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ABSTRACT 

Solving linear systems of equations stands as one of the fundamental challenges in linear algebra, given their 

prevalence across various fields. The demand for an efficient and rapid method capable of addressing diverse 

linear systems remains evident. In scenarios involving large and sparse systems, iterative techniques come into 

play to deliver solutions. This research paper contributes by introducing a refinement to the existing Jacobi 

method, referred to as the "Third Refinement of Jacobi Method." This novel iterative approach exhibits its 

validity when applied to coefficient matrices exhibiting characteristics such as symmetry, positive definiteness, 

strict diagonal dominance, and 𝑀 -matrix properties. Importantly, the proposed method significantly reduces 

the spectral radius, thereby curtailing the number of iterations and substantially enhancing the rate of 

convergence. Numerical experiments were conducted to assess its performance against the original Jacobi 

method, the second refinement of Jacobi, and the Gauss-Seidel method. The outcomes underscore the "Third 

Refinement of Jacobi" method's potential to enhance the efficiency of linear system solving, thereby making 

it a valuable addition to the toolkit of numerical methodologies in scientific and engineering domains.  
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INTRODUCTION 

Numerous problems in Engineering and the Sciences, as well 

as applications of mathematics to the social sciences and 

quantitative studies of business, statistics, and economics, 

involve systems of linear equations (Audu et al., 2021a). To 

comprehend the resolution of physical problems, it is 

occasionally necessary to employ algorithms that converge 

swiftly in their solution (Audu et al., 2021b). Processes such 

as weather forecasting, image processing, and simulation to 

anticipate aerodynamics performance include a large number 

of simultaneous equations solved using numerical methods, 

and time is a crucial aspect in the practical implementation of 

the results. Iterative approaches are preferable and mostly 

unaffected by rounding errors for large sets of linear equations 

(Audu, 2022). Jacobi and Gauss- Seidel Methods are well-

known classical numerical iterative techniques. Agboola and 

Nehad (2022) explored the examination of transient 

distribution in Markov chains through the utilization of matrix 

scaling and powering techniques, specifically focusing on 

small state spaces. By implementing the concept of Lasker & 

Behera (2014) and employing successive refinement 

methodology, the convergence rate of the Jacobi approaches 

can be accelerated. As a required condition for convergence, 

the convergence rate is dependent on the spectral radius of the 

iteration matrix of the desired Jacobi refinement technique; 

thus, the SR approach is extremely sensitive to the spectral 

radius of any stationary iteration approach. The Jacobi 

iterative method is a fundamental technique that is widely 

applied in various fields (Chalermwut et al., 2023). Islam 

(2023) applied Jacobi to solve linear systems using theory, 

data, and high-performance computing, while Agboola et al. 

(2023) solved the stationary distribution of a markov chain 

using the Jacobi method. Meanwhile, Zhen et al. (2023) found 

a new way of solving fuzzy linear systems using the Jacobi 

method, and Huang and Jia (2023) did an approximate 

orthogonal tensor diagonalization of Jacobi convergence.  

Despite the advancements made in iterative methods for 

solving systems of linear equations, there is a conspicuous 

void in the exploration of a third refinement of the Jacobi 

method. Existing research predominantly focuses on the 

original Jacobi method and its well-known variations. This 

research gap underscores the need for a comprehensive 

investigation into the potential benefits, convergence 

properties, and practical applications of this third refinement, 

thereby contributing to a deeper understanding of iterative 

techniques for linear equation solving. The research problem 

addressed in this study is to enhance the efficiency and 

applicability of iterative methods for solving systems of linear 

equations, particularly focusing on the development and 

analysis of the "Third-Refinement of Jacobi" (TRJ) method. 

The study is justified by the need to enhance the efficiency 

and applicability of iterative methods for solving linear 

equations, which have broad applications in science and 

engineering. The novelty of the research lies in the 

introduction of a third refinement to the Jacobi method, a step 

beyond existing variations. This unexplored refinement 

promises to enhance the method's efficiency, convergence, 

and applicability in solving systems of linear equations, 

opening new avenues for improving iterative techniques in 

this domain. 

