ or ‘cured’ in 

epidemiology, ‘non-susceptibles’ in toxicology, ‘stayers’ in 

finiteMarkov transition models of occupational mobility,the 

‘non-fecundable’ in fertilitymodels, and ‘non-recidivists’ 

among convicted criminals. In epidemiology and 

medicine,researchers may be interested in analyzing the 

occurrence of a disease. Many individualsmay never 

experience that disease; therefore, there exists a fraction in the 

population thatis protected. Cure models are survival models 

which allow for a cured fraction in thestudy population. 

These models extend the understanding of time-to-event data 

by allowing for the formulation of more accurate and 

informative conclusions than previously made. 

Theseconclusions would otherwise be unobtainable from an 

analysis that fails to account for acured fraction in the 

population. If a cured component is not present, the analysis 

reducesto standard approaches of survival analysis.  

In cure models, the population is divided into two sub-

populations so that an individualis either cured with 

probability 1 − 𝜙 , or has a proper survival function S(t), 

withprobability 𝜙 . Here, proper survival function means 

𝐿𝑖𝑚𝑡→∞𝑆(𝑡) = 0 . Individuals regardedas cured will never 

experience the event of interest and their survival time willbe 

defined as infinity. Therefore, the hazard and survival 

functions of cured individuals are set to zero and one, 

respectively, for all finite values of t.  

Longini and Halloran (1996) have proposed frailty cure 

models that extend standardfrailty models. The frailty random 

variable in the former has point mass at zero withprobability 

1 − 𝜙 while heterogeneity among those experiencing the 

event of interest ismodelled via a continuous distribution with 

probability φ. Price and Manatunga (2001)gave an excellent 

introduction to this area and applied leukaemia remission data 

to different cure, frailty and frailty cure models. They found 

that frailty models are useful inmodelling data with a cured 

fraction and that the gamma frailty cure model provides 

abetter fit to their remission data compared to the standard 

cure model. 
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In the next section we describe the existing models and a 

proposed model, then provide an application of the models to 

an existing data on occupational exposure tagged – IRANIAN 

data. 

 

MATERIALS AND METHODS 

Cox PH models  

The notation used for Cox PH models (Cox, 1972), Lee & 

Song (2001) with one more subscript to capture multiple 

events is generalized. Let 𝑇𝑖𝑘be the total time of the 𝑘𝑡ℎevent 

for the 𝑖𝑡ℎsubject, 𝐶𝑖𝑘be the censoring time of the 𝑘𝑡ℎevent 

for the 𝑖𝑡ℎsubject. Let 𝑈𝑖𝑘be the observation time, that is,  

𝑈𝑖𝑘 = 𝑚𝑖𝑛(𝑇𝑖𝑘; 𝐶𝑖𝑘),   (2) 
𝑎𝑛𝑑 
𝛿𝑖𝑘 = 𝐼(𝑇𝑖𝑘 ≤ 𝐶𝑖𝑘)    (3)  

is an indicator of observed 𝑘𝑡ℎfailure time for subject i. 𝑍𝑖𝑘 =

(𝑍1𝑖𝑘 , 𝑍2𝑖𝑘 , . . . . 𝑍𝑝𝑖𝑘)is the covariate vector for the 𝑖𝑡ℎsubject 

with respect to the 𝑘𝑡ℎ event, and 𝑍𝑖 = (𝑍𝑖1
' , 𝑍𝑖2

' , . . . . 𝑍𝑖𝑘
' ) 

denotes the covariate vector for the 
thi subject, where K is the 

maximum number of events within a subject. 𝛽 =

(𝛽1, 𝛽2, . . . . 𝛽𝑝) is a 𝑝 × 1  vector of unknown parameters. 

Denote ℎ𝑘(𝑡|𝑍𝑖(𝑡)) as the hazard function for the 𝑘𝑡ℎevent of 

the 𝑖𝑡ℎsubject at time t. This is in the context of competing 

risk. 

