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ABSTRACT 

Strength of numerical scheme is rated by the properties it possessed and in turn the kind of problems it can 

handle. Zero stable method can effectively handle ODEs problem. While, an A – stable method can solve stiff 

ODEs problem. Analyzing stability of block methods are been carried out using various software. This work 

aimed at using simplified Maple simulation code to critically analyze avariable step size multi-block backward 

differentiation formula for the solution stiff initial value problems of ordinary differential equations. The 

Graphical comparisons of the simulated result obtained is made using Matlab to depict the performing schemes.  
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INTRODUCTION 

A Numerical method is a differential equation involving a 

number of consecutive approximations from which it will be 

possible to compute the solutions, sequentially. Backward 

Differentiation formula (BDF) is a family of implicit method 

for the numerical integration of ordinary differential 

equations. Stiff ordinary differential equations are equations 

where certain implicit methods, in particular block backward 

differentiation formulas (BBDF), perform better, usually 

better than explicit ones (Curtiss & Hirschfelder, 1952). The 

formula undergoes different development and modifications. 

The following scholar contribute tremendously with regard to 

BDF and BBDF (Cash, 1980); (Ibrahim et al.,2007); 

(Sulaiman et al.,2013a & 2013b); (Musa & Unwala, 

2019),(Sagir & Abdullahi, 2022),( Soomro et al., 2022), 

(Nasarudin et al.,2020), (Abdullahi et al, 2022, & 2023. A 

system of stiff ordinary differential equations represent a 

couple of physical systems varying with very different times 

scales: That is they are systems having some components 

varying much more rapidly than others. Most of the methods 

stated are zero stable, A- stable or both, and displays different 

degree of accuracy of the scale error and executional time. 

 

MATERIAL AND METHODS 

In this section, we are considering Maple code for the critical analysis of the steps adopted in achieving zero and A-stable 

criteria of a 2-point multi - block super class of BBDF developed by Abdullahi et al (2023) of the form: 
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Hence, (1) is called a new multi-block super class of BBDF for integrating first order stiff IVPs with a variable mesh size 

strategy. From the proposed scheme, different stable methods can be obtain by appropriate changes in the mesh size ratio 𝑟 

 

Table 1: Variable step size ratios with the stable methods obtained 
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Maple Code for Analyzing Zero - Stability of the Methods 

Definition 1 (Zero Stability): A linear multistep method is said to be zero stable if no root of the first characteristics 

polynomial has modulus higher than 1 and that any root with modulus 1 is simple. (Sulaiman et al,2013) 

In the method (1) and if 𝑟 = 1.The constant coefficient matrix can be found as 
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Step I: 

A := Matrix([[1 - 26/15*h, 7/75 + 26/75*h], [-93/53 + 6/53*h, 1 - 30/53*h]]); 

Output :𝐴 =  

Step 2: 

B := Matrix([[-53/75, 9/5], [11/53, -51/53]]); 

 

Output B =  

 

To find the first characteristic polynomial, using the coefficients matrices, we use  

Step 3: 

LinearAlgebra[Determinant](A*t - B); 

 

Output:     (2) 

 

Step 4: subs(h = 0, 1542/1325*t^2 - 6764/3975*t^2*h - 1948/1325*t + 1248/1325*t^2*h^2 - 7124/3975*t*h + 406/1325); 

 

Output:    

 

Step 5: solve(%, t); 

 

Output:      

According to definition (1), the method (1) is zero stable.  

 

If r = 2 the constant coefficient matrix is given as 

 

Step 1: 

 

A:= Matrix([[1 - 155/67*h, 33/134 + 31/67*h], [-328/201 + 8/67*h, 1 - 40/67*h]]); 

 

Output: 

 

𝐴 =  

 

 

Step 2: 

 

B: = Matrix([[-53/268, 387/268], [11/201, -46/67]]); 

 

Output B =  

 

Step 3: 

 

LinearAlgebra[Determinant](A*t - B); 



MAPLE SIMULATION CODES FOR STA…      Abdullahi et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 7 No. 4, August, 2023, pp 113 - 121 115 

 

Output:      (3) 

 

Step 4: subs(h = 0, 6293/4489*t^2 - 29423/13467*t^2*h - 26191/17956*t + 5952/4489*t^2*h^2 - 20317/13467*t*h + 

1019/17956); 

 

Output:    

 

Step 5: solve(%, t); 

 

Output:      

 

Also according to definition (1), the method (1) is zero stable.  

