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ABSTRACT 

The Lee-Carter model, developed by Lee and Carter in 1992 is one of the most influential model among others 

that is used for mortality projection. Although the model's performance has so far been examined in a variety 

of situations, its effectiveness in modeling mortality data with varying speeds of change in mortality bx across 

ages and the ability to detect trends in mortality index kt more precisely over time has not been studied. The 

method traditionally used in the Lee-Carter model shows obvious drawbacks in describing the shape of future 

mortality. The effectiveness of the Lee-Carter model to model mortality data with varying speeds of change in 

mortality bx was investigated. The model was applied to mortality data with both constant and varying speeds 

of change for female sub population. Results show that the Lee-Carter model is not good for mortality data 

with varying speeds of change.  
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INTRODUCTION 

Understanding the assumptions of future mortality and 

longevity risk is crucial for people in actuarial science and the 

government in general. The welfare and productive life 

expectancies of millions of people are increased by longevity 

breakthroughs, but these same advancements also increase the 

cost of pension systems, endangering the long-term 

creditworthiness of financial institutions owing to upsurges in 

unexpected future obligations. Additionally, public health 

expenses are impacted if unhealthy life expectancy is 

prolonged as a result of increases in mortality rates at later 

ages. Both academics and professionals have realized the 

significance and necessity of accurately studying future 

mortality in order to deal with these rapid changes and avoid 

undesirable consequences. There has been a lot of work put 

into researching and creating more accurate mathematical 

models and methods for predicting mortality. 

The need to forecast into the future and have a good 

understanding of what future mortality rates and life 

expectancy will look like in the future should be a major 

importance to researchers. Numerous methods have been 

developed recently to project mortality using stochastic 

models (McNown and Rogers, 1989; Lee and Carter, 1992; 

Alho, 1990; Currie et al., 2004; Cairns et al., 2006; Renshaw 

and Haberman, 2006). The Lee-Carter (LC) model, created by 

Lee and Carter in 1992, is one of the most often used models 

for projecting mortality rates among the several models that 

have been used to forecast mortality. The LC model has 

garnered a lot of interest and has come to be regarded as the 

benchmark for mortality modeling and projection. Even 

though the model has received a lot of criticism, it continues 

to dominate mortality forecasts.  

The LC model uses linear extrapolations of the age-specific 

death rates to project mortality. In particular, a logged matrix 

of age-specific mortality rates over time, 𝑎𝑥 and 𝑏𝑥describes 

the mortality profile and the constant improvement of 

mortality at age 𝑥 respectively, and also a time varying index 

𝑘𝑡 that captures the level of mortality generally. The projected 

of 𝑘𝑡  is used to generate forecasts using conventional time 

series approaches. One major weakness of the LC model is 

the assumption of a fixed age-component over time, i.e., the 

change of mortality over all ages is constant. The mortality of 

the industrialized countries of the world has considerably 

shown age-time interaction. Therefore, it is appropriate to 

note that these two dominant trends have impacted different 

age groups.   

The LC model continues to play a leading role in mortality 

forecasts, despite the fact that there have been many models 

employed for mortality forecasting throughout the years. The 

assumption of a fixed age component over time, however, is 

a significant issue with LC model (Lee and Miller 2001). This 

assumption of constant mortality variability over time seems 

to be unlikely and unworkable. Of course, we believe that the 

mortality trends seen in various countries over time show a 

significant age-time interaction, with mortality affecting 

different age groups at different times. Horiuchi and Wilmoth 

(1995) discovered that mortality reduces more quickly as 

people get older than at younger ages in various countries 

around the world. In their research, Lee and Carter (1992) did 

not consider this possibility. This research suggests that a 

fixed change in mortality may not adequately describe the 

mortalities of developing nations like Nigeria. 

 

MATERIALS AND METHODS 

The World Population Prospect (WPP) database of the United 

Nations was used to collect the data for this study. From 2009 

to 2020, age-specific mortality rates data for Nigerian females 

were utilized for both overall mortality and piecewise 

mortality (Adults). 

