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ABSTRACT 

The linearization approach is used in this contribution to acquire the answers to the variable frequency 

oscillator equation as well as the modified Ivey's equation. Differential forms (DF) and the generalized 

Sundman transformation (GST) are two linearization techniques that are considered. It is found that the 

modified Ivey's equation cannot be linearized using differential forms, while the equation for a variable 

frequency oscillator can. However, using GST, the modified Ivey's equation can be linearized.  
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INTRODUCTION 

In the past few decades, nonlinear oscillators have drawn a lot 

of attention from engineers because they are crucial modeling 

tools in the biological and physical sciences. The models' 

capacity to synchronize with other oscillators or with outside 

driving impulses makes them fascinating. These 

synchronization skills are however constrained, and it is not 

always simple to pick the model parameters effectively to 

achieve proper synchronization with the external driving 

signals (Righetti et al., 2009). In fact, an oscillator has a finite 

entrainment area that depends on a variety of factors, 

including the coupling efficiency and the frequency 

difference between the oscillator and the driving signal. To 

solve the Fredholm Integro-Differential Equation, the 

variational iteration method was used. It was sensible to 

choose the initial approximation that satisfies the Fredholm 

Integro-differential Equation's initial condition (Lanlege et 

al., 2023). Mat-Lab and Maple software were used to assess 

the numerical results, which were then compared to the exact 

solution to demonstrate the effectiveness of the Method. 

When compared to the exact solution, the findings 

demonstrate how effective, trustworthy, and highly accurate 

the Variational Iteration Method is for solving the Fredholm 

Integro-Differential Equation. 

In electronics, a variable frequency oscillator (VFO) is an 

oscillator whose frequency may be tweaked, or varied, 

throughout a certain range. It controls the frequency to which 

the device is tuned and is a necessary component in any 

tunable radio transmitter or receiver that operates on the 

superheterodyne principle. The variable frequency oscillator 

equation and the Ivey's equation under consideration here are 

second-order nonlinear differential equations. For the 

thorough comprehension and precise prediction of motion and 

deformation, nonlinear ordinary differential equations 

(ODEs) have been employed extensively in many fields of 

physics and engineering (Saravi & Hermann, 2014). They are 

also crucial in mechanical and structural dynamics. Numerous 

academics have expressed interest in studying nonlinear 

ODEs, and numerous solutions have been put forth. 

Linearization via differential forms was put in place by 

authors like (Harrison, 2002), (Orverem et al., 2017) and 

(Orverem et al., 2022). Also, linearization through the 

generalized Sundman transformation was first considered by 

(Duarte et al., 1994) where the Laguerre form was considered. 

Later, (Nakpim & Meleshko, 2010), treated the non-Laguerre 

form of linearization via the GST. This procedure was used 

by (Johnpillai & Mahomed, 2013) to linearized a class of 

Lienard equations. The Emden differential equation was also 

solved via the generalized Sundman transformation by 

(Orverem et al., 2021b). The two approaches were jointly 

applied to linearize the spheres of gaseous stability equation 

by (Orverem et al., 2021a).  

 

Linearization of Variable Frequency Oscillator Equation 

via Differential Forms 

The technique of differential forms entails that the general 

second order nonlinear ordinary differential equation   

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′)                                     (1) 

should necessarily be in the form 

𝑦′′ + 𝑓0 + 𝑓1𝑦
′ + 𝑓2𝑦

′2 + 𝑓3𝑦
′3 = 0,                  (2) 

 and the coefficients 𝑓0, 𝑓1, 𝑓2, and 𝑓3 must satisfy the 

conditions 

𝑓0𝑦𝑦 + 𝑓0(𝑓2𝑦 − 2𝑓3𝑥) + 𝑓2𝑓0𝑦 − 𝑓3𝑓0𝑥 +
1

3
(𝑓2𝑥𝑥 − 2𝑓1𝑥𝑦 +

𝑓1𝑓2𝑥 − 2𝑓1𝑓1𝑦) = 0,               (3) 

and  

𝑓3𝑥𝑥 + 𝑓3(2𝑓0𝑦 − 𝑓1𝑥) + 𝑓0𝑓3𝑦 − 𝑓1𝑓3𝑥 +
1

3
(𝑓1𝑦𝑦 − 2𝑓2𝑥𝑦 +

2𝑓2𝑓2𝑥 − 𝑓2𝑓1𝑦) = 0.               (4) 