The aim of this research study is to further refine the Jacobi 

method for solving systems of linear equations, building upon 

previous advancements in numerical linear algebra. The 

Jacobi method is a widely used iterative technique for 

approximating solutions to linear systems, known for its 

simplicity and applicability to various fields, including 

engineering and computer science. In this third refinement, 

we seek to enhance the method's convergence properties, 

computational efficiency, and applicability to larger and more 

complex systems. By doing so, our study contributes to the 

ongoing efforts to improve the accuracy and speed of 

numerical methods for solving linear equations, thereby 

advancing the field of numerical linear algebra, and 

facilitating more efficient problem-solving in diverse 

scientific and engineering applications. This research focuses 
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on refining the existing Jacobi methods to obtain faster 

convergence when applied to linear systems. 

 

MATERIALS AND METHODS 

Development of the Third Refinement of Jacobi (TRJ) 

Method  

Consider large and spare linear system of the form 

𝐽𝑠 = 𝑓     (1) 

where 𝐽 ∈ ℝ𝑛×𝑛 denotes the coefficient matrix,  𝑓 ∈ ℝ𝑛 

express the values on the right-hand side and 𝑠 ∈ ℝ𝑛  is the 

variables whose values need to be ascertained. If 𝐽  has 

diagonal elements that are non-vanishing, then 𝐽  can be 

decomposed as: 

𝐽 = 𝐷 − 𝑃 − 𝑄               (2) 

Alternatively, combination of (1) and (2) becomes: 

𝑠 = 𝐷−1(𝑃 + 𝑄)𝑠 + 𝐷−1𝑓         (3)  

And setting (3) into an iteration process gives the classical 

Jacobi iteration approach: 

𝑠𝐽
(𝑘+1)

= 𝐷−1(𝑃 + 𝑄)𝑠(𝑘) + 𝐷−1𝑓  (4) 

Assuming (2) is equivalent to 𝐷 − 𝐽 = 𝑃 + 𝑄 , then 

Refinement of Jacobi Method (RJ) is described from the 

expression (Dafchahi, 2008). 

𝑠(𝑘+1) = �̃�(𝑘+1) + 𝐷−1(𝑓 − 𝐽�̃�(𝑘+1))         (5)   

Insertion of (4) into �̃�(𝑘+1) with further simplification gives 

the RJ in (6) 

𝑠𝑅𝐽
(𝑘+1)

= [𝐷−1(𝑃 + 𝑄)]2𝑠(𝑘) + [𝐼 + 𝐷−1(𝑃 + 𝑄)]𝐷−1𝑓    (6) 

Similarly, putting (6) into �̃�(𝑘+1) in (5) and further algebraic 

manipulation gives the Second-Refinement of Jacobi (SRJ), 

(Eneyew et al., 2019); 

𝑠𝑆𝑅𝐽
(𝑘+1)

= [𝐷−1(𝑃 + 𝑄)]3𝑠(𝑘) + [𝐼 + 𝐷−1(𝑃 + 𝑄) +

(𝐷−1(𝑃 + 𝑄))
2
] 𝐷−1𝑓        (7) 

The proposed method is a modification of Jacobi second-

refinement approach. With the general format of the 

refinement of Jacobi method 𝑠(𝑘+1) = �̃�(𝑘+1) + 𝐷−1(𝑓 −

𝐽�̃�(𝑘+1)), replacing (7) into �̃�(𝑘+1)to get 

𝑠(𝑘+1) = [𝐷−1(𝑃 + 𝑄)]3𝑠(𝑘) + [𝐼 + 𝐷−1(𝑃 + 𝑄) +

(𝐷−1(𝑃 + 𝑄))
2
] 𝐷−1𝑓 + 𝐷−1 (𝑓 − 𝐽 {[𝐷−1(𝑃 + 𝑄)]3𝑠(𝑘) +

[𝐼 + 𝐷−1(𝑃 + 𝑄) + (𝐷−1(𝑃 + 𝑄))
2
] 𝐷−1𝑓})   (8) 

Next, it is further simplified into the Third-Refinement of 

Jacobi method (TRJ), represented as thus; 

𝑠𝑇𝑅𝐽
(𝑘+1)

= [𝐷−1(𝑃 + 𝑄)]4𝑠(𝑘) + [𝐼 + 𝐷−1(𝑃 + 𝑄) +

(𝐷−1(𝑃 + 𝑄))
2
+ (𝐷−1(𝑃 + 𝑄))

3
] 𝐷−1𝑓   (9) 

The iteration matrix of TRJ is denoted as [𝐷−1(𝑃 + 𝑄)]4 and 

its spectral radius that indicate convergence is of the form 

𝜌([𝐷−1(𝑃 + 𝑄)]4) . The method converges if its spectral 

radius is less than one. 

