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ABSTRACT 

We study numerically the generalized planar photogravitational circular restricted three-body problem, where 

an infinitesimal body is moving under the Newtonian gravitational attraction of two bodies which are finite, 

moving in circles around their center of mass fixed at the origin of the coordinate system, where both bodies 

are situated on the horizontal 𝑥-axis. The third body 𝑚 is significantly smaller compared to the masses of the 

two bodies (primaries) where its influence on them can be neglected. The three participating bodies are 

modeled as oblate spheroids, under effect of radiation of the two main masses together with effective Poynting-

Robertson drag and both of them are enclosed by a belt of homogeneous circular cluster of material points.  In 

this paper, the existence and location of the equilibrium points and their linear stability are explored for various 

combinations of the model’s parameters. We observe that under constant P–R drag effect, collinear equilibrium 

solutions cease to exist but there are in the absence of the drag forces. We found that five or seven non-collinear 

equilibrium points may lie on the plane of primaries motion depends on the particular values of model’s 

parameters, and it is seen that the perturbing forces have significant effects on their positions and linear 

stability. In our model, the binary system Kruger 60 is used, and it is found that the positions of the equilibria 

and their stability are affected by these perturbing forces. In the case where seven critical points exist, all the 

equilibria are unstable except the equilibrium point (𝐿𝑛2) which is always linearly stable while in the case 

where five critical points exist, all the points are unstable due to the presence of P–R drag effect.  
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INTRODUCTION 

The circular restricted three-body problem (CR3BP) studies 

the motion of a negligible mass moving in a system composed 

of two massive bodies (primaries) which move on circular 

orbits around their mutual centre of mass. The third body is 

significantly smaller compared to the masses of the two 

primaries where its influence on them can be neglected. The 

classics CR3BP admits five critical points; three of them, 

𝐿1, 𝐿2, 𝐿3 are on the 𝑥 -axis and are called collinear, while the 

other two 𝐿4, 𝐿5are out of the 𝑥 -axis and are called triangular 

(non-collinear) equilibrium points (EPs) of the problem. The 

three collinear points are generally unstable while the 

triangular points are generally stable for 0 < 𝜇 < 𝜇𝑐  ≈
0.03852090 …  (Szebehely, 1967) where 𝜇  is the mass 

parameter and 𝜇𝑐  is the critical mass parameter. These 

equilibrium points are extensively used in space mission (see, 

e.g., Capdevila and Howell 2018 and references therein). 

The classic R3BP considers the bodies involved to be 

spherical shapes; but in the solar (e.g., Sun, Earth, Jupiter and 

Saturn) and in the Stellar (e.g., Achernar, Alfa area, Kruger 

60, Achird, Cen X-4) systems, some planets, stars and their 

satellites (Moon, Charon) are sufficiently oblate. The 

importance of considering non-spherical bodies in real 

systems in celestial mechanics was shown in Orberti and 

Vienne (2003), concluding that the addition of oblateness 

effects leads to significantly improved results regarding the 

approximation of real orbits of certain satellites in the solar 

system. This inspired several researchers (see e.g., Vincent et 

al. 2022, Vincent et al. 2024, Gyegwe et al. 2022; Kalantonis 

et al. 2008; Abouelmagd et al. 2013 and references therein) to 

include non-sphericity of the bodies in their studies of the 

CR3BP.  

Stars (like our Sun) exert not only gravitation, but also 

radiation pressure on bodies moving nearby. 

It was Poynting (1903) who first gave a description of the 

effect of radiation in the frame of relativity. Robertson (1937) 

took a cue from this to give an analysis of the effect of total 

radiation forces on a particle. Radzievskii (1950, 1953) 

studied what he named the photogravitational restricted three 

bodies problem, where the motion of an infinitesimal body is 

influenced by both the force of gravity and the radiation 

emitted from one of the primaries. Later on, many researchers 

have included radiation pressure force of either one or both 

primaries in the study of the CR3BP (Simmons et al. 1985; 

Schuerman 1980; Papadakis 1995, 1996, 2006; Papadakis et 

al. 2009; Gao and Wang 2020; Kalantonis et al. 2021; 

Stenborg 2008 among others). In estimating the light radiation 

force, all the above studies of photogravitational R3BPs have 

taken into account just one of the three components of the 

light pressure field, which is due to the central force: the 

gravitation and the radiation pressure. The other two 

components are arising from the Doppler shift and the 

absorption and subsequent re-emission of the incident 

radiation. These last two components constitute the so-called 

Poynting–Robertson (P–R) effect, which causes small 

particles of the solar system to spiral into the sun at a 

cosmically rapid rate. Knowing the importance of the P-R 

drag effect, many researchers like Stanley (1950), Chernikov 

(1970), Ragos and Zafiropoulos (1995), Lhotka and Celletti 

(2015), Singh and Amuda (2017), Pal and Kushvah (2015), 

Vincent and Perdiou (2021a, b), Vincent and Kalantonis 

(2023), Taura and Leke (2022), Tyokyaa and Atsue (2020), 

Vincent and Singh (2022) among others, devoted their work 

to study this problem with various characterizations. All these 

works have arrived at the conclusion that the P-R effect 

renders unstable those equilibrium points, which are 

conditionally stable in the classical case.  
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The discovery of numerous planetary systems has opened 

another avenue to understand the dynamics in both solar and 

planetary systems. Some planetary systems are found to have 

discs of dust or planetesimal or asteroids. These discs play 

important roles in the origin of planets’ orbital elements if 

they are massive enough. The importance of the problem in 

astronomy has been addressed by Jiang and Yeh (2004, 2006) 

where it was shown that these perturbations exhibit significant 

changes in the number and equilibrium positions. Some 

researchers like Singh and Taura (2013), Kishor and Kushvah 

(2013), Vincent and Kalantonis (2023), Yousuf and Kishor 

(2019), Leke and Singh (2021), and others studied the R3BP 

by taking into account the gravitational potential from the belt 

under different characterizations.  

In a recent study, Singh and Amuda (2017) have studied the 

locations and stability of the triangular EPs in the framework 

of the CR3BP when the primaries are radiating-oblate rigid 

bodies together with P-R drag from both massive bodies. 

They found that the positions of these points are affected from 

the radiation pressure, P–R drag and oblateness. They found 

that the EPs are unstable in the linear sense for the P–R effect 

against their conditional stability in the absence of the drag 

force. In the present work, we shall expand the investigation 

by considering the case where the two primaries are enclosed 

by cluster of material points together with an oblate 

infinitesimal body. As an application in this study, we 

consider the Kruger 60 binary system for which the positions 

and stability of the equilibrium points are calculated. The 

numerical methods for obtaining the positions of the EPs 

along with the linear stability follow the approach used in 

Vincent and Perdiou (2021a).  