Once the conditions in equations (3) and (4) are satisfied, we 

proceed to construct a 3 × 3 matrix 

𝑀 = 𝑃𝑑𝑥 + 𝑄𝑑𝑦                          (5) 

where  

𝑃 = (
1

3
) [

−2𝑓1 −3𝑓0 3𝑓0𝑦 + 3𝑓0𝑓2
0 𝑓1 2𝑓2𝑥 − 𝑓1𝑦 − 3𝑓0𝑓3

−3 0 𝑓1

], 

𝑄 = (
1

3
) [

−𝑓2 0 2𝑓1𝑦 − 𝑓2𝑥 + 3𝑓0𝑓3
3𝑓3 2𝑓2 3𝑓3𝑥 − 3𝑓1𝑓3
0 3 −𝑓2

], 

and solve the equation  

𝑑𝑟 = 𝑀𝑟,                                                               (6) 

where 𝑟 = [
𝑈
𝑉
𝑊

], for the three components of 𝑟; a special 

solution is usually enough. We can also construct 

𝐾 = 𝑈
𝑊⁄ , 𝐿 = 𝑉

𝑊⁄ .                                            (7) 

Next, we construct the 2 × 2 matrix 
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𝑍 = [
(2𝐾 − 𝑓1)𝑑𝑥 − 𝐿𝑑𝑦 𝑓0𝑑𝑥 + 𝐾𝑑𝑦

−𝐿𝑑𝑥 − 𝑓3𝑑𝑦 𝐾𝑑𝑥 + (𝑓2 − 2𝐿)𝑑𝑦
], 

and solve for 𝑅 from 

𝑑𝑅 = 𝑍𝑅,                                                  (8) 

where 𝑅 = [
𝐹𝑥

𝐹𝑦
] = [

𝑏
𝑐
].  Finally, we solve  

𝑑𝐹 = [𝑑𝑥 𝑑𝑦]𝑅;                                    (9) 

the two independent solutions will be taken as 𝐹  and 𝐺. 
Note that 𝐹 and 𝐺 are the invertible change of independent 

and dependent variables that will map the nonlinear 

equation (1) into a linear equation 
𝑑2𝑌

𝑑𝑋2 = 0,                                                           (10) 

where 𝑋 =  𝐹 (𝑥, 𝑦) and 𝑌 =  𝐺(𝑥, 𝑦). 
The variable frequency oscillator equation was 

considered by (Mustafa et al., 2013) where a new 

characterization of Sundman linearizable equations in 

terms of the coefficients of ODE and one auxiliary 

function was given. The general solutions for the first 

integral were also obtained explicitly. It is important to 

note that, the variable frequency oscillator equation can 

be linearized through the Laguerre form of the 

generalized Sundman transformation for the case 𝑓3 =
0, 𝑓4 = 0.  We will use the method of differential forms 

to linearize this same equation. 

This equation is given as 

𝑦′′ + 𝑦𝑦′2 = 0,                             (11) 

with the coefficients as in equation (2);  𝑓0 = 𝑓1 = 𝑓3 =
0, 𝑓2 = 𝑦 satisfying the linearizable conditions (3) and 

(4). Construction of the matrix 𝑀  from equation (5) 

gives  

𝑀 =

[
 
 
 
 
 −

𝑦

3
𝑑𝑦 0 0

0
2𝑦

3
𝑑𝑦 0

−𝑑𝑥 𝑑𝑦 −
𝑦

3
𝑑𝑦]

 
 
 
 
 

, 

so that equation (6) is now 

𝑑𝑟 =

[
 
 
 
 
 −𝑈

𝑦

3
𝑑𝑦

2

3
𝑉𝑦𝑑𝑦

−𝑈𝑑𝑥 + 𝑉𝑑𝑦 −
𝑊

3
𝑦𝑑𝑦]

 
 
 
 
 

. 

Setting 𝑉 = 0, we have 𝑑𝑈 = −
𝑈

3
𝑦𝑑𝑦, 𝑑𝑉 = 0,   

𝑑𝑊 = −𝑈𝑑𝑥 −
𝑊

3
𝑦𝑑𝑦, so that 

𝑈𝑥 = 0, 𝑈𝑦 = −𝑈
𝑦

3
, 𝑊𝑥 = −𝑈, 𝑊𝑦 = −

𝑊

3
𝑦.  