 

Lee-Carter model 

Lee and Carter (1992) proposed a method for projecting 

future mortality rates. The main components of the Lee-Carter 

approach are the base model and the Autoregressive 

Integrated Moving Average (ARIMA) model. In the first 

stage,  𝑎𝑥, 𝑏𝑥  and 𝑘𝑡 are estimated using the actual mortality 

surface. In the second stage, the Box and Jenkins (1970) 

method is used to model and extrapolate the fitted values 

of  𝑘𝑡 using an autoregressive integrated moving average 

process. 
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𝑙𝑛(𝑚𝑥𝑡) = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + ℇ𝑥𝑡    (1)  

where 𝑚𝑥𝑡  is given as the matrix of the observed age-specific 

death rate at age x during year t.  

𝑎𝑥   is the average shape of mortality by age.  

𝑏𝑥 is the relative speed of change or variability in mortality 

by age as 𝑘𝑡 changes.  

𝑘𝑡  is the time trend for the general mortality. It is also be 

referred to as the mortality index.  

𝜀𝑥𝑡 is the error term or residual at age 𝑥 and time 𝑡.  
 

Singular value Decomposition 

Singular Value Decomposition (SVD) was introduced in 1991 

by Bell and Monsell. It is a process for decomposing a matrix 

into each of its several constituent matrices, revealing many 

of the interesting and valuable properties of the original 

matrix. Its foundation is a linear algebraic theorem that states 

that a matrix  𝑍  can be reduced to the product of three 

matrices: an orthogonal matrix 𝐵, a diagonal matrix 𝛴, and the 

transpose of an orthogonal matrix  𝐾 . The matrix should 

ideally be divided into a set of factors that are optimal 

according to some criterion. Matrix 𝑍  can be uniquely 

decomposed as:  

𝑍 = 𝐵𝛴𝐾𝑇     (2)  

The matrices  𝐵 and 𝐾 are both defined to be orthogonal 

matrices. Matrix  𝛴 is a diagonal matrix. The elements along 

the diagonal of  𝛴  are known as the singular values of the 

matrix𝑍 . The columns of  𝐵are known as the left-singular 

vectors. The right-singular vectors are the columns of 𝐾. 

Since there are no provided regressors on the right side of the 

estimate, the LC model cannot be fitted using conventional 

regression techniques. The estimators of 𝑎𝑥, 𝛽𝑥 and 𝑘𝑡 will be 

denoted by  �̂�𝑥, �̂�𝑥  and  �̂�𝑡  respectively. Firstly, lets define 

the �̂�𝑥  estimate as the averaging  ln(�̂�𝑥,𝑡) over a period of 

time 𝑡 

 �̂�𝑥
1

𝑛
= ∑ 𝑙𝑛𝑚𝑥𝑡    (3) 

The parameters 𝛽𝑥 and 𝑘𝑡 are calculated by applying Singular 

Value Decomposition to the matrix Z. where; 

Z𝑥𝑡 = 𝑙𝑛𝑚𝑥𝑡 − �̂�𝑥    (4) 

That is;  

𝑆𝑉𝐷(𝑍𝑥𝑡) = 𝐵𝛴𝐾
𝑇     (5) 

Where  𝐵  represents the age component, 𝛴  represents the 

singular values and 𝐾  represents the time component. 

Therefore after decomposition, 

SVD (𝑍𝑥,𝑡) =  𝜆1𝐵𝑥,1𝐾𝑡,1 + 𝜆2𝐵𝑥,2𝐾𝑡,2 +⋯+ 𝜆𝑖𝐵𝑥,𝑖𝐾𝑡,𝑖 

= ∑ 𝜆𝑖𝐵𝑥,𝑖𝐾𝑡,𝑖
𝑟
𝑖=1      (6) 

Where r = Rank |𝑍|  and 𝜆𝑖(𝑖 = ( 1,2,… , 𝑟) are the ordered 

singular values with 𝐵𝑥,𝑖  and  𝐾𝑡,𝑖  as the corresponding left 

and right singular vectors. These give the estimates of 

𝑏𝑥  𝑎𝑛𝑑 𝑘𝑡as follows;  �̂�𝑥 = 𝑈𝑥,1 and �̂�𝑡 = 𝑉𝑡,1 

 

RESULTS AND DISCUSSION 

The Lee-Carter model was applied to female mortality data to 

examine the impact on various age groups. 

 
Figure 1: Central death rates 𝑚𝑥 using the LC model  

 

 
Figure 2: General age profile  

 
Figure 3: Pace of Mortality change 

As seen in figures 1, 2 and 3, there was no regular pattern 

emerging from the plots, but rather we had non-linear trends. 

