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ABSTRACT 

This study takes into account the newly developed hybrid ARIMA-FIGARCH. We use the daily price index 

of the S&P 500. The data employed for this study was secondary in nature for all the variables and was obtained 

from the publications of the Central Bank of Nigeria Bulletin, the National Bureau of Statistics, and the World 

Bank Statistics Database, dated January 2005 to December 2020. Also, the result of the Jarque-Bera test 

indicated that the p-values for all variables were less than the alpha level of significance (0.05). Hence, we 

would reject the null hypothesis that the data for all variables are normally distributed. Also, unit root tests 

were conducted using ADF and KPSS tests. The result of the ADF test shows that the variable is stationary at 

a level of 5% significance. That means the variables are integrated in order zero, i.e., 1 (0). And for the KPSS 

test, 0.881749 is greater than 0.463000, indicating that it is not significant at level 1, indicating that it is not 

stationary, whereas KPSS is 0.011158, which is less than 0.463000, indicating that it is stationary at level 1. 

The unit root test is necessary in order to determine the nature of the series and to avoid getting spurious results. 

We estimate the fractional difference order, d, by the Geweke and Porte-Hudak (GPH) method for testing the 

present and long memory of the series. The results show that the value of (d) for the S&P 500 price was found 

to be (0.043621), which falls within the range of 0d0.5, indicating the presence of long-memory processing of 

the data. Descriptive statistics yield a measure of central tendency as well as a measure of dispersion. Because 

of the high volatility in macro variables, the reported series are not bell-shaped. Most series are right-skewed 

and volatile. Finally, we found that the proposed ARIMA-FIGARCH model shows greater consistency 

because, as the sample size increased, the performance measure decreased and approached zero.  

 

Keywords: FIGARCH, ARIMA hybridizations 

 

INTRODUCTION 

The ARIMA-FIGARCH model, is the combines the 

Autoregressive Integrated Moving Average (ARIMA) model 

with the FIGARCH model. The ARIMA model is suitable for 

modeling stationary time series data, while the FIGARCH 

model can capture the volatility clustering and long memory 

often observed in financial time series data. 

These hybrid models have been applied in various fields, such 

as finance, economics, and engineering. For instance, these 

models have been used for forecasting stock prices, volatility, 

and risk management in the finance industry. Despite the 

growing interest in hybrid time series models, there is a lack 

of empirical studies that compare the performance of different 

hybrid models on financial data. Therefore, this study aims to 

develop the hybrid of ARIMA-FIGARCH models on 

financial data. We hope to contribute to the existing literature 

on time series modeling and provide insights for practitioners 

in the finance industry. 

Baillie et al. (1996) extended the Garch family model and 

proposed the FIGARCH model. Engle (2013) came to the 

conclusion that GARCH-family models have been well-liked 

by academics due to their capacity to reproduce some of the 

typical stylized characteristics of financial time series, such as 

volatility clustering. Bollerslev (1986) demonstrates how 

GARCH-family models incorporate the characteristic of time-

varying volatility over a long period of time and offer a strong 

in-sample estimate. The FIGARCH model was specifically 

developed to model the long memory property in addition to 

the above-mentioned features. The clustering of volatility in 

financial time series reveal that GARCH family models 

provide a strong in-sample estimate and account for the 

feature of time-varying volatility over a long period of time. 

In addition to the previously mentioned characteristics, the 

FIGARCH model is especially made to simulate the long 

memory property. 

The volatility of daily futures returns is found to be well 

described by the FIGARCH model, with relatively similar 

estimates of the long memory parameter across commodities. 

The conditional means of the daily returns are close to being 

uncorrelated, with small departures from martingale behavior 

being represented by low-order moving average models. We 

also estimate FIGARCH models for high-frequency 

commodity futures returns based on intraday tick data. These 

high-frequency commodity returns are dominated by strong 

intraday periodicity, which is thought to be the result of 

repeated trading day cycles caused by the institutional 

features of futures exchanges where trades are conducted. The 

intraday periodicity is removed using a deterministic Flexible 

Fourier Form (FFF) filter. The filtered high-frequency futures 

returns are also well described by the FIGARCH process. 

