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ABSTRACT

The higher level of human activities has resulted in several forms of anthropogenic activities with diverse
adverse effects on human and environmental sustainability. The traditional means of handling xenobiotics
pollutants are no longer sustainable due to the high cost involved, complex procedures and demanding
regulatory requirements. Bioremediation using fungi (mycoremediation) is now recognized as an efficient and
workable biotechnological tool that effectively employ fungal enzymes via the process of absorption and
mineralization to get rid of contaminants. Cytochrome P450s (CYPs) are diverse and unique gene families
with varying degree of complexities in the eukaryotes. CYPs mainly utilize molecular oxygen to modify
substrate conformation, thereby establishing a mechanism of action for achieving their important physiological
and ecological processes. Xylariaceae belongs to the main and highly diversified families of filamentous
Ascomycota; it plays an important role as saprotrophs of wood, soil, litter and dung. Genome-wide annotation
analysis was carried out to explore the possibility of utilizing the CYPs of Xylaria sp. for achieving
mycoremediation. The evolutionary analysis has divided the 214 Xylaria CYPs into fifteen (15) clades. The
CYPs were categorized into forty-seven (47 clans) and eighty-six (86) families. MEME suite identified ten
(10) conserved motifs. The gene structural investigation reveals high dynamic intron-exon organization. Most
of the CYPs have been predicted to be localized in the endoplasmic reticulum. This study therefore calls for
deeper exploration of the Xylaria sp and its high potential for application in bioremediation for the degradation

of environmental contaminants.
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INTRODUCTION

Humankind is involved in various activities for survival,
which consequently led to the liberation of different pollutants
into the environment. Li et al. (2019) reported that pollutants
from human activities constitute a major risk to the health of
human and environmental sustainability. The agelong
solution of eliminating xenobiotic pollutants includes the use
of ultraviolet decomposition, incineration at high
temperature, pit disposal and chemical degradation (Bhandari
et al., 2021). These techniques are gradually phasing out due
to high-cost implications, complex procedures, burdensome
regulatory requirements, inadequate provision for space and
secondary pollutants arising from the processes (Bhandari et
al., 2021). Hence, there is an urgent need for environmentally
friendly remediation techniques that could be applied for
effective bioremediation of these contaminants mentioned
above (Kevinet al., 2019). Singh (2006) stated that fungi
because of their ability to actively decompose various
chemicals have been recognized as a potential workable
biotechnological tool that could be applied in the
bioremediation of heavily polluted environments.

Similarly, Buddollaet al. (2014) identified fungi as an
essential organism for bioremediation due to their ability to
exploit significantly minimal living conditions by producing
enzymes capable of undertaking chemically difficult

reactions. It has been discovered that fungi could effectively
remove toxic and intractable products like waste from
pharmaceuticals, polyaromatic and chlorinated hydrocarbons,
pesticides and mineral oils from the soil have also been
reported by Jasu et al. (2021) where they named cytochrome
P450 monooxygenases as one of the intracellular enzymes to
perform  such task. Bioremediation using  fungi
(mycoremediation) is a method that utilizes enzymes in live
fungi to clear up contaminants through mineralization or
absorption (Kevin et al., 2019). Similarly, shiyuki et al.
(2013) reported using microorganisms in the activated sludge
process as bioremediation techniques for industrial extract
chemicals and the polychlorinated forms of dibenzo-p-dioxin
and dibenzofuran (PCDD &PCDF).