 

Equations of motion 

We consider a barycentric coordinate system 𝑂𝑥𝑦𝑧 rotating 

relative to an inertial reference system with angular velocity 

𝜔 about a common 𝑧 −axis. Let the two massive bodies 𝑃1 

(bigger primary) and 𝑃2 (smaller primary) have masses 𝑚1 =

1 − 𝜇  and𝑚2 = 𝜇(0 < 𝜇 ≤ 1
2⁄ ), respectively, with 𝜇being 

the mass-ratio parameter while the infinitesimal body is 

considered to have a mass 𝑚, which is significantly smaller 

than the masses of the primaries and therefore it does not 

affect their motion. We assume that the three bodies are oblate 

spheroids and the stars with their effective P-R drag are 

surrounded by a cluster of materials points. Following the 

works of Singh and Taura (2013) and Singh and Amuda 

(2017), the governing equations of motion of an infinitesimal 

mass under perturbing forces of radiation pressure, P-R drag 

and oblateness of the bodies coupled with the gravitational 

potential from cluster of materials around the primaries, have 

the form: 

 

�̈� − 2𝑛�̇� = 𝑈𝑥 −
𝑊1

𝑟1
2 [

(𝑥+𝜇)

𝑟1
2 {(𝑥 + 𝜇)�̇� + 𝑦�̇�} + �̇� − 𝑛𝑦] −

𝑊2

𝑟2
2 [

(𝑥+𝜇−1)

𝑟2
2 {(𝑥 + 𝜇 − 1)�̇� + 𝑦�̇�} + �̇� − 𝑛𝑦],   

 

�̈� + 2𝑛�̇� = 𝑈𝑦 −
𝑊1

𝑟1
2 [

𝑦

𝑟1
2 {(𝑥 + 𝜇)�̇� + 𝑦�̇�} + �̇� + 𝑛(𝑥 + 𝜇)] −

𝑊2

𝑟2
2 [

𝑦

𝑟2
2 {(𝑥 + 𝜇 − 1)�̇� + 𝑦�̇�} + �̇� + 𝑛(𝑥 + 𝜇 − 1)],

 (1)  

 

where
 

𝑈𝑥 = 𝑛2𝑥 −
(1−𝜇)(𝑥+𝜇)𝑞1

𝑟1
3 −

3(1−𝜇)𝐴1(𝑥+𝜇)𝑞1

2𝑟1
5 −

𝜇𝑞2(𝑥+𝜇−1)

𝑟2
3 −

3𝜇(𝑥+𝜇−1)𝐴2𝑞2

2𝑟2
5 −

3(1−𝜇)(𝑥+𝜇)𝐴3

2𝑟1
5 −

3𝜇(𝑥+𝜇−1)𝐴3

2𝑟2
5 −

𝑀𝑏𝑥

(𝑟2+𝑇2)
3
2

,  

 

𝑈𝑦 = 𝑛2𝑦 −
(1−𝜇)𝑦𝑞1

𝑟1
3 −

3(1−𝜇)𝑦𝑞1𝐴1

2𝑟1
5 −

𝜇𝑞2𝑦

𝑟2
3 −

3𝜇𝑦𝐴2𝑞2

2𝑟2
5 −

3(1−𝜇)𝑦𝐴3

2𝑟1
5 −

3𝜇𝑦𝐴3

2𝑟2
5 −

𝑀𝑏𝑦

(𝑟2+𝑇2)
3
2

,    (2) 

with  

𝑈 =
𝑛2

2
(𝑥2 + 𝑦2) +

(1 − 𝜇)𝑞1

𝑟1
+

𝜇𝑞2

𝑟2
+

(1 − 𝜇)𝐴1𝑞1

2𝑟1
3 +

𝜇𝐴2𝑞2

2𝑟2
3 +

(1 − 𝜇)𝐴3

2𝑟1
3 +

𝜇𝐴3

2𝑟2
3 +

𝑀𝑏

(𝑟2 + 𝑇2)
1
2

, 

𝑟1
2 = (𝑥 + 𝜇)2 + 𝑦2, 𝑟2

2 = (𝑥 + 𝜇 − 1)2 + 𝑦2, 𝑊1 =
(1−𝜇)(1−𝑞1)

𝑐𝑑
, 𝑊2 =

𝜇(1−𝑞2)

𝑐𝑑
 ,     (3) 

𝑛 = √1 +
3

2
(𝐴1 + 𝐴2) +

2𝑀𝑏𝑟𝑐

(𝑟𝑐
2+𝑇2)

3
2

.  

Here 𝑟𝑖(𝑖 = 1,2) are the distances of the third body from the 

bigger and smaller primaries, respectively, 𝑞1,𝑞2(0 < 𝑞𝑖 ≤

1, 𝑖 = 1,2)  and 𝑊1, 𝑊2(𝑊𝑖 << 1, 𝑖 = 1,2)  are the radiation 

pressure and P–R drag of the bigger and smaller primaries, 

respectively,𝑐𝑑is the non-dimensional velocity of light while 

the dots denote differentiation with respect to time, t.  Notice 

that when radiation force is absent, there will be no P–R drag 

force. 𝑀𝑏(𝑀𝑏 << 1)  is the total mass of the disc, 𝑟 is the 

radial distance of the dust particle so that 𝑟2 = 𝑥2 + 𝑦2while, 

𝑇 = 𝑎 + 𝑏  defines the density profile of the accumulated 

materials with 𝑎 and 𝑏 being the flatness and core parameters, 

respectively, and 𝑛  is the perturbed mean motion of the 

primaries.  The oblateness of the three bodies come into the 

picture in the form of oblateness coefficients 0 ≤ 𝐴𝑖 =
(𝐴𝐸

2
𝑖

− 𝐴𝑃
2

𝑖
)/5𝑅2 << 1, (𝑖 = 1,2,3)  where 𝐴𝐸𝑖

 and 𝐴𝑃𝑖
are 

the equatorial and polar radii of the bodies, respectively 

while𝑅is the separation between the primaries.   