The FIGARCH model has already been effectively used to 

analyze a variety of economic variables, including exchange 

rates, stock returns, inflation rates, and others; see, for 

instance, Baillie et al. (1996). The concept has only frequently 

been applied to commodities, though. Although they did not 

explicitly estimate FIGARCH models, Chen (2009) found 

strong evidence of long memory in daily commodity futures 

prices by examining the daily volatilities of multiple 

agricultural commodity futures returns, a stock index return, 

currencies, metals, and heating oil. The main goal of 

establishing the FIGARCH model was to develop a more 

flexible class of conditional variance processes that are able 

to explain and depict the temporal dependencies in financial 

market volatility that have been observed. 

 In 1976, Box-Jenkins developed an ARIMA model, which he 

named the Box-Jenkins Methodology after themselves, as a 
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forecasting tool for financial and economic variables. Aiming 

to identify an autoregressive integrated moving average 

(ARIMA) (p, d, q) model that satisfies the stochastic process 

and can be estimated using the Box-Jenkins approach, the 

Box-Jenkins methodology was developed in 1976. The Box-

Jenkins technique is a three-stage iterative modeling approach 

that includes model identification, parameter estimates, and 

model checking. A modification is performed to the data 

series to remove the trend, which is a need for an ARIMA 

model when the observed time series exhibits both trend and 

non-seasonal behavior. 

Although ARIMA is a prominent forecasting technique, it 

cannot handle volatile data. The FIGARCH model will be 

hybridized with the ARIMA in order to improve it. While 

ARCH-based models have been used in the case of financial 

time series that have been proved to reveal volatility 

clustering, ARIMA models have been widely used for 

forecasting different types of time series to capture the long-

term trend. In order to understand and reflect the observed 

temporal dependencies in financial market volatility as well 

as to capture persistent volatility and long-memory behaviors 

in the data series, we are employing the FIGARCH model, 

which represents a more flexible class of conditional variance 

processes in this study. 

 

MATERIALS AND METHODS 

ARIMA process  

The Autoregressive integrated moving average (ARIMA) (p, 

d, q) model of the time series ty ,  t = 1, 2…n was developed 

by Box and Jenkins (1976), which is still widely used .Tasi’u 

(2022). It is defined as 

𝜑(𝐵)(1 − 𝐿)𝑑(𝑦𝑡 − 𝜇) = 𝜃(𝐵)𝜀𝑡                         (1) 

where 𝑦𝑡 and 𝜀𝑡denote time series and random error terms, 

respectively, at time t. 

The backward shift operator is B. The 𝜑(𝐵) and 𝜃(𝐵) are of 

order p and q and defined as   
  𝜑𝑝(𝐵) = 1 − ∑ 𝜑𝑖𝐿𝑖𝑝

𝑖=1   and   𝜃𝑞(𝐵) = 1 − ∑ 𝜃𝑗
𝑞
𝑗=1 𝐿𝑗  .   

Then L is the difference operator defined as                  

Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = (1 − 𝐿)𝑦𝑡   

      

Also,  𝜑1, 𝜑2, … . . 𝜑𝑝   𝑎𝑛𝑑   𝜃1
, 𝜃2,……..𝜃𝑞

  Are the parameters of 

autoregressive and moving average terms with order p and q 

respectively 

 

ARCH (p) Process 

We obtain the ARCH (p) process if 𝜀𝑡
2  follows an AR (p) 

process is giving by 

    ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖
𝑝
𝑖=1 𝜀𝑡−1

2                                      (2) 

   Where    𝛼𝑖 ≥ 0, i = 1,..., q 

 