Now, 
𝜕𝑊

𝑊
= −

𝑦

3
𝜕𝑦  which implies that 𝑊 = 𝑒−

𝑦2

6 𝑎(𝑥), 

for some function 𝑎(𝑥).  But 𝑊𝑥 = −𝑈 = 𝑎′(𝑥)𝑒−
𝑦2

6 , 
using the special solution 𝑎(𝑥) = 𝑥,  we have 𝑈 =

−𝑒−
𝑦2

6 , 𝑉 = 0, 𝑊 = 𝑥𝑒−
𝑦2

6 .  Therefore, equation (7) is 

now  𝐾 = −
1

𝑥
 and 𝐿 = 0, and the matrix Z becomes 

𝑍 = [
−

2

𝑥
𝑑𝑥 −

𝑑𝑦

𝑥

0 −
𝑑𝑥

𝑥
+ 𝑦𝑑𝑦

]. 

Then, one has from equation (8) that 

𝑑𝑅 = [
−

2𝑏

𝑥
𝑑𝑥 −

𝑐𝑑𝑦

𝑥

−𝑐
𝑑𝑥

𝑥
+ 𝑐𝑦𝑑𝑦

], 

and          

𝑑𝑏 = −
2𝑏

𝑥
𝑑𝑥 −

𝑐𝑑𝑦

𝑥
,                             (12) 

𝑑𝑐 = 𝑐 (−
𝑑𝑥

𝑥
+ 𝑦𝑑𝑦).                          (13) 

Integrating equation (13), we have 

𝑐 =
𝑘

𝑥
𝑒

𝑦2

2 , 

where 𝑘 = 𝑒𝑘 is a constant. 

Now, we see from equations (12) and (13) that 𝑏𝑥 =

−
2𝑏

𝑥
, 𝑏𝑦 = −

𝑐

𝑥
, 𝑐𝑥 = −

𝑐

𝑥
 and 𝑐𝑦 = 𝑐𝑦.  One also 

notices that, 𝑏𝑦 = 𝑐𝑥 , and therefore, 

𝑏𝑦 = −𝑘𝑥−2𝑒
𝑦2

2 .                              (14) 

On integration, we have  

𝑏 =
−𝑘√𝜋√2 𝑒𝑟𝑓(

𝑦

√2
)

2𝑥2 + 𝑔(𝑥),                          (15) 

where 𝑒𝑟𝑓 (
𝑦

√2
) is the error function. 

Differentiating equation (15) with respect to 𝑥, one sees 

that 

𝑏𝑥 =
𝑘√𝜋√2 𝑒𝑟𝑓(

𝑦

√2
)

𝑥3 + 𝑔′(𝑥).              (16) 

The other expression for 𝑏𝑥 is known to be 

𝑏𝑥 =
𝑘√𝜋√2 𝑒𝑟𝑓(

𝑦

√2
)

𝑥3 −
2𝑔(𝑥)

𝑥
.                 (17) 

We now compare the expressions for 𝑏𝑥 and have the 

linear differential equation of first order 

𝑔′(𝑥) +
2

𝑥
𝑔(𝑥) = 0.                      (18) 

The integrating factor of the linear differential equation 

(18) is 𝑥2,  and the solution of the equation is now 

𝑔(𝑥) =
𝑚

𝑥2, where 𝑚 is another constant. 

Substituting this expression of 𝑔(𝑥) into equation (15), 

we have 

𝑏 =
−𝑘√𝜋√2 𝑒𝑟𝑓(

𝑦

√2
)

2𝑥2 +
𝑚

𝑥2.                       (19) 

Therefore 𝑏 = 𝐹𝑥 =
−𝑘√𝜋√2 𝑒𝑟𝑓(

𝑦

√2
)

2𝑥2
+

𝑚

𝑥2
  and  

𝑐 = 𝐹𝑦 =
𝑘

𝑥
𝑒

𝑦2

2 , so that 𝑑𝐹 = [𝑑𝑥 𝑑𝑦] [
𝑏
𝑐
]  becomes 

𝑑𝐹 = (
−𝑘√𝜋√2 𝑒𝑟𝑓(

𝑦

√2
)

2𝑥2 +
𝑚

𝑥2)𝑑𝑥 + (
𝑘

𝑥
𝑒

𝑦2

2 ) 𝑑𝑦.   (20) 

Integrating equation (20), we have 

𝐹 = 𝑘 (
√𝜋√2 𝑒𝑟𝑓(

𝑦

√2
)

