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ABSTRACT 

This study presents a novel application of Non -Standard Finite Difference (NSFD) Method to solve a COVID-

19 epidemic mathematical model with the impact of fear due to infection. The mathematical model is governed 

by a system of first-order non-linear ordinary differential equations and is shown to possess a unique positive 

solution that is bounded. The proposed numerical scheme is used to obtain an approximate solution for the 

COVID-19 model. Graphical results were displayed to show that the solution obtained by NSFD agrees well 

with those obtained by the Runge-Kutta-Fehlberg method built-in Maple 18.  
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INTRODUCTION 

The use of differential equations to model the transmission 

dynamics of infectious disease can be traced back to 1970 

when Daniel  Bernoulli justified the use of inoculation to curb 

the spread of smallpox (Dietz and Heesterbeek, 2002;  Foppa, 

2017).  These models are usually nonlinear (Peter et al., 2020; 

Gu et al., 2023; Akinyemi et al., 2023; Kambali et al., 2023; 

Ochi et al., 2023) and are difficult to obtain their exact 

solution (Onwubuoya et al., 2018b; Riyapan et al., 2021; ur 

Rehman et al., 2023). 

Thus, numerical methods are used to obtain approximate 

solutions. Some of the numerical techniques are Euler (Ashigi 

et al., 2021; Mohammed et al., 2021; Reza et al., 2022), Euler 

Predictor Corrector (Onwubuoya et al., 2018a), Non-Standard 

Finite Difference  (Raza et al., 2022; Butt et al., 2023; ur 

Rehman et al., 2023). 

The Non-Standard Finite Difference (NSFD) method 

developed by Ronald E. Mickens is a discrete representation 

of a continuous model (Mickens and Washington, 2012, Qui 

et al., 2014). Apart from predicting the behaviour of the 

dynamical system correctly, the NSFD method is known to 

preserve the dynamical properties of an epidemic model and 

is less difficult to implement when compared with the 

aforementioned numerical methods (Qui et al., 2014). 

Applications of NSFD method are found in financial theory 

(Mehdizadeh et al., 2022; Mehdizadeh et al., 2023), 

epidemiology (ur Rehman et al., 2023, Butt et al., 2023), 

enzymology (Miller & O’Riordan, 2020; Zafar et al., 2023), 

pharmacology (Egbelowo, 2018; Ebgelowo & Hoang, 2021), 

immunology (Costa et al., 2023; Elaiw et al., 2023). 

The purpose of this study is to apply the NSFD scheme to 

solve a mathematical model presented in Ibrahim (2023). The 

mathematical model proposed by Ibrahim (2023),  describes 

the spread of COVID-19 in the presence of fear of infection 

and is governed by the following system of nonlinear 

differential equations. 

 
𝑑𝑆

𝑑𝑡
= 𝑃 − 𝛺𝑆 − 𝐾1𝑆 + 𝜈2𝑉

𝑑𝑉

𝑑𝑡
= 𝜈1𝑆 − 𝑒𝛺𝑉 − 𝐾2𝑉

𝑑𝐸

𝑑𝑡
= 𝛺(𝑆 + 𝑒𝑉) − 𝐾3𝐸

𝑑𝑄

𝑑𝑡
= 𝜏1𝐸 − 𝐾4𝑄

𝑑𝐴

𝑑𝑡
= 𝜃1𝐸 − 𝐾5𝐴

𝑑𝐼

𝑑𝑡
= 𝜃2𝐴 − 𝐾6𝐼

𝑑𝐻

𝑑𝑡
= 𝜃3𝑄 + 𝜏2𝐼 − 𝐾7𝐻

𝑑𝑅

𝑑𝑡
= 𝛼1𝐴 + 𝛼2𝐼 + 𝛼3𝐻− 𝜇𝑅

𝑑𝐷

𝑑𝑡
= 𝑙1𝐴 + 𝑙2𝐼 + 𝑙3𝐻 − 𝜙𝐷

𝑑𝑊

𝑑𝑡
= 𝛱𝐼 + 𝛱𝜗𝐻 − 𝜀𝑊 }

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

   (1) 

 

Subject to 𝑆(0) = 1.885103470 × 108 , 𝑉(0) = 2.672 ×
107 , 𝐸(0) = 3,500,  𝑄(0) = 400,  𝐴(0) = 1,247,  𝐼(0) =
800,  𝐻(0) = 652,  𝑅(0) = 249,911,  𝐷(0) =  3143  and 

𝑊(0) = 1000. 