 

If r =
1

2
 the constant Coefficient matrix is given as 

 

Step I: 

 

A: = Matrix([[1 - 3845/2416*h, 19/302 + 3845/2416*h/5], [-34/19 + 17/152*h, 1 - 85/152*h]]); 

 

Output: 

 

A =  

 

Step 2: 

 

B: = Matrix ([[-1431/1510, 1518/755], [27/95, -102/95]]); 

 

Output B =  

 

Step 3: 

LinearAlgebra[Determinant](A*t - B); 

 

Output:   (4) 

 

Step 4: subs(h = 0, 168/151*t^2 - 36451/22952*t^2*h - 22359/14345*t + 39219/45904*t^2*h^2 - 44145/22952*t*h + 

6399/14345); 

 

Output:    

 

Step 5: solve(%, t); 

 

Output:      

 

Also according to definition (1), the method (1) is zero stable.  
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Table 1: A Zero Stable method across different choice of r 

Step Size Ratio (𝒓) Roots of the proposed methods 

𝑟 = 1 𝑡 = 1, −0.0909090909 

𝑟 = 2 𝑡 = 1, −0.0714285714 

𝑟 =
1

2
 

𝑡 = 1 , −0.1052631579 

 

Maple Code Analyzing A - Stability Region of the Methods 

Definition 2 Stability): A linear multistep method is said to be an A-stable method if its region of stability encloses the entire 

negative half-plane. (Sulaiman et al, 2013) 

For the method (1), the using its characteristic polynomial (2), we have  

 

Step 1:  

subs(t = exp(phi*I), 1542/1325*t^2 - 6764/3975*t^2*h - 1948/1325*t + 1248/1325*t^2*h^2 - 7124/3975*t*h + 406/1325); 

Output:      

 

Step 2:    

solve(%, h);  

Output:      

Step 3: 

p := ((1691*exp(phi*I))/1872 + 137/144 + sqrt(-1470455*exp(phi*I)^2 + 11493326*exp(phi*I) + 

2031913)/1872)/exp(phi*I);  

Output:      

Step 4: 

 

q := ((1691*exp(phi*I))/1872 + 137/144 - sqrt(-1470455*exp(phi*I)^2 + 11493326*exp(phi*I) + 

2031913)/1872)/exp(phi*I); 

Output:      

 

Step 5: 

>with(plots); 

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, 

contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, 

implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, 

listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, 

polygonplot,  polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, 

shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot] 

 

Step 6: 

>complexplot(p,phi=0..2*Pi, numpoints=1000, colour=red); 
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Output:      

:  

 

Figure 1: Absolute region for the p - point  

Step 7: 

complexplot(q, phi = 0 .. 2*Pi, numpoints = 1000, colour = red); 

Output:        

 
 

Figure 2: Absolute region for the q - point 

Step 8: 

complexplot([p, q], phi = 0 .. 2*Pi, numpoints = 1000, colour = red); 

 

Output:         

 
Figure 3: A – Stability region for r = 1 in  (1) 

 

From figure (3), the definition (2) is satisfied, the method (1) is A- stable when r = 1 

Using similar procedure for method (3) and method (4) respectively, we have 

 

>with(plots); 

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, 

contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, 

implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, 

listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, 

polygonplot,  polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, 

shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot] 
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Step 6: 

>complexplot(r,phi=0..2*Pi, numpoints=1000, colour=red); 

Output:      

:  

Figure 4: Absolute region for the r - point 

 

Step 7: 

complexplot(s, phi = 0 .. 2*Pi, numpoints = 1000, colour = red); 

 

Output:        

 
Figure 5: Absolute region for the s - point 

Step 8: 

complexplot([r, s], phi = 0 .. 2*Pi, numpoints = 1000, colour = red); 

 

Output:         

 
Figure 6: A – Stability region for r = 2 in (1) 

From figure (6), the definition (2) is satisfied, the method (1) is A- stable when r = 2 

 

>with(plots); 

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, 

contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, 

implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, 

listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, 

polygonplot,  polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, 

shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot] 

 

Step 6: 

>complexplot(u,phi=0..2*Pi, numpoints=1000, colour=red); 
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Output:      

:  

Figure 7: Absolute region for the u - point 

 

 

Step 7: 

complexplot(v, phi = 0 .. 2*Pi, numpoints = 1000, colour = red); 

 

Output:        

 
Figure 8: Absolute region for the v - point 

 

Step 8: 

complexplot([u, v], phi = 0 .. 2*Pi, numpoints = 1000, colour = red); 

 

Output:         

 

Figure 9: A – Stability region for  r =
1

2
 in (1) 

From figure (9), the definition (2) is satisfied, the method (1) is A- stable when r =
1

2
  

 

Step 9:  

 

complexplot([p, q, r, s, u, v], phi = 0 .. 2*Pi, numpoints = 1000, colour = red); 
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Output:         

 

 
Figure 10: Combine plot of all the absolute stability regions in figure 3, 6 and  9. 

  

CONCLUSION 

A new 2 point multi – block super class of BDF for integrating 

system of first order stiff IVPs is considered in this work for 

a critical stability analysis. A simplified Maple algorithm is 

adopted to analyzes how to achieve zero and A – stability 

criteria, which remained necessary properties for optimal 

performance of a numerical scheme, particularly in handling 

stiff system of IVPs are studied with simplified code. The 

scheme considered in the work is variable step size, which has 

a variable𝑟in the formula that can have different step sizes 

ratios. In this work, 𝑟 = 1 ,    𝑟 = 2  &   𝑟 =  
1

2
  are adapted in 

generating the methods and all its stability criteria.  
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