Cytochrome P450s (CYPs) are diverse and unique gene
families with varying degree of complexities in the
eukaryotes. CYPs mainly utilize molecular oxygen to modify
substrate conformation, thereby establishing a mechanism of
action for achieving their important physiological,
toxicological and ecological processes (Nelson et al., 2013).
The Cytochrome P450 enzymes (P450s) are largely
disseminated across organisms and perform essential roles in
the biosynthesis (of steroids and natural products),
xenobiotics degradation, and metabolism drugs. P450s are
generally regarded as the most adaptable natural biocatalysts
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because of the wide range of substrate configuration and the
kinds of reactions they catalyze (Li et al., 2010). Generally,
ascomycetes inhabit a wider niche in soil than their
basidiomycetes counterpart, yet they have not received
attention for bioremediation studies when compared with
basidiomycetes that have been well-studied (Li et al., 2019).
Xylariaceae belongs to the major and highly diversified
families of filamentous Ascomycota. According to U’Ren et
al., (2016), Xylariaceae are active saprotrophs of litter, dung,
wood, soil, and plant pathogens in a natural and agricultural
system, as other facultative fungal organisims (Dauda et al.,
2018; Palnam et al., 2019; Zarafi and Dauda, 2019)
Xylariaceous are progressively been recognized as a chief
source of new products of metabolism for utilization in
biofuel, environment, agriculture, medicine and industrial
applications (Wu et al., 2017). Li et al., (2019) reported that
Xylaria sp. BNL1 can degrade carbaryl in contaminated soil
with a degradation rate of 59.0% in fifteen (15) days; this
implies that Xylaria sp. BNL1 can survive various attacks
from indigenous microorganisms. The role played by P450s
in economically important fungi such as Aspergillus spp.,
(Kelly et al., 2009; Dauda et al., 2022a Alternaria spp.,
(Dauda et al., 2022b) Candida tropicalis (Dauda et al., 2022c)
, Trichoderma spp., (Chadha et al., 2018) have been well
elucidated. Considering the diverse potential
biotechnological applications of Xylaria and the impact of
cytochrome P450 in the biological, physiological and
biochemical activities of fungi this study intends to perform
an evolutionary relationship and genome-wide analysis of
cytochrome P50 genes in Xylaria sp. FL1777 to open room
for commercial exploitation of these proteins, especially in
bioremediation.

MATERIALS AND METHODS

Sequence Retrieval and Alignment

Protein, genomic and coding sequences of cytochrome P450
of Xylaria sp FL1777 were downloaded from the Joint
Genome Institute (JGI) fungal genome database-MycoCosm
(mycocosm.jgi.doe.gov/pages/search-for-genes.jsf). The
protein sequences were aligned using the MUSCLE algorithm
with all parameters set at default (gap open: -2.9, gap
extend:0.00, hydrophobicity multiplier:1.20, maximum
iterations:16, clustering method: UPGMA and min diag
lenth:24).

Structural feature analysis of CYP protein sequences:
The conserved domain of cytochrome P450 in Xylaria sp.
FL1777 were analyzed using the conserved domain database
(CDD). The proteins sequenced were analysed for the
presence of the CYP family signature domains viz; heme-
binding and oxygen-binding motifs. The sequences used were
only those with the two CYP signature domains (Matowane
et al., 2018).

Evolutionary relationships of taxa

The evolutionary relationship was analysed using 214 amino
acid sequences. The pairwise deletion was used to clear off all
ambiguous positions on each sequence. The Phylogenetic tree
was conducted in MEGA X (Kumar et al., 2018) using the
Neighbour-Joining method (Olszewska-Tomczyk et al.,
2016) and as described by Dauda et al., (2021). The optimal
tree with the sum of branch length = 110.19813185 is shown.
Poisson correction method was used to compute the
evolutionary distances (Tomczyk et al., 2016). The final
dataset comprises a total of 2078 positions.
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Identification of clans, families and putative functions
The putative CYP names for all P450 genes in Xylaria sp
FL1777 were assigned by the logic in the FCDP pipeline
(http://p450.riceblast.snu.ac.kr) following the nomenclature
format as proposed by Nelson (2006), two CYPs with more
than 40% sequence similarity belong to the same family.
Therefore, each Xylaria CYPs was blasted against all known
fungal cytochrome P450 available at “Fungal cytochrome
P450 database” where blast result with a best hit (greater than
40% sequence similarity) to the query sequence is assigned to
that family. Clans were identified by comparing families
obtained against clans and families in the fungal cytochrome
P450 database.

Identification of Motif and Analysis of Gene Structure:
The conserved motifs of cytochrome P450 gene of Xylaria sp.
FL1777 were identified by an online server, Multiple
Expectation Maximization for Motif Elicitation (MEME)
Suite (http://meme-suite.org/tools/meme) using the genomic
sequence (Bailey etal., 2009). A set of 214 protein sequences
between 95 and 1153 in length with an average length of
491.6 have been submitted. The number of motif counts was
set at 10, the minimum width of the motif was set at 6 amino
acids, while the maximum was 100 amino acids. Similarly,
structures of both intron and exon of cytochrome P450 gene
in Xylaria sp. FL1777 were analysed using an online server
called Gene Structure Display Server (GSDS 2.0)
(http://gsds.gao-lab.org/) (Bo et al.,2015), the positions and
numbers of both introns and exons were graphically displayed
by the server after loading the coding and genomic FASTA
sequences of Xylaria sp. FL1777.