𝛺 =
𝛽(𝐴𝜂1 + 𝐻𝜂2 +𝑊𝜂3 + 𝐼)

𝜒1𝐷 + 1
, 𝐾1 = 𝜇 + 𝜈1,  𝐾2

= 𝜇 + 𝜈2,  𝐾3 = 𝜇 + 𝜃1 + 𝜏1, 𝐾4
= 𝜇 + 𝜃3, 𝐾5 = 𝜇 + 𝜃2 + 𝛼1 + 𝛿1,  

𝐾6 = 𝜇 + 𝜏2 + 𝛼2 + 𝛿2, 𝐾7 = 𝜇 + 𝛼3 + 𝛿3,  𝑙1 = 𝜇 +
𝛿1,  𝑙2 = 𝜇 + 𝛿2,  𝑙3 = 𝜇 + 𝛿3 and 𝑒 = 1 − 𝑏. 

 

Table 1: Description of State Variables of the Model 

State Variable Meaning 

𝑆(𝑡)  Unvaccinated Susceptible Individuals 

𝑉(𝑡) Vaccinated Susceptible Individuals 

𝐸(𝑡) Exposed Individuals 

𝑄(𝑡) Quarantined Individuals 
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𝐴(𝑡) Asymptomatic Individuals 

𝐼(𝑡) Symptomatic Individuals 

𝐻(𝑡) Hospitalized Individuals 

𝑅(𝑡) Recovered Individuals 

𝐷(𝑡) COVID-19 Dead Individuals 

𝑊(𝑡) Concentration of COVID-19 Viruses in the Environment 

 

Table 2: Description of Parameters for the Model 

Parameters Description of Parameters Hypothetical Values Source 

𝑁0 Total Population of Active Humans 215,497,404 Worldometer, 2022 

𝑃 Recruitment rate. 𝝁𝑵𝟎

 

Estimated 

𝜇0 Estimated average life span of Nigerian 55.75 per year Worldometer, 2022

 

𝜇 Natural death rate. 1

𝜇0×365
per day

 

Estimated 

𝛿1,  
𝛿2, 
𝛿3 

COVID-19 induced death rate for 

individuals in 𝐴, 𝐼 and 𝐻 compartments 

respectively. 

0.018, 

0.025, 

0.01 

Estimated 

Nana-Kyere et al., 2022 

𝛼1, 
c 

𝛼3 

The recovery rate for individuals in 

𝐴, 𝐼 and 𝐻compartments respectively. 

0.0195692, 

0.004165, 

0.0701 

Diagne et al., 2021 

 

𝑏 Rate of COVID-19 efficacy 0.6309

 

WHO, 2021 

𝑣1 Vaccination rate for susceptible 

individuals 

0.4 

Diagne et al., 2021

 𝑣2 Waning rate of COVID-19 vaccine 0.095 Paul and Kuddus, 2022 

𝜏1 Quarantine rate  for exposed individuals 0.012 Nana-Kyere et al., 2022

 

𝜃1 , 𝜃2 Progression rate for individuals in 

𝐸 to 𝐴 and 𝐴 to 𝐼 compartments 

respectively 

0.7,0.08 

Srivastav et al., 2021 

𝜃3, 𝜏2 The hospitalization rate for individuals in 

𝑄 and 𝐼 compartments respectively. 

0.06, 0.02 Nana-Kyere et al., 2022

 
𝜂1, 𝜂2, 𝜂3 Modification parameters associated with 

reduction of infectiousness for individuals 

in 𝐴,𝐻 and 𝑊  as compared to 𝐼  class 

respectively. 
0.75, 0.5, 0.33 Garba et al., 2020 

𝜋 Shedding rate of coronavirus into the 

environment. 

0.002 Garba  et al., 2020 

𝜗 Modification parameters associated with 

reduction of shedding for individuals in 𝐻 

as compared to 𝐼 class respectively. 

0.5 Garba et al., 2020 

𝜀 The decay rate of coronavirus in the 

environment. 

0.85 Garba et al., 2020 

𝜙 Burial rate of dead infectious individuals.  

0.2276 

Aba Oud et al., 2021

 𝜒1 Level of fear associated with COVID-19 

infection. 

(0,1)

 

Estimated 

𝜷

 

COVID-19 transmission coefficient 𝛽0
𝑁0

 

Estimated 

𝛽0 = 0.1086 Adewole  et al., 2021 

 

The rest of this paper is arranged as follows: Section 2 

presents the material and methods. Results and discussion are 

addressed in Section 3. Section 4 gives the conclusion of the 

study. 
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MATERIALS AND METHODS 

This section deals with the introduction to NSFD, the 

dynamical properties of Model (1) and the application of 

NSFD on Model (1). 

 

Basic Concept of NSFD 

First, we consider an autonomous ordinary differential 

equation of the form  
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥(𝑡))    (2) 

Definition 1: A discretized form of (2) is called an NSFD 

scheme provided at least one of these conditions is satisfied. 

1. The discretized representation of  (2) is 

 
𝑑𝑥

𝑑𝑡
→

𝑥𝑛+1−𝐺(ℎ)𝑥𝑛

𝑍(ℎ)
        𝑛 = 0,1,⋯𝑀 − 1      (3) 

such that 𝑡𝑛 = 𝑡0 + ℎ𝑛, 𝑥𝑛 = 𝑥(𝑡𝑛),  ℎ =
𝑇

𝑀
 the numerator 

function 𝐺(ℎ) = 1 + 𝑂(ℎ),  and the denominator function 

𝑍(ℎ) = ℎ+ 𝑂(ℎ2). 