 

Convergence of the Proposed TRJ 

In conducting the convergence analysis, ideas from similar 

theorems by (Salkuyeh, 2007; Vatti & Tesfaye, 2011; 

Genanew, 2016; Vatti, 2016; Saha & Chakrabarty, 2020 and 

Eneyew et al, 2020) were considered. 

Theorem 1: If 𝐽  is strictly diagonally dominant (SDD) 

matrix, then the Third-refinement of Jacobi method (TRJ) 

converges for any selection of the preliminary estimate 𝑠(0).
 

Proof: Let 𝑆 be the factual solution of linear system in (1). Whenever 𝐽 is SDD matrix, then �̃�(𝑘+1) → 𝑆. The proposed Jacobi 

third refinement iteration method can be written as; 𝑠(𝑘+1) = �̃�(𝑘+1) + 𝐷−1(𝑓 − 𝐽�̃�(𝑘+1))  ⇒ 𝑠(𝑘+1) − 𝑆 = �̃�(𝑘+1) − 𝑆 +

𝐷−1(𝑓 − 𝐽�̃�(𝑘+1)). Hence, after normalizing, it gives; 

‖𝑠(𝑘+1) − 𝑆‖ = ‖�̃�(𝑘+1) − 𝑆 + 𝐷−1(𝑓 − 𝐽�̃�(𝑘+1))‖ ≤ ‖𝑠(𝑘+1) − 𝑆‖ + ‖𝐷−1(𝑓 − 𝐽�̃�(𝑘+1))‖ 

‖𝑠(𝑘+1) − 𝑆‖ ≤ ‖�̃�(𝑘+1) − 𝑆‖ + ‖𝐷−1‖‖𝑓 − 𝐽�̃�(𝑘+1)‖ → ‖𝑆 − 𝑆‖ + ‖𝐷−1‖‖𝑓 − 𝐽𝑆‖ 
 = 0 + ‖𝐷−1‖‖𝑓 − 𝑓‖     (𝑠𝑖𝑛𝑐𝑒    𝐽𝑠 = 𝑓)        (10) 

  ∴ 0 + 0 = 0     

So, �̃�(𝑘+1) → 𝑆 implying 𝜌([𝐷−1(𝑃 + 𝑄)]4) = [𝜌(𝐷−1(𝑃 + 𝑄))]
4
< 1, hence TRJ converges.  

Theorem 2: If 𝐽 is a symmetric positive definite matrix, then the TRJ method is convergent for any arbitrary preliminary 

estimate 𝑠(0). 
Proof: The assumption is proved using consistency and spectral radius of the iteration matrix. Firstly, we verify the consistency 

of the proposed method (TRJ) with Jacobi method. For the fact that‖𝐷−1(𝑃 + 𝑄)‖ < 1 ⇒ 𝜌(𝐷−1(𝑃 + 𝑄)) < 1, The Jacobi 

method can be written as 𝑆 = [𝐼 − 𝐷−1(𝑃 + 𝑄)]−1𝐷−1𝑓 , since  �̃�(𝑘+1) → 𝑆, from (7), implies that; 

𝑆 = [𝐼 − (𝐷−1(𝑃 + 𝑄))
4
]
−1
[𝐼 + 𝐷−1(𝑃 + 𝑄) + (𝐷−1(𝑃 + 𝑄))

2
+ (𝐷−1(𝑃 + 𝑄))

3
] 𝐷−1𝑓 

By expansion, we get 

= [𝐼 + (𝐷−1(𝑃 + 𝑄))
4
+ (𝐷−1(𝑃 + 𝑄))

8
+. . . ] × 

   [𝐼 + 𝐷−1(𝑃 + 𝑄) + (𝐷−1(𝑃 + 𝑄))
2
+ (𝐷−1(𝑃 + 𝑄))