𝑥
) − 𝑚 (

1

𝑥
).              (21) 

Therefore, we take 

𝑋 =
1

𝑥
,   𝑌 =

√𝜋√2 𝑒𝑟𝑓(
𝑦

√2
)

𝑥
               (22) 

to be the linearizing point transformation. With the 

transformation 𝑌 = 𝑐1𝑋 + 𝑐2,  one sees that 

√𝜋√2 𝑒𝑟𝑓 (
𝑦

√2
) = 𝑐1 + 𝑐2𝑥 is the solution of the variable 

frequency oscillator equation. This solution is in line with 

the one obtained by (Mustafa et al., 2013), where the two-

parameter family solutions of equation was obtained to be 

𝑒𝑟𝑓𝑖 (
𝑦

√2
) = 𝑐1𝑥 + 𝑐2,  where 𝑒𝑟𝑓𝑖(𝑦) =

2

√𝜋
∫ 𝑒𝑡2

𝑑𝑡
𝑦

0
 is 

the imaginary error function. One sees that our method of 

differential forms eliminated the complexity associated 

with the error function. 
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Linearization of the Modified Ivey’s Equation via the 

Generalized Sundman Transformation 

A generalized Sundman transformation is a non-point 

transformation defined by the formulae 

𝑢(𝑡) = 𝐹(𝑥, 𝑦), 𝑑𝑡 = 𝐺(𝑥, 𝑦)𝑑𝑥, 𝐹𝑦𝐺 ≠ 0.        (23) 

The requisite form of a linearizable ordinary differential 

equation (1) that can be translated into a linear ordinary 

differential equation 

𝑢′′ + 𝛽𝑢′ + 𝛼𝑢 = 𝛾,                          (24) 

through the transformation (23), is given by  

𝑦′′ + 𝑓2𝑦
′2 + 𝑓1𝑦

′ + 𝑓0 = 0,                 (25) 

where 𝛼(𝑡), 𝛽(𝑡)  and 𝛾(𝑡)  from equation (24) are some 

functions. 

Consider the case 𝑓3 ≠ 0  and 𝑓5 ≠ 0,  where 𝑓3 = 𝑓1𝑦 −

2𝑓2𝑥 ,  𝑓4 = 2𝑓0𝑦𝑦 − 2𝑓1𝑥𝑦 + 2𝑓0𝑓2𝑦 − 𝑓1𝑦𝑓1 + 2𝑓0𝑦𝑓2 +

2𝑓2𝑥𝑥  and 𝑓5 = 𝑓2𝑥𝑥 + 𝑓2𝑥𝑓1 + 𝑓3𝑥 + 𝑓1𝑓3.  For the equation 

(25) to be linearizable by (23), the sufficient conditions are 

that: 

 𝑓0𝑥 = 2𝑓0
(𝑓5−𝑓1𝑓3)

𝑓3
,                    (26) 

𝑓2𝑥𝑥𝑦 = −𝑓2𝑥𝑦𝑓1 − 𝑓3𝑥𝑦 − 2𝑓2𝑥
2 − 2𝑓2𝑥𝑓3 − 𝑓3𝑦𝑓1 +

(𝑓3𝑦𝑓5)𝑓3
−1,                     (27) 

𝑓2𝑥𝑥𝑥 = −𝑓3𝑥𝑥 − 𝑓1𝑥𝑓2𝑥 − 𝑓1𝑥𝑓3 + 𝑓2𝑥𝑓1
2 + 𝑓1

2𝑓3 − 2𝑓1𝑓5 +

𝑓3
−1𝑓5(𝑓3𝑥 + 𝑓5),             (28) 

and  

𝑓3𝑓5(6𝑓0𝑦𝑓2𝑥 + 2𝑓2𝑥𝑦𝑓0 + 4𝑓2𝑥𝑓0𝑓2 + 2𝑓3𝑦𝑓0 + 4𝑓0𝑓2𝑓3 +

𝑓1𝑓5) − 𝑓3
2(6𝑓2𝑥

2 𝑓0 + 12𝑓2𝑥𝑓1𝑓3 − 6𝑓0𝑦𝑓5 + 6𝑓0𝑓3
2) −

𝑓4𝑓5
2 − 2𝑓5

3 = 0.                            (29)               

One obtains the functions 𝐹 and 𝐺 by solving the following 

equations: 