2. The nonlinear term 𝑓(𝑥) in (2) should be approximated 

using the nonlocal discretized form. For instance, 

𝑥2 ≈ 𝑥𝑛𝑥𝑛+1          (4) 

Here, 𝑇   is the final time, ℎ  the time step size and 𝑀  the 

number of iterations. Again, we consider a system of first-

order nonlinear differential equations 

𝑑𝑥1

𝑑𝑡
= −𝑎1𝑥1𝑥2 − 𝑏1𝑥1

𝑑𝑥2

𝑑𝑡
= 𝑎1𝑥1𝑥2 + 𝑏2𝑥2

}    (5)    

subject to 𝑥1(0) = 𝑐1 and 𝑥2(0) = 𝑐2. 

Discretized (5) using the semi-implicit finite scheme while 

ensuring that the above condition conditions are met to have 

𝑋1,𝑛+1−𝐺1𝑋1,𝑛

𝑍1
= −𝑎1𝑋1,𝑛+1𝑋2,𝑛 − 𝑏1𝑋1,𝑛+1

𝑋2,𝑛+1−𝐺2𝑋2,𝑛

𝑍2
= 𝑎1𝑋1,𝑛+1𝑋2,𝑛 − 𝑏2𝑋2,𝑛+1

}       

 𝑛 = 0,1,⋯𝑀               

(6)      

Following Ahmed (2011) and Sweilam et al. (2017), to have 

𝐺1 = 𝐺2 = 1 and an exponential denominator function 𝑍1 =
𝑒𝑏1ℎ−1

𝑏1
 and 𝑍2 =

𝑒𝑏2ℎ−1

𝑏2
, are used. Hence, (6) becomes  

𝑋1,𝑛+1 =
𝑋1,𝑛

𝑍1(𝑎1𝑋2,𝑛+𝑏1)+1

𝑋2,𝑛+1 =
𝑋2,𝑛(𝑎1𝑋1,𝑛+1𝑍2+1)

𝑍2𝑏2+1

}                                  (7) 

Remark [Sweilam et al. (2017)] : Whenever the denominator 

function 𝑍(ℎ) = ℎ, the scheme is called NSFD-I, otherwise it 

is called NSFD-II.  

Thus, this study utilizes the NSFD-II scheme. Next, the 

dynamical properties such as the existence and uniqueness, 

positivity and boundedness solution of Model (1) are 

examined. 

 

Existence and Uniqueness Solution of the Covid-19 Model 

Theorem 2.1: The system (1) has a unique solution in the 

region (𝑆,  𝑉,  𝐸,  𝑄,  𝐴,  𝐼,  𝐻,  𝑅,  𝐷,  𝑊) ∈ ℝ+
10 

Proof: We write  the right-hand side of Model (1) as  
𝑓1 = 𝑃 − 𝛺𝑆 − 𝐾1𝑆 + 𝜈2𝑉
𝑓2 = 𝜈1𝑆 − 𝑒𝛺𝑉 − 𝐾2𝑉

𝑓3 = 𝛺(𝑆 + 𝑒𝑉) − 𝐾3𝐸
𝑓4 = 𝜏1𝐸 − 𝐾4𝑄
𝑓5 = 𝜃1𝐸 − 𝐾5𝐴
𝑓6 = 𝜃2𝐴 − 𝐾6𝐼
𝑓7 = 𝜃3𝑄 + 𝜏2𝐼 − 𝐾7𝐻
𝑓8 = 𝛼1𝐴 + 𝛼2𝐼 + 𝛼3𝐻 − 𝜇𝑅
𝑓9 = 𝑙1𝐴 + 𝑙2𝐼 + 𝑙3𝐻 − 𝜙𝐷
𝑓10 = 𝛱𝐼 + 𝛱𝜗𝐻 − 𝜀𝑊 }

 
 
 
 
 

 
 
 
 
 

  (8) 

 

Then the following are obtained 

|
𝜕𝑓1

𝜕𝑆
| = |−𝛺 − 𝐾1| ≤ ∞,  |

𝜕𝑓1

𝜕𝑉
| = |−𝜈2| ≤ ∞,  |

𝜕𝑓1

𝜕𝐴
| = |−

𝛽𝜂1𝑆

𝜒1𝐷+1
| ≤ ∞,  |

𝜕𝑓1

𝜕𝐻
| = |−

𝛽𝜂2𝑆

𝜒1𝐷+1
| ≤ ∞,  |

𝜕𝑓1

𝜕𝑊
| = |−

𝛽𝜂3𝑆

𝜒1𝐷+1
| ≤

∞,  |
𝜕𝑓1

𝜕𝐼
| = |−

𝛽𝑆

𝜒1𝐷+1
| ≤ ∞,   |

𝜕𝑓1

𝜕𝐸
| =   |

𝜕𝑓1

𝜕𝑄
| =   |

𝜕𝑓1

𝜕𝑅
| =   |

𝜕𝑓1

𝜕𝐷
| =≤ 0,  

 