In general, the hazard function at time t for a subject is defined 

as the instantaneous probability of failure at time t given the 

survivorship prior to time t and the covariates: 

ℎ𝑘+1(𝑡|𝑍𝑖(𝑡)) =  
𝑙𝑖𝑚

Δ𝑡 → 0
 𝑃𝑟(𝑡 ≤ 𝑇𝑖,𝑘+1 < 𝑡 +

∆𝑡 |𝑇i,k+1≥t,Z𝑖(𝑡)) /∆𝑡   (4) 

Note that Cox PH model for the 𝑘𝑡ℎevent time 𝑇𝑘is  

ℎ𝑘(𝑡|𝑍𝑖(𝑡)) = ℎ0,𝑘(𝑡) 𝑒𝑥𝑝{𝛽'𝑍𝑖(𝑡)}  (5) 

 

Correlated Gamma Frailty (CGF) Model 

This model was introduced by Yashin & Iachine (1995a,b, 

1997, 1999a,b) and applied to related lifetimes in many 

different settings. Examples are found in Rakhmawati  et al 

(2021) ,Pickles et al. (1994), Yashin et al. (1996), Iachine et 

al. (1998), Iachine (2002), Petersen (1998), Rueten-Budde  et 

al (2019), Wienke et al. (2000, 2001, 2002, 2003a,b, 2005), 

Zdravkovic et al. (2002, 2004). Zhu &Kosorok(2012) 

 

Let 𝑘0, 𝑘1 , 𝑘2
 
be some real positive values.  Set 𝜆1 = 𝑘0 +

𝑘1𝑎𝑛𝑑𝜆2 = 𝑘0 + 𝑘2 

Let 𝑌0, 𝑌1, 𝑌2  be independently gamma distributed random 

variables with  

𝑌0~Γ(𝑘0, 𝜆0), 𝑌1~Γ(𝑘1, 𝜆1), 𝑌2~Γ(𝑘2, 𝜆2) (6) 

Consequently, 

 

𝑍1 =
𝜆0

𝜆1
𝑌0 + 𝑌1~Γ(𝑘0 + 𝑘1, 𝜆1)  (7) 

𝑍2 =
𝜆0

𝜆2
𝑌0 + 𝑌2~Γ(𝑘0 + 𝑘2, 𝜆2)  (8) 

 

𝑎𝑛𝑑      𝐸(𝑍1) = 𝐸(𝑍2) = 1, 

𝑉(𝑍1) =
1

𝜆1
: = 𝜎1

2, 

𝑉(𝑍2) =
1

𝜆2
: = 𝜎2

2.    (9) 

The following relation holds 

𝐸(𝑌0
2) = 𝑉(𝑌0) + (𝐸(𝑌0))2 

=
𝑘0

𝜆0
2 + (

𝑘0

𝜆0
)

2

 

=
𝑘0

2+𝑘0

𝜆0
2       (10) 

𝐸(𝑍1𝑍2) = 𝐸 (
𝜆0

𝜆1
𝑌0 + 𝑌1) (

𝜆0

𝜆2
𝑌0 + 𝑌2) 

= 𝐸 (
𝜆0

2

𝜆1𝜆2
𝑌0

2 +
𝜆0

𝜆1
𝑌0𝑌2 +

𝜆0

𝜆2
𝑌0𝑌1 + 𝑌1𝑌2) 

=
𝜆0

2

𝜆1𝜆2

𝑘0
2 + 𝑘0

𝜆0
2 +

𝜆0𝑘0𝑘2

𝜆1𝜆0𝜆2
+

𝜆0𝑘0𝑘1

𝜆2𝜆0𝜆1
+

𝑘1𝑘2

𝜆1𝜆2
 

=
𝑘0 + (𝑘0 + 𝑘1)(𝑘0 + 𝑘2)

𝜆1𝜆2
 

=
𝑘0

(𝑘0+𝑘1)(𝑘0+𝑘2)
+ 1             (11) 