GARCH Process 

The GARCH (p, q) process introduced by Bollerslev (1986) 

and Taylor (1986) (independently of each other) is given 

along with the volatility equation. The generalized ARCH or 

GARCH model is a pared-down alternative to the ARCH (p) 

model. It is given by    

ℎ𝑡=𝛼0 + ∑ 𝛼𝑖
𝑝
𝑖=1 𝜀𝑡−1

2 +𝛽𝑗ℎ𝑡−1   (3)         

Where the ARCH term is 𝜀𝑡−1
2   and the GARCH term is ℎ𝑡−1  

In general, a GARCH (p.q) model includes p(ARCH) terms 

and q (GARCH) terms. 

where p > 0, q > 0, α 0  > 0,  𝛼𝑖 ≥ 0,  i = 1,...,q,  βj ≥ 0, j = 

1,...,p and α(L) and β(L) are lag operators such that 𝛼(𝐿) =
𝛼1𝐿 + 𝛼2𝐿2+. . . +𝛼𝑞𝐿𝑞 and  β(L) =𝛽1𝐿 + 𝛽2𝐿2+. . . +𝛽𝑝𝐿𝑝 

For p = 0, the process reduces to an ARCH(q), and when p = 

q = 0, the process is simply white noise. An equivalent 

ARMA-type representation of the GARCH (p, q) process is 

given by the 
[1 − 𝛼(𝐿) − 𝛽(𝐿)]𝜀𝑡

2=𝛼0 + [1 − 𝛽(𝐿)]𝑣𝑖   

  . 

IGARCH Process 

Engle and Bollerslev (1986) analyze a type of GARCH model 

known as the IGARCH model, which has no unconditional 

variance. This occurs when    ∑ 𝛼𝑖
𝑞
𝑖=1 + ∑ 𝛽𝑗

𝑝
𝑗=1 = 1  in a 

GARCH (p, q) model. The IGARCH is defined as follows:  

𝛷(𝐿)(1 − 𝐿)𝜀𝑡
2 = 𝛼0 + [1 − 𝛽(𝐿)]𝑣𝑡               (4) 

Similar to ARIMA models a key feature of IGARCH models 

is that the impact of past squared  

Shocks  iv = 𝜀𝑡−𝑖
2 − ℎ𝑡−𝑖  for 𝑖 >0 on 𝜀𝑡

2  is persistent 

We see that a GARCH (p, q) process may also be expressed 

as an ARMA (m, p) process. In   𝜀𝑡
2, by writing    

(𝐿)(1 − 𝐿)𝜀𝑡
2 = 𝛼0 + [1 − 𝛽(𝐿)]𝑣𝑡                                        

Where m = max {p, q} and iv = 𝜀𝑡
2 − ℎ𝑡. The { iv } process 

can be interpreted as the "innovation" for the conditional 

variance, as it is a zero-mean martingale. Therefore, an 

integrated GARCH (p, q) process can be written as  

(1 − 𝛼(𝐿) − 𝛽(𝐿))(1 − 𝐿) 𝜀𝑡
2 = 𝛼0 + [1 − 𝛽(𝐿)]𝑣𝑡   The 

fractionally integrated GARCH or FIGARCH class of models 

is obtained by replacing the first difference operator. (1 − L) 

in (6) with the fractional differencing operator (1 − 𝐿)𝑑 , 

where d is a fraction 0 < d < 1. Thus, the FIGARCH class of 

models can be obtained by considering. 

(1 − 𝛼(𝐿) − 𝛽(𝐿))(1 − 𝐿)𝑑𝜀𝑡
2 = 𝛼0 + [1 − 𝛽(𝐿)]𝑣𝑡      (5) 

Assume the return can be used in calculating the volatility of 

any given asset return. Thus, we may use as a measure of 

volatility which could be written as     

𝑟𝑡 = 𝜇 + √ℎ𝑡𝜀𝑡
2                                  (6) 

  𝑟𝑡 − is the return on day i, 𝜇 −is the average return and   ℎ𝑡 

- is the variance used as a volatility measure. 