|
𝜕𝑓2
𝜕𝑆
| = |𝜈1| ≤ ∞,  |

𝜕𝑓2
𝜕𝑉
| = |−𝑒𝛺 − 𝐾2| ≤ ∞, |

𝜕𝑓2
𝜕𝐴
| = |−

𝛽𝜂1𝑒𝑉

𝜒1𝐷 + 1
| ≤ ∞,   |

𝜕𝑓2
𝜕𝐻

| = |−
𝛽𝜂2𝑒𝑉

𝜒1𝐷 + 1
| ≤ ∞,   |

𝜕𝑓2
𝜕𝑊

| = |−
𝛽𝜂3𝑒𝑉

𝜒1𝐷 + 1
|

≤ ∞,  |
𝜕𝑓2
𝜕𝐼
| = |−

𝛽𝑒𝑉

𝜒1𝐷 + 1
| ≤ ∞,   |

𝜕𝑓2
𝜕𝐸
| =  |

𝜕𝑓2
𝜕𝑄
| =  |

𝜕𝑓2
𝜕𝑅
| =   |

𝜕𝑓2
𝜕𝐷
| = 0 ≤ ∞, 

 

|
𝜕𝑓3
𝜕𝑆
| = |𝛺| ≤ ∞,  |

𝜕𝑓3
𝜕𝑉
| = |𝑒𝛺| ≤ ∞,  |

𝜕𝑓3
𝜕𝐴
| = |

𝛽𝜂1(𝑆 + 𝑒𝑉)

𝜒1𝐷 + 1
| ≤ ∞,  |

𝜕𝑓3
𝜕𝐻

| = |
𝛽𝜂2(𝑆 + 𝑒𝑉)

𝜒1𝐷 + 1
| ≤ ∞,  |

𝜕𝑓3
𝜕𝑊

| = |
𝛽𝜂3(𝑆 + 𝑒𝑉)

𝜒1𝐷 + 1
|

≤ ∞,  |
𝜕𝑓3
𝜕𝐼
| = |−

𝛽(𝑆 + 𝑒𝑉)

𝜒1𝐷 + 1
| ≤ ∞,  |

𝜕𝑓3
𝜕𝐸
| = |−𝐾3| ≤ ∞,   |

𝜕𝑓3
𝜕𝑄
| =  |

𝜕𝑓3
𝜕𝑅
| =   |

𝜕𝑓3
𝜕𝐷
| = 0 ≤ ∞, 

 

|
𝜕𝑓4
𝜕𝑆
| = |

𝜕𝑓4
𝜕𝑉
| =   |

𝜕𝑓4
𝜕𝐴
| = |

𝜕𝑓4
𝜕𝐼
| = |

𝜕𝑓4
𝜕𝐻
| =   |

𝜕𝑓4
𝜕𝑅
| =   |

𝜕𝑓4
𝜕𝐷
| = |

𝜕𝑓4
𝜕𝑊

| = 0 ≤ ∞,  |
𝜕𝑓4
𝜕𝐸
| = |𝜏1| ≤ ∞,   |

𝜕𝑓4
𝜕𝑄
| = |−𝐾4| ≤ ∞, 

 

|
𝜕𝑓5
𝜕𝑆
| = |

𝜕𝑓5
𝜕𝑉
| =   |

𝜕𝑓5
𝜕𝑄
| = |

𝜕𝑓5
𝜕𝐼
| = |

𝜕𝑓5
𝜕𝐻

| =   |
𝜕𝑓5
𝜕𝑅
| =  |

𝜕𝑓5
𝜕𝐷
| = |

𝜕𝑓5
𝜕𝑊

| = 0 ≤ ∞,  |
𝜕𝑓5
𝜕𝐸
| = |𝜃1| ≤ ∞,   |

𝜕𝑓5
𝜕𝐴
| = |−𝐾5| ≤ ∞, 

 

|
𝜕𝑓6
𝜕𝑆
| = |

𝜕𝑓6
𝜕𝑉
| =   |

𝜕𝑓6
𝜕𝐸
| = |

𝜕𝑓6
𝜕𝑄
| = |

𝜕𝑓6
𝜕𝐻

| =   |
𝜕𝑓6
𝜕𝑅
| =  |

𝜕𝑓6
𝜕𝐷
| = |

𝜕𝑓6
𝜕𝑊

| = 0 ≤ ∞,  |
𝜕𝑓6
𝜕𝐴
| = |𝜃1| ≤ ∞,   |

𝜕𝑓6
𝜕𝐼
| = |−𝐾6| ≤ ∞, 

 