 

𝐶𝑜𝑣(𝑍1, 𝑍2) = 𝐸(𝑍1𝑍2) − 𝐸(𝑍1)𝐸(𝑍2) 

=
𝑘0

(𝑘0+𝑘1)(𝑘0+𝑘2)
,    (12) 

 

This leads to the correlation 

𝜌 =
𝑐𝑜𝑣( 𝑍1, 𝑍2)

√𝑉(𝑍1)𝑉(𝑍2)
 

=
𝑘0

√(𝑘0+𝑘1)(𝑘0+𝑘2)
   (13) 

 

Consequently, because of relation 

𝑘0 + 𝑘1 = 𝜆1 

= 1
𝜎𝑖

2(𝑖 = 1,2)⁄  

 

It holds that  

𝑘0 =
𝜌

𝜎1𝜎2
   (14) 

 

 and  

𝑘𝑖 =
1

𝜎𝑖
2 − 𝑘0 

=
1−

𝜎𝑖
𝜎𝑗

𝜌

𝜎𝑖
2 (𝑖, 𝑗 = 1,2; 𝑖 ≠ 𝑗)..               (15) 

 

To derive the unconditional model, the Laplace transform of gamma distributed random variables is applied. Hence,  

𝑆(𝑡1, 𝑡2) = 𝐸{𝑆(𝑡1, 𝑡2|𝑍1, 𝑍2)} 
= 𝐸{𝑆1(𝑡1|𝑍1)𝑆2(𝑡2|𝑍2)} 
= 𝐸{𝑒−𝑍1Λ1(𝑡1)𝑒−𝑍2Λ2(𝑡2)} 

= 𝐸 {𝑒
−(

𝜆0
𝜆1

𝑌0+𝑌1)Λ1(𝑡1)
𝑒

−(
𝜆0
𝜆2

𝑌0+𝑌2)Λ2(𝑡2)
} 

= 𝐸 {𝑒
−𝑌0(

𝜆0
𝜆1

Λ1(𝑡1)+
𝜆0
𝜆2

Λ2(𝑡2)−𝑌1Λ1(𝑡1)−𝑌2Λ2(𝑡2))
} 

= (1 +
1

𝜆0
(

𝜆0

𝜆1
Λ1(𝑡1) +

𝜆0

𝜆2
Λ2(𝑡2)))

−𝑘0

(1 +
1

𝜆1
Λ1(𝑡1))

−𝑘1

(1 +
1

𝜆2
Λ2(𝑡2))

−𝑘2

 

= (1 + 𝜎1
2Λ1(𝑡1) + 𝜎2

2Λ2(𝑡2))
−𝜌

𝜎1𝜎2(1 + 𝜎1
2Λ1(𝑡1))

−1+
𝜎1
𝜎2

𝜌

𝜎1
2 (1 + 𝜎2

2Λ2(𝑡2))

−1+
𝜎2
𝜎1

𝜌

𝜎2
2

          (16) 
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which results in the representation of the Correlated Gamma 

Frailty model given as  

𝑆(𝑡1, . 𝑡2) =
𝑆1(𝑡1)

1−
𝜎1
𝜎2

𝜌
𝑆2(𝑡2)

1−
𝜎2
𝜎1

𝜌
𝑒

𝛽𝑋𝑖𝑗

(𝑆1(𝑡1)𝜎1
2

+𝑆2(𝑡2)𝜎2
2−1)

𝜌
𝜎1𝜎2

,.    (17) 

 

The Proposed Model – Modified Gamma Frailty (MGF) 