It is observed that the variability of mortality is not the same 

across all ages. Also, the contribution of some particular age 

groups, i.e. infant, child, and mortality at old age, to the 

overall mortality of the population is different. The high 

incidence and prevalence of childhood diseases and deaths at 

old age could have been majorly responsible for the changes 

in the shape of the parameter. Thus, as against what is 

obtainable in the original Lee-Carter model where the overall 

mortality is studied from age 0, the study will also consider 

piecewise or segmented mortality (adult mortality) to check 

the assumption of constant variability in mortality change. 

Therefore, our proposed model is given as: 

𝑙𝑛(𝑚𝑥𝑡) = 𝑎𝑥
𝑖 + 𝑏𝑥

𝑖 𝑘𝑡
𝑖 + 𝜀𝑥𝑡

𝑖     (7) 

𝑚𝑥𝑡 =  𝑒𝑥𝑝
𝑚𝑥𝑡
𝑖
   (8) 

 𝑖 = infant, child, adult or old age mortality 

 

LC Model for overall mortality profile with varying 

𝒃𝒙parameter 

Here the LC model is given as 𝑚𝑥𝑡 = 𝑒𝑥𝑝( 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝜀𝑥𝑡) 
where 𝑥 = 0 − 1,1 − 4,5 − 9,…100 +  and 𝑡 =
2009,2010,… 2020.  The entire mortality profile using the 

original LC model by applying the following steps 
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i. Obtain the logarithm of mortality rates that is 

𝑙𝑛(𝑚𝑥𝑡) 
ii. Obtain the parameter �̂�𝑥which is a column vector, 

it is calculated as average over time of the logarithm 

of mortality rates �̂� =
1

𝑛
∑ 𝑙𝑛(𝑚𝑥𝑡)
𝑛
𝑡=1       

iii. Create a matrix𝑧𝑥𝑡  for estimating 𝑏𝑥and 𝑘𝑡  where 

𝑧𝑥𝑡 = (𝑙𝑛𝑚𝑥𝑡) − �̂�𝑥 

iv. Decompose the matrix 𝑧𝑥𝑡   into a product of 

matrices using the singular value decomposition 

method 𝑆𝑉𝐷(𝑧𝑥𝑡) = 𝐵𝛴𝐾
𝑇  

After applying the techniques stated in above, we obtained the 

following result: 

 

�̂�𝑥 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−2.12737
−3.87952
−4.8853
−5.5063
−5.09848
−4.92957
−4.8682
−4.82472
−4.71039
−4.50945
−4.31112
−4.02745
−3.70947
−3.30332
−2.89672
−2.42628
−1.9513
−1.4972
−1.07606
−0.70793
−0.54755)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̂�𝑥 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.138443582
0.174867719
0.06519156
0.064015942
0.052109864
0.048287934
0.045804646
0.044942453
0.043885289
0.041910333
0.039741495
0.03812534
0.03611515
0.034482034
0.031256629
0.0274979
0.023421014
0.018904223
0.014094418
0.010414207
0.006488269)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̂�𝑡 =

(

 
 
 
 
 
 
 
 
 

3.6266293
2.631595
1.5241754
0.6414605
0.6821964
0.7184163
0.9613649
0.7036283
−0.8322227
−2.0657114
−3.5070368
−5.0844953)

 
 
 
 
 
 
 
 
 

 

 

From the decomposition of matrix 𝑧𝑥𝑡 we got the parameter 

�̂�𝑡 which is the mortality index, it is a vector that captures the 

overall mortality change overtime. A standard time series 

model selection procedure was carried out to identify the best 

ARIMA model for Nigerian mortality data using AIC, BIC 

and some error measures. 

 

Table 1: AIC’s, BIC’s and Error measures for suggested models using female data 

Model AIC BIC RMSE MAE MAPE 

ARIMA (0,1,0) 33.77257 34.17046 0.9819293 0.7795467 53.12297 

ARIMA (1,1,1) 24.71286 25.90654 0.5160594 0.3924597 37.91306 

ARIMA (1,1,0) 23.01995 23.81574 0.5130491 0.3651628 36.37704 

 

It can be seen that from Table 1, ARIMA (1,1,0) seems to be 

the best ARIMA model for female Nigeria mortality data as 

against a random walk (0,1,0) that was used by Lee and Carter 

in 1992 and also widely used by other researchers. Thus, 

ARIMA (1,1,0) was used to model Nigeria's female mortality 

data for both the overall mortality profile and piecewise with 

specific age intervals. 