|
𝜕𝑓7
𝜕𝑆
| = |

𝜕𝑓7
𝜕𝑉
| =   |

𝜕𝑓7
𝜕𝐸
| =  |

𝜕𝑓7
𝜕𝐴
| = |

𝜕𝑓7
𝜕𝑅
| =   |

𝜕𝑓7
𝜕𝐷
| = |

𝜕𝑓7
𝜕𝑊

| = 0 ≤ ∞, |
𝜕𝑓7
𝜕𝑄
| = |𝜃3| ≤ ∞  |

𝜕𝑓7
𝜕𝐼
| = |𝜏2| ≤ ∞,  |

𝜕𝑓7
𝜕𝐻

| = |−𝐾7|

≤ ∞, 
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|
𝜕𝑓8
𝜕𝑆
| = |

𝜕𝑓8
𝜕𝑉
| =  |

𝜕𝑓8
𝜕𝐸
| =  |

𝜕𝑓8
𝜕𝑄
| =   |

𝜕𝑓8
𝜕𝐷
| = |

𝜕𝑓8
𝜕𝑊

| = 0 ≤ ∞,  |
𝜕𝑓8
𝜕𝐴
| = |𝛼1| ≤ ∞  |

𝜕𝑓8
𝜕𝐼
| = |𝛼2| ≤ ∞,  |

𝜕𝑓8
𝜕𝐻

| = |𝛼3|

≤ ∞.   |
𝜕𝑓8
𝜕𝑅
| = |−𝜇| ≤ ∞, 

 

|
𝜕𝑓9
𝜕𝑆
| = |

𝜕𝑓9
𝜕𝑉
| =  |

𝜕𝑓9
𝜕𝐸
| =   |

𝜕𝑓9
𝜕𝑄
| =   |

𝜕𝑓9
𝜕𝑅
| = |

𝜕𝑓9
𝜕𝑊

| = 0 ≤ ∞,  |
𝜕𝑓9
𝜕𝐴
| = |𝑙1| ≤ ∞  |

𝜕𝑓9
𝜕𝐼
| = |𝑙2| ≤ ∞,  |

𝜕𝑓9
𝜕𝐻

| = |𝑙3| ≤ ∞,   |
𝜕𝑓9
𝜕𝐷
|

= |−𝜙| ≤ ∞, 
 

|
𝜕𝑓8

𝜕𝑆
| = |

𝜕𝑓10

𝜕𝑉
| =   |

𝜕𝑓10

𝜕𝐸
| =   |

𝜕𝑓10

𝜕𝐴
| =   |

𝜕𝑓10

𝜕𝑄
| =   |

𝜕𝑓10

𝜕𝐷
| = |

𝜕𝑓10

𝜕𝑅
| = 0 ≤ ∞,  |

𝜕𝑓10

𝜕𝐼
| = |𝛱| ≤ ∞,  |

𝜕𝑓10

𝜕𝐻
| = |𝛱𝜗| ≤ ∞, and 

  |
𝜕𝑓10
𝜕𝑊

| = |−𝜀| ≤ ∞. 

 

Since, all the partial derivatives are continuous and bounded, then by Derrick and Grossman’s theorem in Derrick and 

Grossman (1987) and Rabiu and Akinyemi (2016), the unique solution of Model (1) is established. 

 

Positivity Solution of the Covid-19 Model 

Theorem 2.2: The solution set{𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝑄(𝑡), 𝐴(𝑡), 𝐼(𝑡), 𝐻(𝑡), 𝑅(𝑡), 𝐷(𝑡),𝑊(𝑡)}  of  Model (1) is non-negative  ∀𝑡 ≥
0, provided the initial conditions are non-negative. 

Proof: It is readily seen that the first equation of Model (1) satisfies 
𝑑𝑆

𝑑𝑡
≥ −(𝛺 + 𝐾1)𝑆            (9) 

Solve (9) using the separable variable techniques to obtain 

𝑆(𝑡) ≥ 𝑆(0)𝑒
−(∫ 𝛺(𝑞)𝑑𝑞+𝐾1𝑡

𝑡

0
)
≥ 0     ∀𝑡 ≥ 0. 

Similarly, the second equation of system (1) gives 
𝑑𝑉

𝑑𝑡
≥ −(𝑒𝛺 + 𝐾2)𝑉             (10) 

 

The solution of ( 10) gives 

𝑉(𝑡) ≥ 𝑉(0)𝑒
−(∫ 𝑒𝛺(𝑞)𝑑𝑞+𝐾2𝑡

𝑡

0
)
≥ 0     ∀𝑡 ≥ 0. 