 

Existence and positions of the equilibrium points 

The necessary and sufficient conditions, which must satisfy 

for the existence of equilibrium points, are:�̈� = �̈� = �̇� = �̇� =
0. It thus follows from equations (1) and (2), that the equilibria 

are solutions of equations:       
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𝑛2𝑥 −
(1−𝜇)(𝑥+𝜇)𝑞1

𝑟1
3 −

3(1−𝜇)𝐴1(𝑥+𝜇)𝑞1

2𝑟1
5 −

𝜇𝑞2(𝑥+𝜇−1)

𝑟2
3 −

3𝜇(𝑥+𝜇−1)𝐴2𝑞2

2𝑟2
5 −

3(1−𝜇)(𝑥+𝜇)𝐴3

2𝑟1
5 −

3𝜇(𝑥+𝜇−1)𝐴3

2𝑟2
5 −

𝑀𝑏𝑥

(𝑟2+𝑇2)
3
2

+
𝑊1𝑛𝑦

𝑟1
2 +

𝑊2𝑛𝑦

𝑟2
2 = 0,            

 (4) 

and 

𝑛2𝑦 −
(1−𝜇)𝑦𝑞1

𝑟1
3 −

3(1−𝜇)𝑦𝑞1𝐴1

2𝑟1
3 −

𝜇𝑞2𝑦

𝑟2
3 −

3𝜇𝑦𝐴2𝑞2

2𝑟2
5 −

3(1−𝜇)𝑦𝐴3

2𝑟1
5 −

3𝜇𝑦𝐴3

2𝑟2
5 −

𝑀𝑏𝑦

(𝑟2+𝑇2)
3
2

−
𝑊1𝑛(𝑥+𝑦)

𝑟1
2 −

𝑊2𝑛(𝑥+𝜇−1)

𝑟2
2 = 0  (5) 

The equations (4) and (5) lead to two types of solutions: the equilibria on the plane 𝑥𝑦, i.e., the non-collinear points when 𝑦 ≠
0and the collinear points when 𝑦 = 0. 

 

Equilibrium points on the 𝒙axis 

The collinear (linear) equilibrium points are the ones lying on 

the 𝑥 -axis of the synodic system. In the present problem, we 

observe that for 𝑦 = 0, the equation (5) is not satisfied due to 

the existence of the dissipative terms induced by the P-R drag 

force. This means that they exist no equilibrium solutions on 

the𝑥 -axis in the present model’s problem. This is no longer 

true when the drag forces are neglected. Therefore, we can 

conclude that under the constant effect of P-R drag, induced 

by the radiation pressure of the primaries, there are no 

equilibrium points that lie exactly on the 𝑥  -axis, called 

collinear EPs.  This agrees with the results of Ragos and 

Zafiropoulos (1995), Vincent et al. (2019) and others. 

 

Equilibrium points on the (𝒙, 𝒚) plane 

The non-collinear equilibrium points are obtained by solving 

equations (4) and (5) simultaneously for 𝑥 ≠ 0  and𝑦 ≠ 0 . 

Note that, due to high complexity of the equations of motion 

there is an extra difficulty to solve both equations (4) and (5) 

analytically for all the EPs on the (𝑥, 𝑦) plane which give the 

exact locations of the points of equilibrium (i.e. coordinates 

of the equilibrium points of the system) and to discuss the 

existence and the number of equilibria for every set of 

model’s parameters. Consequently, we resort to numerical 

solutions of this model problem. This fact applies to similar 

studies, where numerical methods are used for determining 

the EPs of the system (see e.g., Ragos and Zafiropolous 1995; 

Vincent and Perdiou 2021a, b; Vincent and Kalantonis 2023).  

Figures 1—3 provide information regarding to different 

number of equilibria, for some assumed fixed values of the 

parameters. Specifically, in Figure 1 we illustrate the five 

equilibrium 𝐿𝑖 , 𝑖 = 1,2, . . . ,5   of the problem, for 𝑞1 =
0.985, 𝑞2 = 0.999, 𝐶𝑑 = 299792458, 𝜇  =0.255, 𝑀𝑏 = 0.05, 

𝑇 = 0.01when the oblateness coefficients 𝐴1, 𝐴2and 𝐴3vary: 

panels: (a) for 𝐴2 = 𝐴3 = 0and 𝐴1 = 0.0015, (b) 𝐴1 = 𝐴3 =
0 and 𝐴2 = 0.0015, (c) 𝐴1 = 𝐴2 = 0and 𝐴3 = 0.0015. We 

remark that for other values of these oblateness parameters, 

the number of non-collinear points remain same (collinear 

points cease to exist). We observe that the couple 𝐿4,5 are 

symmetric w.r.t the 𝑥 -axis as well as that with the P-R drag 

effect, the existence of nonzero 𝑦  components for 

𝐿1, 𝐿2, 𝐿3can be easily verified from equation (5), since the 

condition 𝑦 = 0is not satisfied for them.   

In Figure 2, the positions of the five and seven non-collinear 

equilibrium points are illustrated for 𝑞1 = 0.985, 𝑞2 =
0.999, 𝐴1 = 0.0004, 𝐴2 = 0.0003, 𝐴3 = 0.0002, 𝐶𝑑 =
299792458, and𝑇 = 0.01when 𝜇and 𝑀𝑏 vary. In particular, 

Figure 2a is when 𝜇 =0.255,𝑀𝑏= 0.05, and in this case, there 

exist five non-collinear equilibrium points𝐿𝑖 , 𝑖 = 1,2, . . . ,5, 

while Figure 2b is when 𝜇 =0.255 ,𝑀𝑏= 0.09 , and in this case, 

there exist seven non-collinear equilibria, 𝐿𝑖 , 𝑖 = 1,2, . . . ,5and 

new additional equilibri a𝐿𝑛1,𝐿𝑛2 Finally, Figure 2c is when 

𝜇  =0.385, 𝑀𝑏 = 0.05, and in this case the non-collinear 

equilibrium points are seven. We note here that the 𝑦  -

components of the equilibria 𝐿1, 𝐿2, 𝐿3, 𝐿𝑛1, and 𝐿𝑛2 are close 

to zero but not zero, which means that due to the 𝑦  -

components these points are not collinear. From these results 

we can conclude that for some values of the system 

parameters, 𝐿𝑛1 and 𝐿𝑛2 do not in general exist even in the 

presence of the circular cluster of materials points, indicating 

that such equilibrium points only exist depend on the model’s 

parameters. Further, it is noticed that the locations of all the 

EPs change with the primaries if the mass parameter changes.  