Sub-cellular localization analysis:

The localization of the Xylaria CYPs was predicted using an
online web server for predicting the subcellular localization
of eukaryotic proteins, including those with multiple sites in
a different organism known as Euk-mPLoc 2.0 (Cheng et al.,
2018), which is accessible at
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc/. The protein
FASTA sequence of the organism was used.

Identification of Xylaria CYPs Involved in secondary
metabolism-related gene clusters

Secondary metabolism-related gene clusters of Xylaria sp.
FL1777 were identified from the joint genome institute
mycoCosm using the annotations on the homepage and a
search for all cluster types, namely; dimethylallyltryptophan
(DMAT), PKS/NRPS (HYBRID), Non-ribosomal Peptide
Synthase (NRPS), NRPS-like, polyketide synthase (PKS),
PKS-like and terpene cyclase (TC).

RESULTS AND DISCUSSION

Phylogenetic Analysis:

The result obtained from the phylogenetic analysis shown in
figure 1 revealed that 214 protein sequences were divided into
thirteen (13) clades. About half of these proteins (95) were
clustered in four clades (I, VIII, IX, and XI), having 24, 24,
18 and 31 proteins, respectively. In contrast, clades with the
least cluster of proteins were 1V, VI, and X with 3, 2 and 3
proteins respectively. Clades Il, VV and XIII were having
relatively equal distribution of proteins consisting of 14, 15,
and 14 proteins respectively.
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Figure 1: Evolutionary relationship of Cytochrome P450 proteins in Xylaria Sp. FL1777. Neighbor-Joining method was used
to infer the evolutionary history using MEGA-X software. Thirteen (13) clades have been labelled (1-XI11) and separated by

colour demarcation.
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Identification of Clan and Family

Moreover, the 214 genes obtained from Joint Genome
Institute Mycocosm used in this study were putatively
distributed into 47 clans and 86 families, as shown in Table
1. Fifty-eight (58) CYPs have no matches in the fungal
cytochrome P50 database. CYP531 clan has the highest
number of families (8), consisting of families CYP531,
CYP532, CYP536, CYP629, CYP631, CYP675, CYP5080
and CYP5104. The entire clan has 11 proteins that are
involved in xenobiotic metabolism. Clan CYP58 is the
second-highest in family size consisting of six (6) families
which are; CYP58, CYP682, CYP5104, CYP5112, CYP5094
and CYP551. The clan has the highest number of proteins (12)
which were participate in xenobiotic and secondary
metabolism. Clan CYP54 has four families with 11 proteins
that are involved in secondary metabolism. Nineteen clans are
orphans with only a single protein each. Twenty-one (21)
clans have no corresponding putative function in the fungal
cytochrome P450 database. Generally, five (5) clans are
involved in primary metabolism, seven (7) in secondary
metabolism while thirteen (13) in xenobiotic metabolism.
Spread of Conserved Motifs in Xylaria sp. FL1777
Furthermore, the spreading of the ten conserved motifs across
the 214 cytochrome P450 genes was established during this
study, as shown in Figure 2. The study revealed that thirty-six
(36) genes have all the ten conserved motifs. The result also
revealed that Thirteen (13) CYPs have only one conserved
motif each. Motifs 1(FXXGXXXCXG), motif 2 (EXXR),
motif 3 (PERW), motif 5 (LXXPXXXLXE) and motif 7
(HXGXRXP) appeared the most, occurring at 154, 154, 126,
128 and 123 sites, respectively. On the other hand, motif 10
(HXXXRXFSXXR) is the widest, while motif 3 is the
shortest. The other motifs (2,4.5,6,7 and 8) have relatively
equal width. Similarly, motif 6 was the least conserved as it
appeared at 48 sites only.