 

Table 2: Forecasted mortality index �̂�𝒕 for overall mortality using ARIMA model 

Year 2021 2022 2023 2024 2025 2026 2027 

�̂�𝒕 -6.480502 -7.715928 -8.809246 -9.776801 -10.633061 -11.39082 -12.061427 

 

Table 2 above shows the forecasted values of �̂�𝑡 for overall 

female mortality profile. The LC model is then updated with 

these predicted values to project future age-specific mortality. 

Next is to compare the performance of LC model on mortality 

data with varying 𝑏𝑥parameter for both overall mortality data 

and adulthood mortality.  

 

LC Model for adult mortality data with constant 

𝒃𝒙parameter 

Here the LC model is given as 𝑚𝑥𝑡 = 𝑒𝑥𝑝( 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝜀𝑥𝑡) 
where 𝑥 = 15 − 19,20 − 24,25 − 29,…55 − 59  and 𝑡 =

2009,2010,… 2020.  The model parameters �̂�𝑥, �̂�𝑥  and �̂�𝑡 
were estimated using the SVD. 
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�̂�𝑥 =

(

 
 
 
 
 
 

−5.098475
−4.929566
−4.868200
−4.824719
−4.710387
−4.509445
−4.311115
−4.027447
−3.709472)

 
 
 
 
 
 

        �̂�𝑥 =

(

 
 
 
 
 
 

0.13263363
0.12408778
0.11800242
0.11591519
0.11291646
0.10708573
0.10084541
0.09680519
0.09170820)

 
 
 
 
 
 

     �̂�𝑡 =

(

 
 
 
 
 
 
 
 
 

1.7429969
1.0784067
0.3366126
−0.2415136
−0.2147332
−0.1913032
0.3662920
0.8638399
0.1940775
−0.4626098
−1.2300380
−2.2420278)

 
 
 
 
 
 
 
 
 

 

 

Table 3: Forecasted mortality index �̂�𝒕 for Adulthood mortality using ARIMA model 

Year 2021 2022 2023 2024 2025 2026 2027 

�̂�𝒕 -3.016034 -3.608023 -4.06080 -4.407095 -4.671957 -4.87453 -5.02947 

 

Table 3 shows the forecasted values of �̂�𝑡 for adulthood mortality. The LC model is then updated with these predicted values 

to project future age-specific mortality.  

 

Table 4: Comparison between 𝒎𝒙 (Overall mortality profile) and 𝒎𝒙 (Adulthood mortality) 

Mortality MSE RMSE MAE MAPE 

Overall mortality 0.0003216921 0.0179357 0.009359309 0.1920557 

Adulthood mortality 2.696898𝑒−09 5.193167𝑒−05 𝟑. 𝟎𝟔𝟖𝟑𝟐𝒆−𝟎𝟓 0.003220681 

 

Results in Table 4. Shows that piecewise mortality (adulthood 

mortality) has minimum errors as compared to overall 

mortality.  

 

CONCLUSION 

Though the performance of the LC model in modelling the 

entire mortality profile has been studied in some literature (Li 

and Chan, 2007; Nan et al. 2015; Taruvinga et al. 2017), there 

is no concrete research in terms of piecewise mortality 

modelling for different ages. For this reason, in this study, the 

LC model was utilized within the perspective of overall 

mortality modelling and piecewise modelling. We take into 

consideration the demographic data for Nigeria. Results show 

noticiable defference between the two approaches to 

modelling moratlity data with varying 𝑏𝑥and moratlity data 

with constant 𝑏𝑥. As seen in Table 4, the adulthood mortality 

modelling approach gives minimum errors with regards to the 

forecast of  the mortality rate of age 15 to 59 for female 

population. Mortality data with a constant 𝑏𝑥gives a more 

accurate forecast in terms of mortality rates. This supports our 

suggestion that for some mortality data, the whole age span 

has a varying speed of change in mortality and thus may not 

be modelled well by the original LC model.  
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