In Figure 3, we illustrate the positions of the seven non-

collinear EPs of the problem as well as the fixed location of 

the primaries as the radiation coefficient 𝑞1 varies (i.e., for 

𝑞1 = 1, 𝑞1 = 0.5 and 𝑞1 = 0.3 correspondingly) for fixed 

values of the parameters 𝜇 = 0.255, 𝑞2 = 0.999, 𝐴1 =
0.0004, 𝐴2 = 0.0003,  ,299792458,0002.03 == dCA 𝑀𝑏 =

0.09 and𝑇 = 0.01. From Figure 3, we see that the equilibrium 

point 𝐿2moves closer to the primary body 𝑚2while all the 

EPs of the problem approach the primary body 𝑚1 as the 

radiation pressure of the bigger primary 𝑞1tends to zero. We 

remark that the radiation pressure of the primary body 𝑚1has 

the most effect on changing the equilibrium point locations.  
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Figure 1: The positions of the five non-collinear equilibrium points 𝐿𝑖 , 𝑖 = 1,2, . . . ,5 (green dots) when 𝑞1 = 0.985, 𝑞2 =
0.999, 𝐶𝑑 = 299792458, 𝜇 =0.255,𝑀𝑏= 0.05, 𝑇 = 0.01for different values of oblateness coefficients, i.e. panels: (a) for 𝐴2 =
𝐴3 = 0and 𝐴1 = 0.0015, (b) 𝐴1 = 𝐴3 = 0  and 𝐴2 = 0.0015, (c) 𝐴1 = 𝐴2 = 0and 𝐴3 = 0.0015 . Blue and brown curves 

correspond to the contour curves of equations (4) and (5), respectively, while the centers of the primary bodies, 𝑚𝑖 , 𝑖 = 1,2are 

denoted by black dots. 

 

 
 

 
Figure 2: (a) Positions of the five non-collinear equilibrium points𝐿𝑖 , 𝑖 = 1,2, . . . ,5for 𝜇 = 0.255, 𝑀𝑏 = 0.05, (b) Seven non-

collinear equilibrium points 𝐿𝑖 , 𝑖 = 1,2, . . . ,5, 𝐿𝑛1, 𝐿𝑛2 for 𝜇 = 0.255, 𝑀𝑏 = 0.09,  (c) Similar to panel (b), but for 𝜇 =
0.385, 𝑀𝑏 = 0.05.  The values of 𝑞1 = 0.985, 𝑞2 = 0.999, 𝐴1 = 0.0004, 𝐴2 = 0.0003, 𝐴3 = 0.0002, 𝐶𝑑 = 299792458, 
and𝑇 = 0.01are fixed in all cases.  
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Figure 3: The position of the seven non-collinear equilibrium points 𝐿𝑖 , 𝑖 = 1,2, . . . ,5, 𝐿𝑛1, 𝐿𝑛2 for 𝜇 = 0.255, 𝑞2 =
0.999, 𝐴1 = 0.0004, 𝐴2 = 0.0003, 𝐴3 = 0.0002, 𝐶𝑑 = 299792458, 𝑀𝑏 = 0.09 and 𝑇 = 0.01  when only the radiation 

pressure of the bigger primary varies, i.e., panels: (a) for 𝑞1 = 1, (b) 𝑞1 = 0.5, and (c) 𝑞1 = 0.3. 
 

Linear stability of the non-collinear equilibrium points 

Knowing the exact locations (𝑥0, 𝑦0) of the equilibrium points, we can easily determine their linear stability or instability, 

through the nature of the roots of the characteristic equation. In doing this, we will follow the approach in Ragos and 

Zafiropoulos (1995) as well as Vincent and Perdiou (2021a, b). We suppose 𝜉 and 𝜂 are coordinates of the equilibrium point 

(𝑥0, 𝑦0) such that  

𝜉 = 𝑥 − 𝑥0, 𝜂 = 𝑦 − 𝑦0
                   

(6)
 

Denoting the right-hand side of equation (1) byΩ𝑥 =
∂Ω

∂𝑥
and Ω𝑦 =

∂Ω

∂𝑦
, respectively, then the variational form of the equations 

of motion is derived as: 

 

𝜉̈ − 2𝑛�̇� = Ω𝑥�̇�
(0)

𝜉̇ + Ω𝑥�̇�
(0)

�̇� + Ω𝑥𝑥
(0)𝜉 + Ω𝑥𝑦

(0)𝜂 

�̈� + 2𝑛𝜉̇ = Ω𝑦�̇�
(0)

𝜉̇ + Ω𝑦�̇�
(0)

�̇� + Ω𝑦𝑥
(0)

𝜉 + Ω𝑦𝑦
(0)

𝜂         (7) 

where only the linear terms in  𝜉 and 𝜂 have been taken. 

Then, the form of the characteristic polynomial corresponding to equations (7) is:  

𝜆4 + 𝑎1𝜆3 + 𝑎2𝜆2 + 𝑎3𝜆 + 𝑎4 = 0,          (8) 

with 

𝑎1 = −(Ω𝑦�̇�
(0)

+ Ω𝑥�̇�
(0)

),     𝑎2 = 4𝑛2 + Ω𝑥�̇�
(0)

Ω𝑦�̇�
(0)

− Ω𝑥𝑥
(0)

− Ω𝑦𝑦
(0)

− [Ω𝑥�̇�
(0)

]2,       (9) 

𝑎3 = Ω𝑥�̇�
(0)

Ω𝑦𝑦
(0)

+ Ω𝑥𝑥
(0)

Ω𝑦�̇�
(0)

+ 2𝑛Ω𝑥𝑦
(0)

− 2𝑛Ω𝑦𝑥
(0)

− Ω𝑦�̇�
(0)

Ω𝑥𝑦
(0)

− Ω𝑦𝑥
(0)

Ω𝑥�̇�
(0)

,      𝑎4 = Ω𝑥𝑥
(0)

Ω𝑦𝑦
(0)

− Ω𝑦𝑥
(0)

Ω𝑥𝑦
(0)

 

The involved partial derivatives are given as: 
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Ω𝑥𝑥
(0)

= 𝑛2 −
𝑞1(1−𝜇)

𝑟10
3 −

𝑞2𝜇

𝑟20
3 +

3𝑞1(1−𝜇)(𝑥0+𝜇)2

𝑟10
5 +

3𝜇𝑞2(𝑥0+𝜇−1)2

𝑟20
5 −

3𝐴1𝑞1(1−𝜇)

2𝑟10
5 −

3𝐴2𝑞2𝜇

2𝑟20
5 −

3𝐴3(1−𝜇)