Exon-intron Analysis

The result of exon-intron structures of cytochrome P450 gene
in Xylaria sp. FL1777 was shown in figure 3. All the genes
have a minimum of one and a maximum of nine introns except
for twelve (12) genes (XYFL 801046, 789729,787010,
783228, 781286, 761684, 643781, 164544, 350436, 324633,
437355, 783920 which have none. XYFL437355 exists as the
longest single exon with about 2,500bp. XYFL799538 has the
highest number of introns (9), while twelve others have eight
introns each in their sequences. All the genes have no
untranslated regions (UTR).

Sub-cellular localization of CYPs of Xylaria sp FL1777
The Xylaria CYPs were established in this study (Table 2) to
be majorly localised in the endoplasmic reticulum (160 out of
the 214 CYPs), representing 74.77% 49 CYPs representing
22.9% were found to be localized in the cytoplasm. Three
genes were found each in the plasma membrane, chloroplast,
peroxisome, nucleus and microsome. The extracellular
compartments and mitochondrion were each shown to contain
10 CYPs. Twenty-one (21) CYPs are localized in at least two
organelles with XYFL 763710, 413182 and 382656 occurring
in 6, 5 and 4 locations respectively. The three CYPs
mentioned above were all present in mitochondria, cytoplasm,
and plasma membrane.

Secondary metabolism-related gene clusters

The annotations on the mycoCosm homepage of joint genome
institute for Xylaria sp. FL1777 revealed 64 genes of the 214
(which represent 29.9%) cytochrome P450 are linked to
secondary metabolism-related gene clusters (figure 4),
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specifically HYBRID (3), NRPS (6), NRPS-like (12), PKS
(30), PKS-like (3) and TC (10).

Discussion

The phylogenetic analysis performed during this study
revealed an unequal distribution of cytochrome P450 cluster
sizes in Xylaria sp. FL1777 and is in line with Chadha et al.
(2018), who stated that there are high expansions and
contractions of certain CYP families in the course of
evolution. Expansion of cytochrome P450 across different
clades in Xylaria sp FL1777 could be very instrumental in
their survival in respective habitats. The observed numerous
branches in the tree imply their highly evolved divergence
(Chen et al., 2014). The high evolutionary diversity observed
in the Xylaria CYPs may not only be due to significant
sequence variation but also incredible functional
diversification as earlier reported in a similar study by Sezutsu
et al. (2013). Most of the cytochrome P450 genes
in Xylaria sp FL1777 have demonstrated a close relationship
in phylogeny, hence inferring a common ancestral lineage
which agrees with the earlier report of Chen et al. (2014) on
fungal cytochrome  P450. The observed variation
in Xylaria cytochrome P450 might be linked to gene
duplication; more so, the resemblance in protein sequence
identity of cytochromes P450 in Xylaria as seen in clustering
of about half of the genes in just four clades is an indication
of recent duplication in that specie. This also agrees with the
findings of Chen et al., (2014).

In Xylaria sp. FL1777, clan CYP52 comprises four families
(CYP 52, CYP538, CYP539 and CYP 655) with five (5)
proteins. Werner et al., (2017) reported that this clan is known
to catalyze alpha-omega-dicarboxylic acids from alkanes and
fatty acids. CYP 51, CYP61 and CYP505 proteins observed
in this study are linked to primary metabolism in Xylaria and
consist of only five proteins. CYP61 has been reported by
Venegas et al., (2020) to be responsible for the coding of
sterol 22 desaturase, which plays a significant role in the
advanced phase of the ergosterol pathway in metabolizing
Ergosta-5,7,24(28)-trienol to Ergostas,7,22,24(28)-tetraenol
by introducing a C-22(23) double bond in the sterol side
chain. Clan CYP51 has been reported to be involved in sterol
biosynthesis in basidiomycetes and ascomycetes and is
known as housekeeping CYP. This has made them target most
antifungal control of fungal human diseases (Shin et al.,
2018). Seven clans out of the forty-seven clans discovered in
this study in Xylaria (CYP54, CYP65, CYP526, CYP547,
CYP550, CYP559 and CYP574) have been linked to
secondary metabolism. CYP65 has been reported to catalyze
the epoxidation reaction during the synthesis of
trichothecenes biosynthesis in F. graninearumn (Gao et al.,
2020) and radicicol (Chedha et al., 2018). Similarly, thirteen
clans (CYP613, CYP548, CYP537, CYP533, CYP531,
CYP530, CYP528, CYP507, CYP504, CYP62, CYP59,
CYP53 and CYP52) comprising of 56 proteins in Xylaria
have been linked to Xenobiotic metabolism. This finding has
agreed with an earlier study by Chedha et al., (2018) where
they reported the involvement of CYP507, CYP530, CYP531,
CYP532 and CYP548 to be involved in Xenobiotic
metabolism. The Copiousness of these proteins in Xylaria
may be responsible for the exceptional ability of this fungus
to degrade a diverse range of xenobiotics, including
fungicides.