Following a similar argument, the rest equations of system (1) yields 

𝐸(𝑡) ≥ 𝐸(0)𝑒−𝐾3𝑡 ≥ 0     ∀𝑡 ≥ 0,

𝑄(𝑡) ≥ 𝑄(0)𝑒−𝐾4𝑡 ≥ 0     ∀𝑡 ≥ 0,

𝐴(𝑡) ≥ 𝐴(0)𝑒−𝐾5𝑡 ≥ 0     ∀𝑡 ≥ 0,

𝐼(𝑡) ≥ 𝐼(0)𝑒−𝐾6𝑡 ≥ 0     ∀𝑡 ≥ 0,

𝐻(𝑡) ≥ 𝐻(0)𝑒−𝐾7𝑡 ≥ 0     ∀𝑡 ≥ 0,

𝑅(𝑡) ≥ 𝑅(0)𝑒−𝜇𝑡 ≥ 0     ∀𝑡 ≥ 0,

𝐷(𝑡) ≥ 𝐷(0)𝑒−𝜙𝑡 ≥ 0     ∀𝑡 ≥ 0,

𝑊(𝑡) ≥ 𝑊(0)𝑒−𝜀𝑡 ≥ 0     ∀𝑡 ≥ 0.}
 
 
 
 

 
 
 
 

                                    (11) 

 

Hence, the state variables are non-negative since their initial conditions  

(𝑆(0),   𝑉(0),   𝐸(0),   𝑄(0),   𝐴(0),   𝐼(0),   𝐻(0),   𝑅(0),   𝐷(0),   𝑊(0)) are not negative. Hence, we conclude the proof. 

 

Boundedness of Solution 

Theorem 3: The set 𝛩 = {(𝑆,  𝑉,  𝐸,  𝑄,  𝐴,  𝐼,  𝐻,  𝑅,  𝐷,  𝑊) ∈ ℝ+
10:  𝑁 ≤

𝑃

𝜇
;  𝐷 ≤

𝑑1𝑃

𝜙𝜇
;  𝑊  ≤

𝑃𝛱(1+𝜗)

𝜇𝜀
 }  is positively 

invariant and attractive with respect to Model (1) 

Proof: Since 𝑁(𝑡) = 𝑆(𝑡) +  𝑉(𝑡) +  𝐸(𝑡) + 𝑄(𝑡) + 𝐼(𝑡) + 𝐻(𝑡) + 𝑅(𝑡) then the rate of change of the total active population 

has been obtained by adding the first-eighth equations of the system (1) to get 
𝑑𝑁

𝑑𝑡
 = 𝑃 − 𝜇𝑁 − 𝛿1𝐴 − 𝛿2𝐼 − 𝛿3𝐻                                                                                                                  (12) 

It is readily seen that (12) becomes 
𝑑𝑁

𝑑𝑡
 ≤ 𝑃 − 𝜇𝑁                                                                                                                                              (13) 

Solve (13) by integrating factor to have 

𝑁(𝑡)  ≤
𝑃

𝜇
+ (𝑁(0) −

𝑃

𝜇
) 𝑒−𝜇𝑡     ∀𝑡 ≥ 0.                                                                                                       (14) 

Therefore as 𝑡 → ∞,  0 ≤ 𝑁(𝑡) ≤
𝑃

𝜇
. 

It is readily seen that 𝐴(𝑡) ≤
𝑃

𝜇
,  𝐼(𝑡) ≤

𝑃

𝜇
,  and 𝐻(𝑡) ≤

𝑃

𝜇
,  since 0 ≤ 𝑁(𝑡) ≤

𝑃

𝜇
. Then. The ninth equation of the system (1) 

gives 
𝑑𝐷

𝑑𝑡
 ≤

𝑑1𝑃

𝜇
− 𝜙𝐷                                                                                                                                           (15) 

Where 𝑑1 = 𝛿1 + 𝛿2 + 𝛿3 + 3𝜇 

The solution of (15) yields 

𝐷(𝑡)  ≤
𝑑1𝑃

𝜙𝜇
+ (𝐷(0) −

𝑑1𝑃

𝜙𝜇
) 𝑒−𝜙𝑡     ∀𝑡 ≥ 0.                                                                                                 (16) 
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As 𝑡 → ∞,  0 ≤ 𝐷(𝑡) ≤
𝑑1𝑃

𝜙𝜇
. 

Similarly, the solution of the last equation of system (1) is obtained as 

𝑊(𝑡)  ≤
𝑃𝛱(1+𝜗)

𝜇𝜀
+ (𝑊(0) −

𝑃𝛱(1+𝜗)

𝜇𝜀
) 𝑒−𝜀𝑡     ∀𝑡 ≥ 0.                                                                           (17) 

Hence, as 𝑡 → ∞,  0 ≤ 𝑊(𝑡)  ≤
𝑃𝛱(1+𝜗)

𝜇𝜀
. Therefore,𝛩 is positively invariant since 𝑁,  𝐷 and 𝑊 are bounded. 