2𝑟10
5 −

3𝐴3𝜇

2𝑟20
5 +

15𝐴1𝑞1(1−𝜇)(𝑥0+𝜇)2

2𝑟10
7 +

15𝐴2𝑞2𝜇(𝑥0+𝜇−1)2

2𝑟20
7 +

15𝐴3(1−𝜇)(𝑥0+𝜇)2

2𝑟10
7 +

15𝐴3𝜇(𝑥0+𝜇−1)2

2𝑟20
7 −

𝑀𝑏

(𝑇2+𝑟0
2)

3
2

+
3𝑀𝑏𝑥0

2

(𝑇2+𝑟0
2)

5
2

−
2𝑛𝑊1𝑦0(𝑥0+𝜇)

𝑟10
4 −

2𝑛𝑊2𝑦0(𝑥0+𝜇−1)

𝑟20
4 ,  (10) 

 

Ω𝑦𝑦
(0)

= 𝑛2 −
𝑞1(1−𝜇)

𝑟10
3 −

𝑞2𝜇

𝑟20
3 +

3𝑞1(1−𝜇)𝑦0
2

𝑟10
5 +

3𝑞2𝜇𝑦0
2

𝑟20
5 −

3𝐴1𝑞1(1−𝜇)

2𝑟10
5 −

3𝐴2𝑞2𝜇

2𝑟20
5 −

3𝐴3(1−𝜇)

2𝑟10
5 −

3𝐴3𝜇

2𝑟20
5 +

15𝐴1𝑞1(1−𝜇)𝑦0
2

2𝑟10
7 +

15𝐴2𝑞2𝜇𝑦0
2

2𝑟20
7 +

15𝐴3(1−𝜇)𝑦0
2

2𝑟10
7 +

15𝐴3𝜇𝑦0
2

2𝑟20
7 −

𝑀𝑏

(𝑇2+𝑟2)
3
2

+
3𝑀𝑏𝑦0

2

(𝑇2+𝑟0
2)

5
2

+
2𝑛𝑊1𝑦0(𝑥0+𝜇)

𝑟10
4 +

2𝑛𝑊2𝑦0(𝑥0+𝜇−1)

𝑟20
4 ,     (11) 

 

Ω𝑥𝑦
(0)

=
3𝑞1𝑦0(1−𝜇)(𝑥0+𝜇)

𝑟10
5 +

3𝑞2𝜇𝑦0(𝑥0+𝜇−1)

𝑟20
5 +

15𝐴1𝑞1𝑦0(1−𝜇)(𝑥0+𝜇)

2𝑟10
7 +

15𝐴2𝑞2𝜇𝑦0(𝑥0+𝜇−1)

2𝑟20
7 +

15𝐴3𝑦0(1−𝜇)(𝑥0+𝜇)

2𝑟10
7 +

15𝐴3𝜇𝑦0(𝑥0+𝜇−1)

2𝑟20
7 +

3𝑀𝑏𝑥0𝑦0

(𝑇2+𝑟0
2)

5
2

+
𝑛𝑊1

𝑟10
2 +

𝑛𝑊2

𝑟20
2 −

2𝑛𝑊1𝑦0
2

𝑟10
4 −

2𝑛𝑊2𝑦0
2

𝑟20
4 ,        (12) 

 

Ω𝑦𝑥
(0)

=
3𝑞1𝑦0(1−𝜇)(𝑥0+𝜇)

𝑟10
5 +

3𝑞2𝜇𝑦0(𝑥0+𝜇−1)

𝑟20
5 +

15𝐴1𝑞1𝑦0(1−𝜇)(𝑥0+𝜇)

2𝑟10
7 +

15𝐴2𝑞2𝜇𝑦0(𝑥0+𝜇−1)

2𝑟20
7 +

15𝐴3𝑦0(1−𝜇)(𝑥0+𝜇)

2𝑟10
7 +

15𝐴3𝜇𝑦0(𝑥0+𝜇−1)

2𝑟20
7 +

3𝑀𝑏𝑥0𝑦0

(𝑇2+𝑟0
2)

5
2

−
𝑛𝑊1

𝑟10
2 −

𝑛𝑊2

𝑟20
2 +

2𝑛𝑊1(𝑥0+𝜇)2

𝑟10
4 +

2𝑛𝑊2(𝑥0+𝜇−1)2

𝑟20
4 ,       (13) 

 

Ω𝑥�̇�
(0)

= −
𝑊1

𝑟10
2 ((1 +

𝑥0
2

𝑟10
2 ) +

𝜇

𝑟10
2 (𝜇 + 2𝑥0)) −

𝑊2

𝑟20
2 ((1 +

1

𝑟20
2 ) −

𝑥0

𝑟20
2 (2 − 𝑥0) −

𝜇

𝑟20
2 (2(1 − 𝑥0) − 𝜇)),   (14)  

 

Ω𝑦�̇�
(0)

= −
𝑊1

𝑟10
2 (1 +

𝑦0
2

𝑟10
2 ) −

𝑊2

𝑟20
2 (1 +

𝑦0
2

𝑟20
2 ),           (15) 

 

Ω𝑥�̇�
(0)

= −
𝑊1𝑦0

𝑟10
4 (𝜇 + 𝑥0) +

𝑊2𝑦0

𝑟20
4 (1 − (𝑥0 + 𝜇)) = Ω𝑦�̇�

(0)
,         16) 

where 

𝑟10
2 = (𝑥0 + 𝜇)2 + 𝑦0

2,
  

𝑟20
2 = (𝑥0 + 𝜇 − 1)2 + 𝑦0

2

        (17) 

 

The determination of the stability or instability of motion 

around the non-collinear equilibrium points can be 

accomplished through the computation of the characteristic 

roots (i.e., equation (8)). An equilibrium point (𝑥0, 𝑦0) will be 

stable if equation (8), evaluated at the equilibrium has four 

pure imaginary roots or four complex roots with each of them 

having negative real parts; otherwise, it is unstable.  

 

Numerical Application: Kruger 60 binary system 

We have computed and examined numerically as well as 

graphically the positions of the seven non-collinear 

equilibrium points and their stability for the binary system 

Kruger 60. In Table 1 are given (Singh and Amuda, 2017), the 

physical parameters of this binary system.  