Model 

In order to include heterogeneity in the model, we assume a 

correlated gamma frailty model.  Let Zj (j = 1; 2) be the 

frailties, andXj (j = 1; 2) vectors of observable covariates of 

the two individuals of a twin pair. Assume that their 

individual hazards are represented by the proportional hazards 

model  

𝜆(𝑡) = 𝑍𝑗𝜆0(𝑡) 𝑒𝑥𝑝{ 𝛽𝑇𝑋𝑗}(𝑗 = 1,2)    (18) 

with a baseline hazard function 𝜆0(𝑡) describing the risk of 

respiratory infection as a function of age and 𝛽 denotes the 

vector of regression parameters. Let the lifetimes of the two 

twin partners be conditionally independent given their 

frailties Z1 and Z2. Because frailties Zj(j = 1; 2) are usually 

unobservable, their correlation coefficient used cannot be 

estimated directly from the empirical data. So a bivariate 

lifetime model which allows indirect calculation of the 

parameters is needed. The unconditional bivariate survival 

function of the correlated gamma frailty model with observed 

covariates is given by: 

𝑆(𝑡1, 𝑡2|𝑋1, 𝑋2) =𝑆(𝑡1 |𝑋1)1−𝜌𝑆(𝑡2 |𝑋2)1−𝜌𝑆(𝑡1 |𝑋1)−𝜎2
+

{𝑆(𝑡2|𝑋2)−𝜎2
− 1}−

𝜌

𝜎2      (19) 

Where 𝑆(𝑡  |𝑋)  denotes the marginal univariate survival 

function, assumed to be equal for both partners in a twin pair. 

Using a parametric approach we fit a model to the data, such 

that  

𝑆(𝑡|𝑋𝑖𝑗𝑘) = (1 + [(1 + 𝜎1
2 𝑎

𝑏
(𝑒𝑏𝑡 − 1))

𝜎2
2

𝜎1
2𝜌

− 1])

−
1

𝜎1
2

𝑒𝛽𝑘𝑋𝑖𝑗𝑘 

     (20) 

Where a, b,𝜎1
2 , 𝜎2

2, β and ρ are parameters to be estimated. 

The lifetimes are assumed to be independently censored from 

the right by independent and identically distributed pairs of 

non-negative random variables, which are independent of the 

lifetimes. Thus, observe  
(𝑇𝑖1, 𝑇𝑖2, Δ𝑖1, Δ𝑖2, 𝑋𝑖1, 𝑋𝑖2)   (21) 

 

with Δ𝑖1(𝑖 = 1,2, . . . 𝑛; 𝑗 = 1,2) as a binary variable with 

values 1 (event) and 0 (no event). Let the lifetimes follow a 

distribution (dependent on covariates X1,X2) given by the 

bivariate survival function  

𝑆(𝑡1, 𝑡2|𝑋1, 𝑋2) = 𝑃(𝑇𝑖1 > 𝑡1, 𝑇𝑖2 > 𝑡2|𝑋1, 𝑋2)  (22) 

Starting from this model, we are able to derive the likelihood 

function given by  

 

𝐿(𝑡1, 𝑡2, 𝛿1, 𝛿2, 𝑋1, 𝑋2) = 𝛿1𝛿2𝑆𝑡1𝑡2
(𝑡1, 𝑡2|𝑋1,X2) − 𝛿1(1 −

𝛿2)𝑆𝑡1
(𝑡1, 𝑡2|𝑋1, 𝑋2) − (1 − 𝛿1)𝛿2𝑆𝑡2

(𝑡1, 𝑡2|𝑋1, 𝑋2) + (1 −

𝛿1)(1 − 𝛿2)𝑆(𝑡1, 𝑡2|𝑋1, 𝑋2)   (23) 
 

Partial derivatives of the marginal survival functions are given 

by  

𝑆𝑡𝑗
(𝑡1, 𝑡2) =

∂𝑆(𝑡1,𝑡2)

∂𝑡𝑗
 (j = 1, 2)   (24) 

and 

𝑆𝑡1,𝑡2
(𝑡1, 𝑡2) =

∂𝑆(𝑡1,𝑡2)

∂𝑡1 ∂𝑡2
   (25) 

 

The model is called the Modified Gamma Frailty (MGF) 

Model. 