 

Proposed ARIMA-FIGARCH Model 

Using a two-step process, the ARIMA and FIGARCH models will be combined. The linear data of a time series are modeled 

using the best ARIMA model in the first phase. The residuals sequence from the fitted ARIMA model is modeled using the 

FIGARCH technique in the second phase. The FIGARCH processes described by will be followed by the error term of the 

ARIMA model in this technique 

𝜑𝑝(𝐿)(1 − 𝐿)𝑑𝑦𝑡 = 𝜃𝑞(𝐿)𝜀𝑡                                          

where 

(𝐿) = 1 − 𝜑1𝐿 − 𝜑2𝐿2 … − 𝜑𝑝𝐿𝑃   and     𝜃 q (𝐿) = 1 + 𝜃1𝐿 + 𝜃2𝐿2 + ⋯ + 𝜃𝑞𝐿𝑞                       

 (1 − 𝜑1𝐿 − 𝜑2𝐿2 … − 𝜑𝑝𝐿𝑃)(1 − 𝐿)𝑑𝑦𝑡 = (1 + 𝜃1𝐿 + 𝜃2𝐿2 + ⋯ + 𝜃𝑞)𝜀𝑡  

.e(1 − 𝐿)𝑑𝑦𝑡 = ∑ 𝜑𝑖(1 − 𝐿)𝑑𝑦𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃𝑗𝜀𝑡−𝑗 + 𝜀𝑡

𝑞
𝑗=1 ~ 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)                (7)     

Thus, we may use as a measure of volatility which could be written as     

𝑟𝑡 = 𝜇 + √ℎ𝑡𝜀𝑡
2                                                                                               
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𝑟𝑡 − is the return on day i, 𝜇 −is the average return and   ℎ𝑡 - is the variance used as a volatility measure.  

𝜀𝑡 =
(𝑟𝑡−𝜇)

√ℎ𝑡
                                                                   (8)      

where  𝜀𝑡 =
(𝑟𝑡−𝜇)

√ℎ𝑡
                                                                          

The hybrid of ARIMA (p, d, q)-FIGARCH (p, d, q) this is given as 

(1 − 𝐿)𝑑𝑦𝑡 =
(𝑟𝑡−𝜇)

√𝛼0
∗+ 𝛿(𝐿)𝜀𝑡

2
+ ∑ 𝜑𝑖(1 − 𝐿)𝑑𝑦𝑡−𝑖

𝑝
𝑖=1 + ∑ 𝜃𝑗√

(𝑟𝑡−𝑗−𝜇)2

𝛼0
∗+ 𝛿(𝐿)𝜀𝑡−𝑗

2

𝑞
𝑗=1                              (9) 

The conditional variance dynamics of the component  th   of a FIGARCH process is given by Baillie et al. (1996)     

 ℎ𝑡 = 𝛼0
∗ +  𝛿(𝐿) 𝜀𝑡

2                                                                                                        (10) 

where 𝛼0
∗ = 𝛼0(1 − 𝛽(𝐿))−1    and   𝛿(𝐿) = (1 − (1 − (𝛽(𝐿))−1𝜙(𝐿)(1 − 𝐿)𝑑  for the FIGARCH (p, d, q), must be non-

negative,    i.e., 𝜆𝑘 ≥ 0 for k = 1, 2   𝑤ℎ𝑒𝑟𝑒  0<d<1,  is the fractional differencing operators, and its value depends on the decay 

rate of a shock to conditional volatility. εt is random error.  

Then p ...,, 21 are the autoregressive coefficients that attempt to predict an output of a system based on the previous 

outputs and 𝜃1, 𝜃2 + ⋯ + 𝜃𝑞 are the moving averages coefficients.  εt
2 is a persistant shocks of long  memory , and 𝑦𝑡 is the 

deterministic functions of    𝑟𝑡  where historical observations for estimated (𝑟𝑡 − 𝜇)2 is not available. 