Table 1a. Numerical data for the binary Kruger 60 system (Singh and Amuda 2017) 

Binary 

system 

Mass (𝑴⊗)     Luminosity            

        (𝑳𝟎) 

Binary 

separation 

Dimensionless 

speed  of light 

Mass ratio 

 𝒎𝟏          𝒎𝟐     𝑳𝟏          𝑳𝟐       𝒂 
        

𝒄𝒅       𝝁 

Kruger 60 0.271    0.176    0.01    0.0034      9.5 46,393.84 0.3937 

 

Table 1b. Numerical data for the binary Kruger 60 system (Singh and Amuda 2017) 

Binary system                 Radiation pressure (𝒒𝒊) 

                𝒒𝟏                           𝒒𝟐 

Kruger 60               0.99992             0.99996 

 

Firstly, the effect of mass of the disc (𝑀𝑏) of both primaries 

on the positions of the non-collinear equilibria for the binary 

system is shown in Table 2 for fixed values of the remaining 

parameters. It is observed that with the increase of 𝑀𝑏 from 0 

to 0.09 for fixed ,3937.0= 𝑞1 = 0.99992, 

99996.02 =q 𝐴1 = 0.024,  ,02.02 =A 𝐴3 = 0.015, 

𝑐𝑑 = 46,393.84,  and 𝑇 = 0.01  , 𝑥  −coordinates of 𝐿1 

increase while at the same time the 𝑦 −coordinates decrease; 

both the𝑥and 𝑦 -coordinates of 𝐿2, 𝐿3, 𝐿𝑛2 (where exist) and 

𝐿4 (the situation is same at the symmetric point 𝐿5) decrease 

while both the 𝑥 and 𝑦  -coordinates of 𝐿𝑛1  (where exist) 

increase. The overall effect due to the mass of the disc (𝑀𝑏) 

of both primaries is that 𝐿1, 𝐿2, 𝐿3, 𝐿𝑛2, 𝐿4,5move closer to 

the 𝑂𝑥 −axis while 𝐿𝑛1 move away from the 𝑂𝑥 −axis. It is 

obvious, that the mass of disc of the primary bodies affects 

the positions of the equilibrium points significantly. It is 

intuitively noted that the variation (difference in the 

positions/coordinates) of the equilibria 𝐿1 , 𝐿2 , 𝐿3 , 𝐿𝑛1  and 

𝐿4,5 is the biggest whereas 𝐿𝑛2is nearly zero (Table 2). 

Next, we shall discuss the positions of the non-collinear 

equilibrium points of the test body for the binary system 

Kruger 60 when the oblateness coefficients𝐴1 , 𝐴2and𝐴3vary 

in the interval 𝐴𝑖 ∈ [0,0.08], 𝑖 = 1,2,3 for fixed numerical 

value of 𝜇, 𝑞1, 𝑞2, 𝑀𝑏 , and 𝑇. 
To investigate the influence of the oblateness parameter of the 

bigger primary 𝐴1 on the positions of the equilibria under 

consideration, the oblateness  coefficient of the smaller 

primary is arbitrary set to be 𝐴2 = 0.02 while that of the 

infinitesimal third body is set to be 𝐴3 = 0.01 . The 

coordinates of the numerically determined non-collinear 

equilibria are shown in Table 3 for various values of the 

oblateness coefficient 𝐴1. We observe that with the increase 

of 𝐴1 (0 to 0.08) for fixed 𝜇 = 0.3937, ,99992.01 =q 𝑞2 =
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0.99996,  ,02.02 =A 𝐴3 = 0.01 , 𝑀𝑏 = 0.1 , 𝑇 =

0.01,and𝑐𝑑 = 46,393.84, the coordinates of the seven non-

collinear equilibria increase or decrease. In particular, the𝑥 

−coordinates of equilibrium points 𝐿1 , 𝐿3,  and 𝐿4  (the 

situation is same at the symmetric point 𝐿5) increase while at 

the same time the𝑦 −coordinates decrease; both the 𝑥and𝑦 

coordinates of the points 𝐿2and 𝐿𝑛1decrease whereas both the 

𝑥 and 𝑦coordinates of the point 𝐿𝑛2increase.  

Similarly, for fixed oblateness coefficients 𝐴1 = 0.03 and 

𝐴3 = 0.01the locations of the equilibrium points with respect 

to different values of oblateness coefficient𝐴2are presented in 

Table 4. We observe that with the increase of𝐴2, both the 𝑥 

and 𝑦 coordinates of the points 𝐿1, 𝐿3, and 𝐿4 (the situation is 

same at the symmetric point 𝐿5) decrease; both the 𝑥 and 𝑦  

coordinates of the point 𝐿𝑛1 increase; 𝑥coordinates of point 

𝐿2  increase while at the same time 𝑦 coordinates decrease; 

𝑥coordinates of the point 𝐿𝑛2decrease while the 𝑦coordinates 

increase. For the investigation of the influence of the oblate 

infinitesimal body parameter 𝐴3  on the positions of the 

equilibrium points we set for the oblateness of the bigger and 

smaller primary the values 𝐴1 = 0.03  and 𝐴2 = 0.02 , 

respectively. The coordinates of the corresponding 

equilibrium points are shown in Table 5 for increasing values 

of oblateness coefficient 𝐴3 . We observe that with the 

increase of𝐴3from 0 to 0.08, both the 𝑥and𝑦 coordinates of 

𝐿1and 𝐿𝑛1decrease; both the 𝑥and𝑦coordinates of 𝐿2 and 𝐿𝑛2 

increase; 𝑥  coordinates of 𝐿3  increase; the 𝑦  coordinates 

decrease while at the same time 𝑥 coordinates of 𝐿4  (the 

situation is same at the symmetric point 𝐿5) decrease with 

increase in the𝑦 coordinates.

 

Table 2. The exact positions (𝒙𝟎, 𝒚𝟎) of the seven non-collinear equilibrium points for varying mass disc for the binary 

system Kruger 60  when ,3937.0= 𝒒𝟏 = 𝟎. 𝟗𝟗𝟗𝟗𝟐, 99996.02 =q 𝑨𝟏 = 𝟎. 𝟎𝟐𝟒, ,02.02 =A 𝑨𝟑 = 𝟎. 𝟎𝟏𝟓, 𝑻 =

𝟎. 𝟎𝟏, and𝒄𝒅 =  46,393.84
 

𝑴𝒃                  𝑳𝟏               𝑳𝟐 𝑳𝟑 

0 0.147054, −1.43186× 10−10 1.24360, −1.52545× 10−9 −1.16614, 3.54274× 10−9 

0.01 0.162423, −1.04806× 10−10 1.23863, −1.50605× 10−9 −1.16089, 3.51196× 10−9 

0.03 0.182581, −7.64634× 10−11 1.22918, −1.46952× 10−9 −1.15091, 3.45402× 10−9 

0.06 0.202605, −5.86602× 10−11 1.21609, −1.41973× 10−9 −1.13709, 3.37511× 10−9 

0.09 0.217116, −4.90411× 10−11 1.20414, −1.37505× 10−9 −1.12447, 3.30441× 10−9 

𝑴𝒃 𝑳𝒏𝟏 𝑳𝒏𝟐 𝑳𝟒(𝟓) 