3
]𝐷−1𝑓 

= [𝐼 + 𝐷−1(𝑃 + 𝑄) + (𝐷−1(𝑃 + 𝑄))
2
+ (𝐷−1(𝑃 + 𝑄))

3
+ (𝐷−1(𝑃 + 𝑄))

4
+. . . ] 𝐷−1𝑓 

= [𝐼 − 𝐷−1(𝑃 + 𝑄)]−1𝐷−1𝑓 

Hence, on observation, [𝐼 − 𝐷−1(𝑃 + 𝑄)]−1𝐷−1𝑓 is consistent to J, RJ and SRJ. Therefore, 

𝑠(𝑘+1) = [𝐷−1(𝑃 + 𝑄)]4𝑠(𝑘) + [𝐼 + 𝐷−1(𝑃 + 𝑄) + (𝐷−1(𝑃 + 𝑄))
2
+ (𝐷−1(𝑃 + 𝑄))

3
] 𝐷−1𝑓 

       = [𝐷−1(𝑃 + 𝑄)]4𝑠(𝑘−1) + (𝐷−1(𝑃 + 𝑄))
4
+ [𝐼 + 𝐷−1(𝑃 + 𝑄) + (𝐷−1(𝑃 + 𝑄))

2
+ 

         (𝐷−1(𝑃 + 𝑄))
3
+ (𝐷−1(𝑃 + 𝑄))

5
+ (𝐷−1(𝑃 + 𝑄))

6
+ (𝐷−1(𝑃 + 𝑄))

7
] 𝐷−1𝑓 

      = [𝐷−1(𝑃 + 𝑄)]12𝑠(𝑘−2) + (𝐷−1(𝑃 + 𝑄))
4
+ [𝐼 + 𝐷−1(𝑃 + 𝑄) + (𝐷−1(𝑃 + 𝑄))

2
+ 

        (𝐷−1(𝑃 + 𝑄))
3
+ (𝐷−1(𝑃 + 𝑄))

5
+. . . +(𝐷−1(𝑃 + 𝑄))

11
] 𝐷−1𝑓 

⇒    [𝐷−1(𝑃 + 𝑄)]4𝑘+4𝑠(0) + (𝐷−1(𝑃 + 𝑄))
4
+ [𝐼 + 𝐷−1(𝑃 + 𝑄) + (𝐷−1(𝑃 + 𝑄))

2
+ 

(𝐷−1(𝑃 + 𝑄))
3
+ (𝐷−1(𝑃 + 𝑄))

5
+. . . +(𝐷−1(𝑃 + 𝑄))

4𝑘+3
] 𝐷−1𝑓 
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Since the coefficient matrix 𝐽 is characterized as SPD, thus, 

𝑙𝑖𝑚
𝑘→∞

[𝐷−1(𝑃 + 𝑄)]4𝑘+4 = 0 

𝑙𝑖𝑚
𝑘→∞

𝑆(𝑘+1) = 𝑙𝑖𝑚
𝑘→∞

[𝐷−1(𝑃 + 𝑄)]4𝑘+4 + 𝑙𝑖𝑚
𝑘→∞

∑(𝐷−1(𝑃 + 𝑄))
𝑚
𝐷−1𝑓

4𝑘+3

𝑚=0

 

              = 0 + [𝐼 − 𝐷−1(𝑃 + 𝑄)]−1𝐷−1𝑓   = [𝐼 − 𝐷−1(𝑃 + 𝑄)]−1𝐷−1𝑓 → 𝑆 

             ⇒ 𝜌 ((𝐷−1(𝑃 + 𝑄))
4
) = [𝜌(𝐷−1(𝑃 + 𝑄))]

4
< 1 

Thus, the proposed refinement iteration method (TRJ) is convergent. 

Theorem 3: The Third-refinement of Jacobi method converges more rapidly than Jacobi method and its initial refinements 

(RJ and SRJ) when Jacobi is convergent. 