The study established Motif 2 (EXXR) in Xylaria sp. which
has arginine and glutamic acid residues to be highly
conserved. This signature motif was earlier reported by
Deng et al. (2007) to be actively involved in stabilizing the
main structure of CYP proteins. Motif 4 (AGXDTT) was
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reported to constitute the domain for binding and activation
of oxygen (Chen et al., 2014). This shows that these motifs
were widely distributed and have the strongest conservatism
in the gene sequence of Xylaria sp. The evaluation of the
conserved motifs is one way to predict the functions
of Xylaria CYP genes (Jiuet al., 2020). Many signature
motifs have been reported to be conserved in the CYP protein
of fungi (Chadha et al., 2018). Generally, the sequence
similarities are minimal looking at the characteristics
differences in the motif, however, the motifs are highly
conserved across the cytochrome P450 genes. This finding
agrees with the earlier submission of Yu et al. (2014), who
reported highly conserved characteristics motif of fungal
cytochrome P450 with very low overall sequence
resemblance. The FXXGXXXCXG conserved motif (also
known as CXG) is reported to have a domain that binds heme
which contains a consistent cysteine residue that binds to the
iron in the heme. Also, it was reported by Deng et al. (2007)
and Moktali et al. (2012) that the few conserved domains in
fungal cytochrome P450 are responsible for their major
characteristics, which tallies with the conservation of
enzymatic functions and the tertiary structure.

The result of exon-intron structures of cytochrome P450 gene
in Xylaria sp. during this study revealed twelve (12) intron-
less genes (mono-exonic) hence can easily be translated. One
gene has 9 introns. The longest single exon has about 2,500bp.
All the genes have no untranslated regions (UTR). This
observed variation in the length of both introns and exons
of Xylaria CYP also agrees with the findings of
Raghavendra et al. (2012) where they reported about the
highly dynamic nature of the intron-exon structure of the
cytochrome P450 superfamily.

The localization of over 70% of Xylaria CYPsin the
endoplasmic reticulum and about 20% in the cytoplasm as
shown in this study also validates the claim by Kelly et al.
(2009) where they stated that cytochrome P450 of Eukaryotes
generally attached themselves to the endoplasmic reticulum
via its cytoplasmic surface. The functions of cytochrome
P450 in Xylaria sp. depend on these enzymes’ ability to relate
with their oxidation-reduction partners, NADPH-cytochrome
P450 reductase and cytochrome b5 in the endoplasmic
reticulum (Park et al., 2014). These interactions with redox
partners in the endoplasmic reticulum might be responsible
for the intercellular catalysis of xenobiotics and other
environmental pollutants.

Fungi are among the most prolific producers of secondary
metabolites, which are both beneficial (as antibiotics and
pharmaceuticals) and harmful (toxic and carcinogenic) to
mankind in particular and the universe in general (Keller et
al., 2005). The 29.9% of cytochrome P450 that are involved
in secondary metabolism-related gene clusters in Xylaria sp.
FL1777 shows the abundance of secondary metabolites in the
organism. Therefore, there is the need for systematic studies
that will lead to a discovery of a new pathway, intermediate
or metabolite, that can be harnessed for an improved
bioremediation application.

CONCLUSION

This study revealed the distribution of 214 protein sequences
into fifteen (15) clades, with more than half of them (125)
clustering in just four clades. The result obtained implies a
close relationship in phylogeny, hence inferring a common
ancestral lineage. Moreover, the 214 genes were putatively
distributed into 47 clans and 86 families. The majority of
these CYPs have been implicated in xenobiotic metabolism.
Furthermore, ten conserved motifs have been predicted in the
study. The signature motifs; EXXR, AGXDTT and
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FXXGXXXCXG have been linked with stabilizing CYPs
structures, binding and activation of oxygen and heme-
binding domains, respectively. The study also showed
consistency in organizations of exon-intron structures. More
s0, 97.67% of Xylaria CYPs are localized in the endoplasmic
reticulum and cytoplasm. Xylaria CYPs have not been
characterized nor classified before now; this work has laid a
foundation for further characterization and systematic studies
that will fully annotate the functions of these genes.
Therefore, there is a need to identify a gene or set of genes
that can be effectively harnessed for application in
bioremediation.
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Table 1: Identification of clans, families and putative functions of cytochrome P450 in Xylaria sp. FL1777