0                                           −                          − 0.108117, ±0.862323 

0.01                      −                          − 0.108116, ±0.858575 

0.03 −0.061946, −1.92162× 10−11 −1.3902× 10−4,−7.47658× 10−14 0.108114, ±0.851595 

0.06 −0.080537, −2.18648× 10−11 −6.9446× 10−5,−3.86392× 10−14 0.108112, ±0.842258 

0.09 −0.092862, −2.31955× 10−11 −4.6285× 10−5,−2.65748× 10−14 0.108110, ±0.834068 

 

Table 3. The exact positions (𝒙𝟎, 𝒚𝟎) of the seven noncollinear equilibrium points for varying oblateness of the bigger 

primary body for the binary Kruger 60 system when 𝝁 = 𝟎. 𝟑𝟗𝟑𝟕, ,99992.01 =q 𝒒𝟐 = 𝟎. 𝟗𝟗𝟗𝟗𝟔, ,02.02 =A 𝑨𝟑 =

𝟎. 𝟎𝟏,𝑴𝒃 = 𝟎. 𝟏,𝑻 = 𝟎. 𝟎𝟏,and𝒄𝒅 =  46,393.84
 

𝑨𝟏 𝑳𝟏 𝑳𝟐 𝑳𝟑 

0 0.220325, −4.75935× 10−11 1.20279, −1.38564× 10−9 −1.10963, 3.36583× 10−9 

0.02 0.222839, −4.73199× 10−11 1.19764, −1.36455× 10−9 −1.11622, 3.29800× 10−9 

0.04 0.225272, −4.70085× 10−11 1.19266, −1.34432× 10−9 −1.12202, 3.23521× 10−9 

0.06 0.227630, −4.66649× 10−11 1.18785, −1.32490× 10−9 −1.12718, 3.17668× 10−9 

0.08 0.229914, −4.62938× 10−11 1.18318, −1.30623× 10−9 −1.13181, 3.12184× 10−9 

𝑨𝟏 𝑳𝒏𝟏 𝑳𝒏𝟐 𝑳𝟒(𝟓) 

0 −0.10964, −3.43328× 10−11 −3.08874× 10−5,−2.3827× 10−14 0.096788, ±0.833430 

0.02 −0.09961, −2.60355× 10−11 −3.84633× 10−5,−2.4102× 10−14 0.106288, ±0.829942 

0.04 −0.09259, −2.11422× 10−11 −4.60406× 10−5,−2.4375× 10−14 0.115323, ±0.826429 

0.06 −0.08721, −1.78611× 10−11 −5.36193× 10−5,−2.4644× 10−14 0.123931, ±0.822906 

0.08 −0.08286, −1.54902× 10−11 −6.11994× 10−5,−2.4910× 10−14 0.132147, ±0.819383 

 

Table 4. The exact positions (𝒙𝟎, 𝒚𝟎) of the seven noncollinear equilibrium points for varying oblateness of the smaller 

primary body for the binary Kruger 60 system when 𝝁 = 𝟎. 𝟑𝟗𝟑𝟕, ,99992.01 =q 𝒒𝟐 = 𝟎. 𝟗𝟗𝟗𝟗𝟔, ,03.01 =A 𝑨𝟑 =

𝟎. 𝟎𝟏,𝑴𝒃 = 𝟎. 𝟏, 𝑻 = 𝟎. 𝟎𝟏,and𝒄𝒅 =  46,393.84
 

𝑨𝟐 𝑳𝟏 𝑳𝟐 𝑳𝟑 

0 0.237373, −4.77803× 10−11 1.18483, −1.38057× 10−9 −1.12513, 3.30815× 10−9 

0.02 0.224065, −4.71686× 10−11 1.19513, −1.35433× 10−9 −1.11921, 3.26603× 10−9 

0.04 0.213770, −4.62386× 10−11 1.20382, −1.33011× 10−9 −1.11348, 3.22549× 10−9 

0.06 0.205342, −4.52126× 10−11 1.21131, −1.30752× 10−9 −1.10792, 3.18644× 10−9 

0.08 0.198198, −4.41736× 10−11 1.21788, −1.28632× 10−9 −1.10253, 3.14877× 10−9 

𝑨𝟐 𝑳𝒏𝟏 𝑳𝒏𝟐 𝑳𝟒(𝟓) 

0 −0.09570, −2.29841× 10−11 −4.31260× 10−5,−2.3966× 10−14 0.120363, ±0.831079 

0.02 −0.09584, −2.33171× 10−11 −4.22518× 10−5,−2.4239× 10−14 0.110861, ±0.828187 

0.04 −0.09598, −2.36487× 10−11 −4.13776× 10−5,−2.4509× 10−14 0.101827, ±0.825231 



EQUILIBRIUM POINTS IN THE CR3BP…      Udo et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 7 No. 5, October, 2023, pp 54 - 63 61 

0.06 −0.09612, −2.39790× 10−11 −4.05034× 10−5,−2.4776× 10−14 0.093220, ±0.822227 

0.08 −0.09625, −2.43080× 10−11 −3.96292× 10−5,−2.5041× 10−14 0.085005, ±0.819191 

 

Table 5. The exact positions (𝒙𝟎, 𝒚𝟎) of the seven noncollinear equilibrium points for varying oblate infinitesimal body 

for the binary Kruger 60 system when ,3937.0= 𝒒𝟏 = 𝟎. 𝟗𝟗𝟗𝟗𝟐,  ,99996.02 =q 𝑨𝟏 = 𝟎. 𝟎𝟑,  ,02.02 =A

𝑴𝒃 = 𝟎. 𝟏, 𝑻 = 𝟎. 𝟎𝟏,and𝒄𝒅 =  46,393.84
 

𝑨𝟑 𝑳𝟏 𝑳𝟐 𝑳𝟑 

0 0.228817, −4.83841× 10−11 1.18723, −1.35292× 10−9 −1.11302, 3.27131× 10−9 

0.02 0.219938, −4.59976× 10−11 1.20251, −1.35576× 10−9 −1.12512, 3.26119× 10−9 

0.04 0.213051, −4.38161× 10−11 1.21599, −1.35862× 10−9 −1.13624, 3.25260× 10−9 

0.06 0.207463, −4.18494× 10−11 1.22812, −1.36146× 10−9 −1.14654, 3.24522× 10−9 

0.08 0.202793, −4.00781× 10−11 1.23917, −1.36425× 10−9 −1.15615, 3.23880× 10−9 

𝑨𝟑 𝑳𝒏𝟏 𝑳𝒏𝟐 𝑳𝟒(𝟓) 