 

Application of NSFD2 

The continuous dynamical model (1) is converted to its discrete form based on the rules and steps outlined in Section 2. Thus 

(1) becomes 
𝑆𝑛+1−𝑆𝑛

𝑍1
=

−𝛽(𝐴𝑛𝜂1+𝐻𝑛𝜂2+𝑊𝑛𝜂3+𝐼𝑛)𝑆𝑛+1

𝜒1𝐷𝑛+1
− 𝐾1𝑆𝑛+1 + 𝑉𝑛𝜈2 + 𝑃                                                               (18) 

𝑉𝑛+1−𝑉𝑛

𝑍2
=

−𝛽𝑒(𝐴𝑛𝜂1+𝐻𝑛𝜂2+𝑊𝑛𝜂3+𝐼𝑛)𝑉𝑛+1

𝜒1𝐷𝑛+1
− 𝐾2𝑉𝑛+1 + 𝑆𝑛+1𝜈1                                                                   (19) 

𝐸𝑛+1−𝐸𝑛

𝑍3
=

−𝛽(𝑆𝑛+1+𝑒𝑉𝑛+1)(𝐴𝑛𝜂1+𝐻𝑛𝜂2+𝑊𝑛𝜂3+𝐼𝑛)

𝜒1𝐷𝑛+1
− 𝐾3𝐸𝑛+1                                                                

 (20) 
𝑄𝑛+1−𝑄𝑛

𝑍4
= 𝜏1𝐸𝑛+1 − 𝐾4𝑄𝑛+1                                                                                                                          (21) 

𝐴𝑛+1−𝐴𝑛

𝑍5
= 𝜃1𝐸𝑛+1 − 𝐾5𝐴𝑛+1                                                                                                                          (22) 

𝐼𝑛+1−1𝑛

𝑍6
= 𝜃2𝐴𝑛+1 − 𝐾6𝐼𝑛+1                 (23) 

𝐻𝑛+1−𝐻𝑛

𝑍7
= 𝜃3𝑄𝑛+1 + 𝜏2𝐼𝑛+1 − 𝐾7𝐻𝑛+1                                                                                                           (24) 

𝑅𝑛+1−𝑅𝑛

𝑍8
= 𝛼1𝐴𝑛+1 + 𝛼2𝐼𝑛+1 + 𝛼3𝐻𝑛+1 − 𝜇𝑅𝑛+1                                                                                                (25) 

𝐷𝑛+1−𝐷𝑛

𝑍9
= 𝑙1𝐴𝑛+1 + 𝑙2𝐼𝑛+1 + 𝑙3𝐻𝑛+1 − 𝜙𝐷𝑛+1                                                                                                    (26) 

𝑊𝑛+1−𝑊𝑛

𝑍10
= 𝛱𝐼𝑛+1 + 𝛱𝜗𝐻𝑛+1 − 𝜀𝑊𝑛+1                                                                                                           (27) 

Where, 

𝑍8 =
𝑒𝜇ℎ−1

𝜇
,   𝑍9 =

𝑒𝜙ℎ−1

𝜙
,    𝑍10 =

𝑒𝜀ℎ−1

𝜀
,   𝑎𝑛𝑑 𝑍𝑖 =

𝑒𝐾𝑖ℎ−1

𝐾𝑖
   ∀𝑖 = 1,⋯ ,7.                                                (28) 

Make 𝑆𝑛+1, 𝑉𝑛+1, 𝐸𝑛+1, 𝑄𝑛+1, 𝐴𝑛+1, 𝐼𝑛+1, 𝐻𝑛+1, 𝑅𝑛+1, 𝐷𝑛+1,and𝑊𝑛+1 subject formula from (18)-(27) respectively to have 

𝑆𝑛+1 =
((𝑉𝑛𝜈2+𝑃)𝑍1+𝑆𝑛)(𝜒1𝐷𝑛+1)

(𝛹𝑛+(𝜒1𝐷𝑛+1))𝑍1+𝜒1𝐷𝑛+1
                                                                                                          (29) 

𝑉𝑛+1 =
(𝑆𝑛+1𝑍2𝜈2+𝑉𝑛)(𝜒1𝐷𝑛+1)

(𝑒𝛹𝑛+𝐾2(𝜒1𝐷𝑛+1))𝑍2+𝜒1𝐷𝑛+1
                                                                                                   (30) 

𝐸𝑛+1 =
𝛹𝑛(𝑆𝑛+1+𝑒𝑉𝑛+1)𝑍3+𝐸𝑛(𝜒1𝐷𝑛+1)

(𝐾3𝑍3+1)(𝜒1𝐷𝑛+1)
                                                                                                   (31) 

𝑄𝑛+1 =
𝑄𝑛+𝐸𝑛+1𝑍4𝜏1

𝐾4𝑍4+1
                                                                                                                                    (32) 

𝐴𝑛+1 =
𝐴𝑛+𝐸𝑛+1𝑍5𝜃1

𝐾5𝑍5+1
                                                                                                                                    (33) 

𝐼𝑛+1 =
𝐼𝑛+𝐴𝑛+1𝑍6𝜃2

𝐾6𝑍6+1
                                                                                                                                     (34) 