 

Parameter estimation of Hybrid ARIMA-FIGARCH Model Using MLE methods. 

The hybrid ARIMA-FIGARCH model is a nonlinear time series model that combines a linear ARIMA model with the 

conditional variance of a FIGARCH model. We consider the following ARIMA-FIGARCH 𝑜f eqn (2.9) 

           (1 − 𝐿) 𝑦𝑑
𝑡 = ∑ 𝜑𝑖

𝑝
𝑖=1 (1 − 𝐿) 𝑦𝑑

𝑡−𝑖 + ∑𝑞
𝑗=1 j

(𝑟𝑡−𝑗−𝜇)

√𝛼𝑜
∗ +𝛿(𝐿)𝜀𝑡−𝑗

2 +
(𝑟𝑡−𝜇)

√𝛼0
* +𝛿(𝐿)𝜀𝑡

2
 

2*

0

2

2*

0

2

11 )(

)(

)1(

1

)(

)(

)1(

1

t

t

d

jt

jtq

j jd

p

i itit
L

r

LL

r

L
yy










+

−

−
+

+

−

−
+=

−

−

== − 
    (11) 

The estimation procedures of the ARIMA and FIGARCH models are based on the Maximum Likelihood Method. The 

nonlinear Marquardt's algorithm (Marquardt, 1963) is used to estimate parameters in a logarithmic likelihood function. The 

logarithmic likelihood function has the following equation: 

   𝑙𝑛 𝐿 [(𝑦𝑡),Θ = ∑ {𝑙𝑛[ 𝐷(𝑧𝑡(Θ)), 𝑣] −
1

2
𝑙𝑛[ 𝑦𝑡(Θ)]}𝑇

𝑡=1       (12) 

where Θis the vector of the parameters that have to be estimated for the proposed model, 𝑧𝑡 denoting their density function, 

𝐷(𝑧𝑡(Θ), 𝑣), is the log-likelihood function of [y𝑡(Θ)], for a sample of T's observations. The maximum likelihood estimator 

Θ
∧

for the true parameter vector is found by maximizing eqn (2.12) . 

It is very important to know that equation (2.12) cannot be solved explicitly due to its complex nature. We therefore resolved 

to use a numerical method. In this case, we adopted the quasi-maximum likelihood estimator to estimate the parameters of the 

developed model.  

 

Simulation 

Using data of sizes 200, 500, and 1000, we imulate the 

ARIMA-FIGARCH models in this section. It is assumed that 

the error term in the simulation would behave normally, with 

mean= 0 and variance = 1. Two widely used accuracy 

measures (lost functions) were used in the evaluation: 

meansquare error (MSE) and mean absolute percentage error 

(MAPE). In a Monte Carlo simulation, we first assess the 

MLE's performance with finite samples (see Ghysels, 2012). 

There were two stages of simulation for theARIMA and 

FIGARCH models. The best ARIMA model is used in the 

first phase to model a time series' linear data. In the second 

stage, the nonlinear designs of the residual sequences from the 

fitted ARIMA model are modeled using the FIGARCH 

method

. . 

Table 1: Summary of Simulated Results of the ARIMA-FIGARCH model. 

Sample size ARIMA-FIGARCH 

 MSE MAPE 

200 

500 

1000 

5.26 

2.00 

0.67 

6.05 

2.05 

0.05 

 

Based on the table above, the proposed ARIMA-FIGARCH 

model shows consistency than the existing models, because 

as the sample size increased, the performance measure 

decreased and it approach zero. And also, the real data analyst 

shows the proposed model performs better due to least MSE 

and MAPE are least value. 

 

RESULTS AND DISCUSSION 

Data  

We use the daily price index of the S&P 500 to analyst the 

proposed model. The data employed for this study was 

secondary in nature for all the variables and was obtained 

from the World Bank Statistics Database dated January 2005 

to December 2020 
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Figure 1:  S&P 500 Time Plot Test the Present of Variability in data series  

 

The plot of the S&P 500 series gives a good picture of its main 

characteristics. The typical behavior of the data series is that 

it fluctuates over time, such that during some periods of the 

year the amounts are low and in other periods they are high. 