 

Numerical Illustration 

An application of the models to an existing data on 

occupational exposure tagged – IRANIAN data is 

demonstrated here. Relationships between occupational 

exposures and morbidity, morbidity and job category were 

analyzed using proportional hazard analysis, allowing for 

exposure status (never exposed, ever smoked and ever 

exposed) until the time of carrying out the study. The 

survival-analysis was performed using the Python 

programming.  Below is Python code framework to estimate 

parameters in the context of a gamma frailty model using the 

survival package: 

 

pip install lifelines 

 

import numpy as np 

import pandas as pd 

from lifelines import CoxPHFitter 

 

# Simulate some survival data with gamma frailty (simplified for illustration) 

np.random.seed(123) 

n = 200 

clusters = np.repeat(np.arange(n // 2), 2) 

frailty_effect = np.repeat(np.random.gamma(1, 1, n // 2), 2) 

baseline_hazard = 0.05 

time = -np.log(np.random.uniform(0, 1, n)) / (baseline_hazard * frailty_effect) 

censoring_time = np.random.exponential(1/0.03, n) 

event = (time <= censoring_time).astype(int) 

obs_time = np.minimum(time, censoring_time) 

data = pd.DataFrame({'id': clusters, 'obs_time': obs_time, 'event': event}) 

 

# Fit a Cox Proportional Hazards model with clusters 

cph = CoxPHFitter().fit(data, 'obs_time', 'event', cluster_col='id') 

print(cph.print_summary()) 

 

pip install statsmodels lifelines 

 

import numpy as np 

import pandas as pd 
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import statsmodels.api as sm 

from lifelines.datasets import load_dd 

 

# Load a sample dataset from lifelines for demonstration 

data = load_dd() 

 

# Here, the dataset has the columns 'duration' and 'observed'.  

# 'duration' is the observed duration and 'observed' is a binary column indicating if the event was observed or not. 

 

# To fit a PH model with gamma shared frailty: 

fml = "duration ~ age + education + + np.log(1 + income) + np.log(1 + income)**2" 

phf = sm.PHReg(data["duration"], data[fml], status=data["observed"], ties="efron", strata=data["strata"]) 

result = phf.fit() 

print(result.summary()) 

 

# The output will provide parameter estimates, p-values 

 

The discrete algorithm was used, since the time-scale (person-

years) was discrete. All exposures were first analyzed 

separately, allowing for age and smoking habits. Two-sided 

p-values < 0.05 were considered as statistically significant. 

The relationship between occupational exposures and 

morbidity was also analyzed simultaneously. Using the 

stepwise option of Python programming, and allowing for age 

and smoking habits, specific exposures were included and 

excluded until the following conditions were met: the 

significance of the residual Chi-squared was less than 0.25, 

and the significance of the relative risks was less than 0.10. 

Using the standard error of the regression coefficient, the 95% 

confidence intervals were estimated. 

The Python programming was also applied in analyzing the 

Correlated Gamma Frailty Model and the Modified Gamma 

Frailty Model. Hazard function and survival functions for the 

exposure data for large and small samples were estimated. 

 

RESULTS AND DISCUSSION 

Table 1 shows the results of analysis of the Iranian data and 

the goodness of fit table. The exponentiated coefficients in the 

third column of each table of the output shown are 

interpretable as multiplicative effects on the hazard. In tables 

1, for example, holding the other covariates constant, one 

additional year of age increases the yearly hazard of exposure 

of worker by a factor of 𝑒𝛽 = 1.053376 on average – that is, 

by 5.3 percent. Similarly, each Forced Ventilatory Function 

(FVC) factor increases the hazard by a factor of 1.059079 or 

5.9 percent. 

The fifth column is the result of the test of significance of 𝛽 

using the Wald Statistic which is the ratio of the coefficients 

to the standard error of 𝛽. The obtained value is compared 

with the Z value and a decision is made. 