𝐻𝑛+1 =
𝐻𝑛+𝐼𝑛+1𝑍7𝜏2+𝑄𝑛+1𝑍7𝜃3

𝐾7𝑍7+1
                                                                                                                   (35) 

𝑅𝑛+1 =
𝑅𝑛+𝐴𝑛+1𝑍8𝛼1+𝐼𝑛+1𝑍8𝛼2+𝐻𝑛+1𝑍8𝛼2

𝜇𝑍8+1
                                                                                                  (36) 

𝐷𝑛+1 =
𝐷𝑛+𝐴𝑛+1𝑍9𝑙1+𝐼𝑛+1𝑍9𝑙2+𝐻𝑛+1𝑍9𝑙3

𝜙𝑍9+1
                                                                                                     (37) 

𝑊𝑛+1 =
𝑊𝑛+𝐼𝑛+1𝑍10𝛱+𝐻𝑛+1𝑍10𝛱𝜗

𝜀𝑍10+1
                                                                                                               (38) 

Where 

𝛹𝑛 = 𝛽(𝐴𝑛𝜂1 +𝐻𝑛𝜂2 +𝑊𝑛𝜂3 + 𝐼𝑛)  
 

RESULTS AND DISCUSSION 

We simulated the COVID-19 model (29)-(38) for 𝑇 = 150 

days while using the initial conditions mentioned above by 

setting the stepsize ℎ = 0.01  for NSFD-II. To validate the 

reliability of  NSFD-II, the result obtained by NSFD-II was 

compared with the Runge-Kutta-Fehlberg (RKF45) method 

built-in Maple 18 software. 

The results generated by NSFD-II and RKF45 methods for the 

population of susceptible individuals are displayed in Figure 

1. Both methods show a gradual decrease in the population of 

susceptible humans for about 10 days and become steady for 

the remaining simulation period. 
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Figure 1: Graphical Comparison for ( )S t  

The population profile for the vaccinated humans obtained by 

NSFD-II and RKF45 methods is shown in Figure 2. The 

figure also shows that both methods agree that the population 

of vaccinated humans gradually increases first, before 

becoming steady. 

 

 

Figure 2: Graphical Comparison for ( )V t  

Figures 3-4 depict the population profile for the exposed and quarantined humans respectively. The figures show that both 

methods describe that the population of the exposed and quarantined decreases to zero. 
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Figure 3: Graphical Comparison for ( )E t  

 

Figure 4: Graphical Comparison for ( )Q t  

Figures 5-6 present the population profile for the 

asymptomatic and symptomatic humans respectively. Both 

figures show that NSFD-II and RKF45 methods convey that 

the population of the individuals in the A and I compartments 

gradually increases first before declining to zero.
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Figure 5: Graphical Comparison for ( )A t  

 

 

Figure 6: Graphical Comparison for ( )I t  

A graphical comparison between the results obtained by 

NSFD-II and RKF45 for the population of hospitalized 

humans is displayed in Figure 7. It is observed from Figure 7 

that first there was a drop in the number of hospitalized 

humans, shortly followed by an increase before decreasing to 

zero. 
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Figure 7: Graphical Comparison for ( )H t  

The population profile for the recovered individuals generated 

by NSFD-II and RKF45 is shown in Figure 8. The figure 

shows that the number of those who recovered from COVID-

19 infection increases for about 60 days and later begins to 

decrease. 

 

Figure 8: Graphical Comparison for ( )R t  

The population and concentration profiles for COVID-19 deceased individuals and COVID-19 viruses in the environment are 

depicted in Figures 9 -10 respectively. Figures 9 -10 show that 𝐷(𝑡) and 𝑊(𝑡) decreases to zero. 
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Figure 9: Graphical Comparison for 𝐷(𝑡) 

 
Figure 10: Graphical Comparison for 𝑊(𝑡) 

 

Finally, Figures 1-10 show that the result obtained by NSFD-

II agrees excellently well with those of RKF45 despite that 

the default RKF45 built-in Maple 18 software makes use of 

adaptive step size to ensure that the absolute and relative 

errors for each iteration are not above 1𝑒 − 7 and   1𝑒 − 6. 

Thus, this makes RKF45 more cumbersome and difficult to 

implement when compared with NSFD-II. 

 

CONCLUSION 

An application of NSFD-II to solve a deterministic 

mathematical model for the transmission dynamics of 

COVID-19 in the presence of fear of infection was considered 

in this study. This model was shown to possess a unique 

solution that is positive and bounded. The solution obtained 

by NSFD-II was compared graphically with those obtained by 

the default Runge-Kutta Fehlberg (RKF45) built-in Maple 18 

software. The comparison shows that both methods are in 

excellent agreement even though the RKF45 is more 

cumbersome and not easy to implement when compared with 

NSFD-II. Thus, the use NSFD-II method is reliable and 

efficient and should be applied to solve other nonlinear real 

phenomena. 
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