Proof: Equivalently, equations (4), (6), (7) and (9) may be expressed as, 𝑠(𝑘+1) = 𝑉2𝑠(𝑘) + 𝐵 , 𝑠(𝑘+1) = 𝑉3𝑠(𝑘) + 𝐶  and 

𝑠(𝑘+1) = 𝑉4𝑠(𝑘) + 𝐸,  

where, 𝑉 = 𝐷−1(𝑃 + 𝑄),   𝐴 = 𝐷−1𝑓,   𝐵 = [𝐼 + 𝐷−1(𝑃 + 𝑄)]𝐷−1𝑓 

  𝐶 = [𝐼 + 𝐷−1(𝑃 + 𝑄) + (𝐷−1(𝑃 + 𝑄))
2
] 𝐷−1𝑓and E= [𝐼 + 𝐷−1(𝑃 + 𝑄) + (𝐷−1(𝑃 + 𝑄))

2
+ (𝐷−1(𝑃 + 𝑄))

3
] 𝐷−1𝑓. 

For the refinement of Jacobi scheme: 

𝑠(𝑘+1) = 𝑉2𝑠(𝑘) + 𝐵 ⇒ 𝑠(𝑘+1) − 𝑆 = 𝑉2𝑠(𝑘) − 𝑆 + 𝐵 ⇒ 𝑠(𝑘+1) − 𝑆 = 𝑉2(𝑠(𝑘) − 𝑆) 

∴ ‖𝑠(𝑘+1) − 𝑆‖ = ‖𝑉2(𝑠𝑘 − 𝑆)‖ ≤ ‖𝑉2‖‖𝑠(𝑘+1) − 𝑆‖ ≤ ‖𝑉4‖‖𝑠(𝑘−1) − 𝑆‖ ≤. . . ≤ ‖𝑉2𝑘‖‖𝑠(1) − 𝑆‖ 

⇒ ‖𝑠(𝑘−1) − 𝑆‖ ≤ ‖𝑉2𝑘‖‖𝑠(1) − 𝑆‖ ≤ ‖𝑉‖2𝑘‖𝑠(1) − 𝑆‖ 

Also, for second-refinement of Jacobi scheme: 

𝑠(𝑘+1) = 𝑉3𝑠(𝑘) + 𝐶   ⇒    𝑠(𝑘+1) − 𝑆 = 𝑉3𝑠(𝑘) − 𝑆 + 𝐶 
‖𝑠(𝑘+1) − 𝑆‖ = ‖𝑉3(𝑠𝑘 − 𝑆)‖ ≤ ‖𝑉3‖‖𝑠(𝑘+1) − 𝑆‖ ≤ ‖𝑉6‖‖𝑠(𝑘−1) − 𝑆‖ ≤. . . ≤ ‖𝑉3𝑘‖‖𝑠(1) − 𝑆‖ 

‖𝑠(𝑘−1) − 𝑆‖ ≤ ‖𝑉3𝑘‖‖𝑠(1) − 𝑆‖ ≤ ‖𝑉‖3𝑘‖𝑠(1) − 𝑆‖ 

Now, we consider the proposed third-refinement of Jacobi scheme: 

𝑠(𝑘+1) = 𝑉4𝑠(𝑘) + 𝐸 ⇒ 𝑠(𝑘+1) − 𝑆 = 𝑉4𝑠(𝑘) − 𝑆 + 𝐸 = 𝑠(𝑘+1) − 𝑆 = 𝑉4(𝑠(𝑘) − 𝑆) 

∴ ‖𝑠(𝑘+1) − 𝑆‖ = ‖𝑉4(𝑠𝑘 − 𝑆)‖ ≤ ‖𝑉4‖‖𝑠(𝑘+1) − 𝑆‖ ≤ ‖𝑉8‖‖𝑠(𝑘−1) − 𝑆‖ ≤. . . ≤ ‖𝑉4𝑘‖‖𝑠(1) − 𝑆‖ 

   ‖𝑠(𝑘−1) − 𝑆‖ ≤ ‖𝑉4𝑘‖‖𝑠(1) − 𝑆‖ ≤ ‖𝑉‖4𝑘‖𝑠(1) − 𝑆‖ 

Coefficient of the above inequalities clearly shows that ‖𝑉‖4𝑘 ≤ ‖𝑉‖3𝑘 ≤ ‖𝑉‖2𝑘 ≤ ‖𝑉‖𝑘 Since ‖𝑉‖𝑘 < 1. Therefore, TRJ 

is convergent. 