This characteristic indicates that the daily S&P 500 varies 

throughout the period and that the variability is not constant..

 
Figure 2: ACF and PACF PLOTS   

 

The ACF plot dies down slowly. The autocorrelation function 

provides a measure of temporal correlation between data 

points with different time lags. For a purely random event, all 

autocorrelation coefficients (r) are zero, apart from 

r(0), which is equal to 1.  

 

Table 2: Results for estimated model parameters: ARIMA (p, d, q) for S&P 500 Price. 

Models Coefficient Estimate Error Log-like hood RMSE    MSE   

ARIMA (1, 1, 1) 

 

AR1  

MA1     

 0.3153    

0.6522       

91.71 1.43     2.7 

 

ARIMA (2, 0, 1) 

 

 

ARIMA (1, 2,0) 

ARIMA (2,1,1) 

 

 

ARIMA (1,0,1)       

AR1  

AR2 

MA1  

AR1 

AR1 

AR2 

MA1 

AR1                        

MA1 

 0.1613   

0.0852    

  0.3607     

0.4645 

0.2352 

0.7865 

0.5463 

0.4982 

0.2314 

71.13 

 

 

62.12 

61.13 

 

 

65.4 

2.26   3.3 

 

 

2.23   4.7 

0.13   1.3 

 

 

1.24  1.43 

 

Based on the table above, ARIMA (2, 1, 1) is the best one among the five models because it has the lowest MAPE and MSE 

(0.13 and 1.3, respectively), so we can use it to fit the remaining Garch-family model. 

 

Table 3: The results of the estimated ARIMA-FIGARCH model for samples of S&P 500 price 

Models Coefficient Estimate Log-like hood MSE    MAPE 

ARIMA (2,1,1)        AR1  

       AR2 

        MA1     

 

 0.2352 

0.7865 

0.543 

  

61.13 

 

1.3 

 

 

0.13    
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FIGARCH 𝝁 

𝝎 

𝜶𝟏 

𝜷𝟏 

𝜹 

0.0000 

0.00132         

0.012912     

0.02998     

0.048580       

 290.77 2.0078 2.07 

 

The above findings suggest that the estimated parameter mu 

is not significant. Additionally the alpha and beta parameters' 

sum is quite close to unity (𝛼 + 𝛽 = 0.51159), indicating the 

return's highpersistence. Additionally, the findings indicate 

that the delta is significant, indicating that the model has a 

long memory, and that the coefficient gamma is not 

significant, indicating that the sign of the innovation has no 

effect on the volatility of returns 

 

CONCLUSION 

The Jarque-Bera test result showed that all of the variables' p-

values were below the alpha level of significance (0.05). As a 

result, we would reject the null hypothesis that the data are 

normally distributed across all variables. ADF and KPSS tests 

were also used to do unit root tests. At a level of 5% 

significance, the ADF test's result reveals that the variable is 

stationary. The variables are therefore integrated in order 

zero, or 1. (0). KPSS is 0.011158, which is less than 0.463000, 

suggesting that it is The unit root test is required to identify 

the type of the series and minimize misleading findings. In 

order to test the series' present and long-term memory, we 

estimate the fractional difference order, d, using the Geweke 

and Porte-Hudak (GPH) approach. The findings reveal that 

the S&P 500 price's value of d was determined to be 

(0.043621), which is within the range of 0d0.5, indicating that 

long-memory processing of the data was used. Both a measure 

of central tendency and a measure of dispersion are produced 

by descriptive statistics. The reported series are not bell-

shaped because macro variables have a high level of volatility. 

Most series are turbulent and right-skewed. Last but not least, 

we found that the proposed ARIMA-FIGARCH model is 

more reliable. 
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