Dauda et al.,

FJS

S/no. Clan Families Number of entries Putative functions

1 CYP51 CYP51 1 Primary metabolism

2 CYP52 CYP52, CYP538, CYP539, CYP655 5 Xenobiotic metabolism
3 CYP53 CYP53 2 Xenobiotic metabolism
4 CYP54 CYP602, CYP649, CYP503, CYP560 11 Secondary metabolism
5 CYP 58 CYP58, CYP682, CYP5104, CYP5112, CYP5094, CYP551 12 Secondary/Xenaobiotic Metabolism
6 CYP 59 CYP59, CYP586, CYP587 7 Xenobiotic metabolism
7 CYP61 CYP61 1 Primary metabolism

8 CYP62 CYP84 2 Xenobiotic metabolism
9 CYP65 CYP65, CYP563, CYP567, 7 Secondary metabolism
10 CYP68 CYP68, CYP596 9 -

11 CYP504 CYP504 1 Xenobiotic metabolism
12 CYP505 CYP505, CYP541 3 Primary metabolism
13 CYP507 CYP527, CYP535, CYP570 6 Xenobiotic metabolism
14 CYP526 CYP526, CYP591, CYP644 5 Secondary metabolism
15 CYP528 CYP528 1 Xenobiotic metabolism
16 CYP529 CYP529, CYP543, CYP545 4 -

17 CYP530 CYP530, CYP5093 4 Xenobiotic metabolism
18 CYP531 CYP531, CYP532, CYP536, CYP629, CYP631, CYP675, CYP5080, CYP5104 11 Xenobiotic metabolism
19 CYP533 CYP620, CYP621 5 Xenobiotic metabolism
20 CYP 537 CYP537 2 Xenobiotic metabolism
21 CYP540 CYP540 2 Primary metabolism
22 CYP544 CYP544 1 -

23 CYP546 CYP5053 1 -

24 CYP547 CYP547, CYP617, CYP618, 5 Secondary metabolism
25 CYP548 CYP548 9 Xenobiotic metabolism
26 CYP549 CYP549 1 -

27 CYP550 CYP611, CYP634, CYP636, CYP660 5 Secondary metabolism
28 CYP559 CYP559, CYP623 3 Secondary metabolism
29 CYP572 CYP5109 2 -

30 CYP574 CYP5076 2 Secondary metabolism
31 CYP578 CYP578 1 -

32 CYP589 CYP5075 CYP614 6 -

33 CYP603 CYP603 1 -
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Figure 2a: predicted motifs of cytochrome P450 genes in Xylaria sp.
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Figure 2b: Sequence Logo of the ten Motifs predicted in the cytochrome P450 of Xylaria sp. The type and position of amino acids are shown on the x-axis. The y-axis shows the amino acid stacks.
The total height of the amino acid stacks specifies the sequence conservation at a given position, while the individual height of each symbol within a stack specifies the relative frequency of a
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Figure 3: exon-intron structures of cytochrome P450 genes in Xylaria sp. using GSDS. The
scale indicates the relative length and position of the exons and introns
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Legend:
Exon — Intron

Figure 3 (cont): exon-intron structures of cytochrome P450 genes in Xylaria sp. using
GSDS. The scale indicates the relative length and position of the exons and introns.
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Table 2: Sub-cellular Localization of CYPs in Xylaria sp.
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| Table 2 (contd): Sub-cellular Localization of CYPs in Xylaria sp.
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Table 2 (contd): Sub-cellular Localization of CYPs in Xylaria sp.
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Figure 4: Distribution of secondary metabolic related gene clusters in Xylaria sp. FL1777
DMAT: dimethylallyltryptophan synthase

NRPS-Non ribosomal peptide synthetase

NRPS-like- Non ribosomal peptide synthetase-like

PKS- Polyketide synthase

PKS- polyketide synthase-Like

TC-Toxin complex
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