Theorem 4: If 𝐽 is an 𝑀 -matrix, then the third-refinement of Jacobi method converges for any initial guess 𝑠(0). 
Proof: Since TRJ is consistent with Jacobi method. Therefore, we can illustrate convergence of proposed TRJ by means of 

the spectral radius of the iterative matrix. If 𝐽 is an 𝑀 -matrix, then the spectral radius becomes 

𝜌(𝐷−1(𝑃 + 𝑄)) < 1 ⇒ 𝜌 [(𝐷−1(𝑃 + 𝑄))
4
] = [𝜌(𝐷−1(𝑃 + 𝑄))]

4
< 1. Since the spectral radius of Jacobi method is less than 

1, it signifies that TRJ is convergent.  

 

RESULTS AND DISCUSSION 

Numerical Applications and Results 

Test 1: Consider the linear system represented as 𝐽𝑠 = 𝑓  

(

 
 
 
 
 
 

4 −1 0 0 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 −1 0 0 0 0
0 −1 0 4 −1 0 −1 0 0
0 0 −1 −1 4 −1 0 −1 0
0 0 0 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4 )

 
 
 
 
 
 

(

 
 
 
 
 
 

𝑠1
𝑠2
𝑠3
𝑠4
𝑠5
𝑠6
𝑠7
𝑠8
𝑠9)

 
 
 
 
 
 

=

(

 
 
 
 
 
 

20.0
20.0
0.00
20.0
0.00
0.00
30.0
10.0
10.0)

 
 
 
 
 
 

  

Test 2: Consider the linear system (𝐽𝑠 = 𝑓)in the form 

(

 
 
 
 
 
 

1 −0.25 0 0 0 0 0 0 0
−0.25 1 −0.25 0 −0.25 0 0 0 0
0 −0.25 1 0 −0.25 0 0 0 0
0 −0.25 −0.25 1 −0.25 0 −0.25 0 0
0 0 −0.25 −0.25 1 −0.25 0 −0.25 0
0 0 0 0 −0.25 1 0 0 −0.25
0 0 0 −0.25 0 0 1 −0.25 0
0 0 0 0 −0.25 0 −0.25 1 −0.25
0 0 0 0 0 −0.25 0 −0.25 1 )

 
 
 
 
 
 

(

 
 
 
 
 
 

𝑠1
𝑠2
𝑠3
𝑠4
𝑠5
𝑠6
𝑠7
𝑠8
𝑠9)

 
 
 
 
 
 

=

(

 
 
 
 
 
 

5.00
5.00
0.00
5.00
0.00
0.00
7.50
2.50
2.50)

 
 
 
 
 
 

 

Test 3: Consider the linear system of the form 
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(

 
 
 
 
 

4.2 0 −1 −1 0 0 −1 −1
−1 4.2 0 −1 −1 0 0 −1
−1 −1 4.2 0 −1 −1 0 0
0 −1 −1 4.2 0 −1 −1 0
0 0 −1 −1 4.2 0 −1 −1
−1 0 0 −1 −1 4.2 0 −1
−1 −1 0 0 −1 −1 4.2 0
0 −1 −1 0 0 −1 −1 4.2)

 
 
 
 
 

(

 
 
 
 
 

𝑠1
𝑠2
𝑠3
𝑠4
𝑠5
𝑠6
𝑠7
𝑠8)

 
 
 
 
 

=

(

 
 
 
 
 

6.20
5.40
−9.20
0.00
6.20
1.20
−13.4
4.20 )

 
 
 
 
 

 

The numerical applications (Test 1, Test 2, and Test 3) were computed using maple 2015 software and the results are shown 

in the following Tables. 

 

Table 1 Convergence Comparison for Test 1 

Method Spectral Radius Iteration Number CPU Time(sec) Convergence Rate 

RJ 0.46651 17 16.350 0.33114 

SRJ 0.31863 13 10.961 0.49671 

TRJ 0.21764 9 7.256 0.66226 

GS 0.45144 16 13.632 0.34539 

 

Table 2 Convergence Comparison for Test 2 

Method Spectral Radius Iteration Number CPU Time(sec) Convergence Rate 

RJ 0.49787 20 17.856 0.30288 

SRJ 0.35129 12 9.850 0.45433 

TRJ 0.24787 9 6.890 0.60578 

GS 0.47283 18 15.600 0.32529 

 