In table 2, holding the other covariates constant, an additional 

year of age increases the yearly hazard of exposure of worker 

by a factor of 𝑒𝛽 = 1.034585 on average – that is, by 3.5 

percent. Similarly, each FVC factor increases the hazard by a 

factor of 1.001301 or 0.1 percent. 

In table 3, holding the other covariates constant, an additional 

year of age increases the yearly hazard of exposure of worker 

by a factor of 𝑒𝛽 = 1.053481 on average – that is, by 5.3 

percent. Similarly, each FVC factor increases the hazard by a 

factor of 1.062155 or 6.2 percent.  

The exposure status (never exposed, exposed and ever 

smoked), Job category and pack years smoked is considered 

to be insignificant for the Iranian data using the Cox Model. 

The CGF captures the exposure status and Job category to be 

insignificant for the Iranian data while the proposed MGF 

considers all the variables to be significant for the Iranian 

data.

 

Table 1: Regression Coefficients in the Cox Model for the Iranian Study  

Covariate coeff(β) Exp(coeff(β)) Std error 

coeff(β) 

Z P 95% C.I 

for coeff(β) 

AGE 0.0520 1.053376 0.0227 2.290749 0.0010 1.0212 -  1.0828 

BMI 0.0555 1.057069 0.0119 4.663866 0.0001 1.0321 -  1.0788 

EXPOSURE STATUS - 0.1498 0.86088 0.2122 -0.70594 0.2145* 0.1531 - 1.9214 

JOB CATEGORY 0.4337 1.542956 0.3819 1.135638 0.1041* 0.2009 - 1.6029 

SYST B P 0.0915 1.095817 0.0286 3.199301 0.0029 1.0899 - 1.1103 

PACK YRS SMOKED - 0.2038 0.815625 0.1914 -1.06479 0.9856*  0.2133 - 1.9339 

FVC 0.0574 1.059079 0.0221 2.597285 0.0085 1.0444 - 1.0679 

FEV1 0.0849 1.088608 0.1956 0.434049 0.0007 1.0415 - 1.0940 

* Not significant. 

 

Table 2: Regression Coefficients in the Correlated Gamma Frailty Model for the Iranian Study 

Covariate coeff(β) Exp(coeff(β)) Std error 

coeff(β) 

Z P 95% C.I 

for coeff(β) 

AGE 0.0340 1.034585 0.0154 2.207792 0.0011 1.0112 - 1.0542 

BMI 0.0437 1.044669 0.0231 1.891775 0.0053 1.0221 -1.0658 

EXPOSURE STATUS - 0.0249 0.975407 0.0713 -0.34923 0.6714* 0.0131 -1.0224 

JOB CATEGORY 0.0023 1.002303 0.0044 0.522727 0.1304*  0.0019-1.0329 

SYST B P 0.0021 1.002102 0.0009 2.333333 0.0039 1.0001 -1.0030 

PACK YRS SMOKED - 0.2138 0.80751 0.0371 -5.7628 0.0035  0.033 - 0.9339 
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FVC 0.0013 1.001301 0.0006 2.16667 0.0018 1.0003 - 1.0489 

FEV1 0.0362 1.036863 0.0146 2.479452 0.0029 1.0235 -1.0440 

* Not significant. 

 

Table3: Regression Coefficients in the Modified Gamma Frailty Model for the Iranian Study 

Covariate coeff(β) Exp(coeff(β)) Std error 

coeff(β) 

Z P 95% C.I 

for coeff(β) 

AGE 0.0521 1.053481 0.0167 3.11976 0.0011 1.0215 - 1.0848 

BMI 0.0547 1.056224 0.0111 4.927928 0.0001 1.0324 - 1.0798 

EXPOSURE STATUS - 0.1049 0.900415 0.2013 -0.52111 0.0045 0.0312 -0.9814 

JOB CATEGORY 0.3987 1.489887 0.4009 0.994512 0.0041 1.0009-1.6029 

SYST B P 0.0891 1.09319 0.0271 3.287823 0.0021 1.0021 -1.5003 

PACK YRS SMOKED - 0.2038 0.815625 0.1717 -1.18695 0.0056  0.633 - 0.9939 

FVC 0.0603 1.062155 0.0211 2.85782 0.0015 1.0044 - 1.2479 

FEV1 0.0762 1.079178 0.0377 2.02122 0.0029 1.0135 -1.8340 

* Not significant. 