0 −0.09953, −2.61418× 10−11 −3.8900× 10−5,−2.42387× 10−14 0.110973, ±0.823487 

0.02 −0.09266, −2.10557× 10−11 −4.5604× 10−5,−2.42390× 10−14 0.110756, ±0.832774 

0.04 −0.08740, −1.76425× 10−11 −5.2308× 10−5,−2.42394× 10−14 0.110564, ±0.841631 

0.06 −0.08314, −1.51760× 10−11 −5.9015× 10−5,−2.42397× 10−14 0.110393, ±0.850101 

0.08 −0.07958, −1.33034× 10−11 −6.5723× 10−5,−2.42401× 10−14 0.110239, ±0.858221 

 

Next, since we have computed the coordinates (𝑥0, 𝑦0) of the equilibrium points (presented in Tables 2—5), we can insert 

them into the characteristic equation (8) and thus derive their linear stability numerically. In Table 6, we show the eigenvalues 

of the equilibrium points under the combined effect of oblateness, circumbinary disc, radiation pressure and P-R drag for the 

binary system. In this case, our numerical exploration in the computation of these roots as shown in Table 6 reveals that all the 

equilibria are unstable due to a positive real roots or a complex root with positive real part except for the equilibrium point 

𝐿𝑛2where we get complex roots with negative real parts, which means that this point is stable.  

 

Table 6: The exact positions (𝒙𝟎, 𝒚𝟎) and eigenvalues of the seven non-collinear equilibrium points in the vicinity of 

Kruger 60 binary system when ,3937.0= 𝒒𝟏 = 𝟎. 𝟗𝟗𝟗𝟗𝟐, ,024.01 =A 𝑨𝟐 = 𝟎. 𝟎𝟐, ,015.03 =A 𝑴𝒃 = 𝟎. 𝟎𝟔, 

𝑻 = 𝟎. 𝟎𝟏,and𝒄𝒅 =  46,393.84 

𝑳𝒊             (𝒙𝟎, 𝒚𝟎)                 𝝀𝟏,𝟐                    𝝀𝟑,𝟒 

𝐿1 (0.202605,−5.86602 × 10−11)            ±6.27847 −2.78734× 10−9 ± 4.32354𝑖 
𝐿2 (1.216090,−1.41973 × 10−9)            ±1.57883 −1.51791× 10−9 ± 1.50988𝑖 
𝐿3 (−1.13709,3.37511 × 10−9)            ±1.20201 −2.89857× 10−9 ± 1.35229𝑖 

𝐿𝑛1 (−0.08054,−2.18648 × 10−11)            ±17.5167 −5.77124× 10−9 ± 12.0606𝑖 
𝐿𝑛2 (−6.94460,−3.86392 × 10−14) −5.83979× 10−9 ± 243.799𝑖 −5.66617× 10−9 ± 246.015𝑖 

𝐿4(5) (0.108112,±0.842258) −5.83979× 10−9 ± 243.799𝑖         0.718745±1.03258𝑖 

 

RESULTS AND DISCUSSION  

The existence, position and stability of the equilibrium points 

in the photogravitational restricted three-body problem 

(R3BP) that accounts for Poynting-Robertson (P-R) drag, 

circumbinary disc with three oblate bodies were studied. The 

equations of motion of the present study and those described 

by Singh and Amuda (2017) differ due to the oblate 

infinitesimal body and potential from the belt in the present 

study. In accordance with previous studies, the emergence of 

new equilibria also takes place in the perturbed circular 

restricted problem of three bodies with circumbinary disc. We 

found that five or seven equilibrium points may lie on the 

plane of motion of the primaries. Moreover, it was observed 

that the existence and positions of these points are affected by 

the model’s parameters. This comes directly by the pertinent 

non-linear algebraic equations, which provide the respective 

locations, since it was observed that in the presence of P-R 

drag effect the well-known collinear equilibrium points of the 

circular restricted three-body problem cease to exist both 

analytically and numerically in contrast to the absence of the 

aforementioned perturbing force, i.e., the P-R drag effect, 

where the collinear equilibria always exist and the distribution 

of equilibria on the plane of motion differs as a result of the 

disc and mass parameter. Additionally, it was observed that 

the involved parameters of the problem not only affect the 

number and positions of the corresponding equilibria but also 

influence their stability as well since it was identified that 

there are values of these parameters for which the points may 

be linearly stable.  

Finally, a numerical exploration, using the binary system 

Kruger 60, was performed to locate the positions of 

equilibrium points of the system as well as their linear 

stability. These points were shown numerically and 

graphically, thus highlighting the effects of the involved 

parameters. For the determination of the stability of the 

infinitesimal body’s motion around the obtained equilibrium 

points, we linearized the governing equations of motion 

around them. For the stability of the seven equilibria, the four 

roots of the characteristic polynomial were determined 

numerically and found that all points of equilibrium are 

always linearly unstable, except equilibrium point 𝐿𝑛2, which 

is linearly stable (Table 6). Also, contrary to the classical 

restricted three-body where the three collinear points are 

generally unstable and the triangular points are linearly stable 

for sufficiently small ratio of the two masses (see e.g., 

Szebehenly, 1967) or the restricted three-body problem under 

the effect of radiation and angular velocity variation of the 

two primary bodies where these five equilibria may be stable 

(see Perdios et al. 2015), we observed that for the problem 

under investigation all the five equilibria are unstable due to 

the presence of the P-R drag effect. However, the inclusion of 
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the P–R effect cannot alter the stability state of 𝐿𝑛2 in the case 

of seven EPs as it remains stable.  

 

CONCLUSION  

By taking perturbations in the radiation pressure, Poynting-

Robertson drag and circumbinary disc with oblateness of the 

primaries together with an oblate infinitesimal mass body, the 

existence, positions of equilibrium points and their linear 

stability have been established. It is observed that the number 

and positions of the equilibrium points are affected by the 

model’s parameters. It is further seen that in spite of the 

introduction of aforementioned parameters the equilibrium 

point 𝐿𝑛2remain stable. 
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