Table 3 Convergence Comparison for Test 3 

Method Spectral Radius Iteration Number CPU Time(sec) Convergence Rate 

RJ 0.90703 116 30.900 0.04238 

SRJ 0.86384 77 18.790 0.06357 

TRJ 0.82270 58 15.210 0.08476 

GS 0.89530 88 22.450 0.04803 

 

Table 4: Comparison of Numerical Estimates for Test 1 

𝒏 𝒔𝟏
(𝒌+𝟏)

 𝒔𝟐
(𝒌+𝟏)

 𝒔𝟑
(𝒌+𝟏)

 𝒔𝟒
(𝒌+𝟏)

 𝒔𝟓
(𝒌+𝟏)

 𝒔𝟔
(𝒌+𝟏)

 𝒔𝟕
(𝒌+𝟏)

 𝒔𝟖
(𝒌+𝟏)

 𝒔𝟗
(𝒌+𝟏)

 

RJ          

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 6.2500 6.2500 1.2500 8.1250 1.8750 0.6250 9.3750 5.0000 3.1250 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
16 7.4262 9.7049 4.2197 12.426 7.1739 3.1716 12.826 8.8781 5.5124 

17 7.4262 9.7050 4.2197 12.426 7.1739 3.1716 12.826 8.8781 5.5124 

SRJ 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 6.5625 7.3438 2.0312 9.375 3.7500 1.2500 10.781 6.0938 3.9062 

2 7.1436 8.9453 3.5352 11.509 6.0205 2.5806 12.158 8.0542 4.9634 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
12 7.4262 9.7050 4.2197 12.426 7.1739 3.1716 12.826 8.8781 5.5124 

13 7.4262 9.7050 4.2197 12.426 7.1739 3.1716 12.826 8.8781 5.5124 

TRJ 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 6.8359 8.0859 2.7734 10.469 4.6875 1.9141 11.367 7.1094 4.3359 

2 7.2937 9.3494 3.8986 11.996 6.6385 2.8946 12.517 8.4923 5.2579 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
8 7.4262 9.7049 4.2197 12.426 7.1739 3.1716 12.826 8.8781 5.5124 

9 7.4262 9.7050 4.2197 12.426 7.1739 3.1716 12.826 8.8781 5.5124 

GS 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 5.0000 6.2500 1.5625 6.5625 2.0312 0.5078 9.1406 5.2930 3.9502 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
15 7.4262 9.7049 4.2196 12.426 7.1738 3.1716 12.826 8.8781 5.5124 

16 7.4262 9.7049 4.2197 12.426 7.1739 3.1716 12.826 8.8781 5.5124 
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Table 5: Comparison of Numerical Estimates for Test 2 

𝑛 𝑠1
(𝑘+1)

 𝑠2
(𝑘+1)

 𝑠3
(𝑘+1)

 𝑠4
(𝑘+1)

 𝑠5
(𝑘+1)

 𝑠6
(𝑘+1)

 𝑠7
(𝑘+1)

 𝑠8
(𝑘+1)

 𝑠9
(𝑘+1)

 

RJ          

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 6.2500 6.2500 1.2500 8.1250 1.8750 0.6250 9.3750 5.0000 3.1250 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
19 7.4687 9.8750 4.3813 13.783 7.6501 3.3148 13.226 9.1213 5.6090 

20 7.4688 9.8750 4.3813 13.783 7.6501 3.3148 13.226 9.1213 5.6090 

SRJ 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 6.5625 7.3438 2.0312 9.6875 3.7500 1.2500 10.781 6.0938 3.9062 

2 7.1484 8.9819 3.5718 12.380 6.2231 2.6123 12.351 8.1177 4.9780 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
11 7.4687 9.8750 4.3812 13.783 7.6500 3.3147 13.226 9.1212 5.6090 

12 7.4688 9.8750 4.3813 13.783 7.6501 3.3148 13.226 9.1213 5.6090 

TRJ 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 6.8359 8.0859 2.7734 10.977 4.7656 1.9141 11.445 7.1094 4.3359 

2 7.3090 9.4293 3.9766 13.083 6.9429 2.9633 12.793 8.6194 5.2971 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
8 7.4687 9.8749 4.3812 13.783 7.6500 3.3147 13.226 9.1212 5.6090 