 

Table 4: Prognostic Factors of Occupational Exposure using Cox and frailty Models for Iranian study  

Prognostic factors 

Cox regression Correlated Gamma 

Frailty 

Modified Gamma Frailty 

HR (CI 95%) HR (CI 95%) HR† (CI§ 95%) 

Age 1.0530 (1.0212 -  1.0828) 1.0346 (1.0112 - 1.0542) 1.053481(1.0215 - 1.0848) 

BMI 1.0571(1.0321 -  1.0788) 1.0447(1.0221 -1.0658) 1.056224(1.0324 - 1.0798) 

EXPOSURE STATUS 0.8609(0.1531 - 1.9214)* 0.9754 (0.0131 -1.0224)* 0.900415(0.0312 -0.9814) 

JOB CATEGORY 1.5430 (0.2009 - 1.6029)* 1.0023 (0.0019-1.0329)* 1.48989(1.0009-1.6029) 

SYST B P 1.0958 (1.0899 - 1.1103) 1.0021 (1.0001 -1.0030) 1.0932(1.0021 -1.5003) 

PACK YRS SMOKED 0.8156 (0.2133 - 1.9339)* 0.8075 (0.033 - 0.9339) 0.8156(0.633 - 0.9939) 

FVC 1.0591(1.0444 - 1.0679) 1.0013 (1.0003 - 1.0489) 1.062155(1.0044 - 1.2479) 

FEV1 1.0886 (1.0415 - 1.0940) 1.0369(1.0235 -1.0440) 1.079178(1.0135 -1.8340) 

AIC# 1,157 751 704 

† Hazard Ratio § Confidence interval * Not significant  # Akaike Information Criterion 

 

   
Figure 1: Survival Function at mean of      Figure 2: Hazard Function at mean 

covariates - Iranian Study      covariates - Iranian Study 

 

 

CONCLUSION 

Interestingly, parameter estimates are quite different 

depending on distribution of the base-line hazard function. 

The newly introduced Modified Gamma frailty model offers 

a very elegantapproach to integrate the concept of clusters 

into frailty modelling. The survivalfunction is explicitly 

available and of easy form which allows traditional maximum 

likelihoodparameter estimation. This is the most important 

advantage of the suggested modelcompared to the model 

introduced by Moger & Aalen (2005). Our simulation study 

revealed insights into the properties of the estimator under the 

modified gamma frailty model. 

The present work contributes to three aspects of Frailty 

models with censored data. First, It presents several important 

extensions of the existing models. Secondly, It develops a 

general asymptotic theory for theFrailty models. Thirdly, It 

provides simple and efficient numerical method to implement 

the corresponding inference procedures. It is hoped that this 

work will facilitate further development and applications of 

Frailty models.  

It has been demonstrated that the MGF is a very generaland 

powerful approach to the analysis of Frailty models with 

censored data.This approach can be used to study many other 

problems. Of great interest would be a non-parametric version 
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of the correlated compound Poisson frailty model, where the 

baseline hazard functions are not specified. A part of future 

research is envisaged in this direction. Another aspect that 

will be of interest for further research is the problem of 

identifiability. The identifiability problem is growing with 

increased censoring, but is reduced by the parametric 

modelling of the baseline hazard. This study furnishes a 

structured approach for optimal experiment design using the 

modified gamma frailty distribution, supported by a 

demonstrative Python-based simulation. 
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