9 7.4688 9.8750 4.3813 13.783 7.6501 3.3148 13.226 9.1213 5.6090 

GS 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 5.0000 6.2500 1.5625 6.9531 2.1289 0.53223 9.2383 5.3418 3.9685 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
17 7.4687 9.8750 4.3813 13.783 7.6501 3.3148 13.226 9.1213 5.6090 

18 7.4688 9.8750 4.3813 13.783 7.6501 3.3148 13.226 9.1213 5.6090 

 

Table 6: Comparison of Numerical Estimates for Test 3 

𝑛 𝑠1
(𝑘+1)

 𝑠2
(𝑘+1)

 𝑠3
(𝑘+1)

 𝑠4
(𝑘+1)

 𝑠5
(𝑘+1)

 𝑠6
(𝑘+1)

 𝑠7
(𝑘+1)

 𝑠8
(𝑘+1)

 

RJ         

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.4331 2.2268 -1.1134 -0.9070 0.4331 1.2268 -2.1134 0.0929 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
115 0.9999 2.0000 -1.0000 0.0000 0.9999 0.9999 -2.0000 0.9999 

116 1.0000 2.0000 -1.0000 0.0000 1.0000 1.0000 -2.0000 1.0000 

SRJ 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.5141 1.2981 -1.1620 0.0539 0.5141 0.2981 -2.1620 1.0540 

2 0.7668 1.6036 -1.3265 -0.1632 0.7668 0.6036 -2.3265 0.8368 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
76 0.9999 2.0000 -1.0000 0.0000 0.9999 0.9999 -2.0000 0.9999 

77 1.0000 2.0000 -1.0000 0.0000 1.0000 1.0000 -2.0000 1.0000 

TRJ 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.9485 1.7943 -1.5656 -0.4114 0.9486 0.7943 -2.5656 0.5887 

2 0.6933 1.7250 -1.2009 -0.2327 0.6933 0.7250 -2.2009 0.7673 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
48 0.9999 2.0000 -1.0000 0.0000 0.9999 0.9999 -2.0000 0.9999 

49 1.0000 2.0000 -1.0000 0.0000 1.0000 1.0000 -2.0000 1.0000 

GS 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 1.4762 1.6372 -1.4492 0.0448 1.1418 0.9197 -1.9584 0.7975 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
87 0.9999 2.0000 -1.0000 0.0000 1.0000 1.0000 -2.0000 1.0000 

88 1.0000 2.0000 -1.0000 0.0000     1.0000 1.0000 -2.0000 1.0000 

 

Table 1 presents a clear depiction of the performance of the 

proposed method (TRJ), revealing its convergence at the 9th 

iteration with an impressive convergence rate of 0.66226. 

This notably outperforms the conventional RJ method by a 

margin of 8 steps, surpasses SRJ by 4 steps, and trails the GS 

method by just a single step. Moreover, Table 2 reinforces 
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these findings, demonstrating TRJ's convergence at the 9th 

iteration with a convergence rate of 0.60578. Impressively, 

this result is one step better than half of RJ, exceeds SRJ by 3 

steps, and matches the GS method at exactly half the number 

of steps. Lastly, Table 3 showcases TRJ's ability to minimize 

the spectral radius, drastically reducing the iteration steps to 

just half of what is required by RJ, a substantial 19-step 

advantage over SRJ, and an impressive 30-steps improvement 

over the GS method. Tables 4-6 displays the iterates of the 

numerical experiments for Test1, Test 2 and Test 3 

respectively. These findings underscore the significant 

contributions of TRJ in enhancing the efficiency and 

effectiveness of iterative methods for solving linear systems. 

 

CONCLUSION 

In this research paper, we have introduced an enhanced 

iterative approach known as the "Third-refinement of Jacobi" 

method. This novel iterative technique exhibits validity when 

applied to iteration matrices that fall under the categories of 

strictly diagonally dominant matrices, symmetric positive 

definite matrices, or -matrices. Through rigorous convergence 

analysis, we have established the method's convergent nature. 

Additionally, empirical numerical testing has substantiated its 

superiority, demonstrating faster convergence and a 

substantially smaller spectral radius in comparison to 

alternative methods. These findings collectively establish the 

suitability of our proposed method for efficiently solving 

systems of linear equations. 
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