𝐹𝑥 = 0,                                              (30) 

𝐹𝑦𝑦 =
𝐹𝑦𝐺𝑦+𝑓2𝐹𝑦𝐺

𝐺
,                                   (31) 

𝐺𝑥 =
𝐺(𝑓2𝑥𝑥+𝑓2𝑥𝑓1+𝑓3𝑥)

𝑓3
,                  (32) 

𝐺𝑦 =
𝐺𝑓3(𝑓2𝑥+𝑓3)

𝑓5
.                                (33) 

The constants from equation (24), 𝛼, 𝛽 and 𝛾 are determined 

from the equations below: 

𝛼 =
𝐺(𝑓0𝑦+𝑓0𝑓2)−𝐺𝑦𝑓0

𝐺3 ,                       (34) 

𝛽 =
𝐺𝑥+𝐺𝑓1

𝐺2 ,                                   (35) 

𝛾 =
𝛼𝐹𝐺2−𝐹𝑦𝑓0

𝐺2 .                        (36) 

The general Ivey’s differential equation is given as  

𝑦′′ −
1

𝑦
𝑦′2 +

2

𝑥
𝑦′ + 𝑘𝑦2 = 0,                  (37) 

and the coefficients 𝑓0 = 𝑘𝑦2, 𝑓1 =
2

𝑥
, 𝑓2 = −

1

𝑦
 does not 

satisfy all the linearizability conditions (26), (27), (28) and 

(29), and hence it is not linearizable using the generalized 

Sundman transformation. 

On a check, one discovers that the modified equation 

𝑦′′ −
1

𝑦
𝑦′2 + 𝑦𝑦′ = 0,                                (38) 

with 𝑥𝑦 = 2, 𝑘 = 0, is linearizable. The equation (38) is in 

the form of equation (25) with the coefficients  

𝑓0 = 0, 𝑓1 = 𝑦, 𝑓2 = −
1

𝑦
.  

We see that 𝑓3 = 1 ≠ 0, 𝑓4 = −𝑦, 𝑓5 = 𝑦 ≠ 0.   
Since 𝑓3 = 1 ≠ 0 and 𝑓5 = 𝑦 ≠ 0, we consider the case 𝑓3 ≠
0, 𝑓5 ≠ 0. Next, we test the linearizability conditions (26), 

(27), (28) and (29). On a check, one sees that all the conditions 

are satisfied. Since all the linearizability conditions are 

satisfied, we proceed and solve equations (31), (32) and (33).  

Obviously, 

𝐹𝑥 = 0, 𝐹𝑦𝑦 =
−

𝐺𝐹𝑦

𝑦
+

𝐹𝑦𝐺
𝑦

𝐺
= 0, 𝐺𝑥 = 0,

𝐺𝑦 =
𝐺

𝑦
. 

We take the solution 𝐹 = 𝑦, 𝐺 = 𝑦 which satisfies 𝐹𝑦𝑦 , 𝐺𝑥 

and 𝐺𝑦 . We now obtain the transformation 𝑢 = 𝑦, 𝑑𝑡 = 𝑦𝑑𝑥. 

Next, we find the expressions for 𝛼, 𝛽 and 𝛾 as given from 

equations (34), (35) and (36) respectively. One sees that 

𝛼 = 0, 𝛽 = 1, 𝛾 = 0, 
and we have from equation (24) that 

𝑢′′ + 𝑢′ = 0.                                                       (39) 

The characteristic equation of (39) is 𝑟2 + 𝑟 = 0,  which 

implies that 𝑟 = 0, 𝑟 = −1.  One now have the general 

solution to be 𝑢 = 𝑐1 + 𝑐2𝑒
−𝑡 ,  where 𝑐1, 𝑐2  are arbitrary 

constants.  

Applying the generalized Sundman transformation to the 

modified Ivey’s equation, we see that  

𝑦(𝑥) = 𝑐1 + 𝑐2𝑒
−𝑡, 𝑡 = 𝜙(𝑥), 

so that 𝑦(𝑥) = 𝑐1 + 𝑐2𝑒
−𝜙(𝑥), where 𝑡 = 𝜙(𝑥) is a solution 

of the equation 
𝑑𝑡

𝑑𝑥
= 𝑐1 + 𝑐2𝑒

−𝑡. 

 

Remark 

One can infer that equation (25) is a special case of equation 

(2) by comparing equations (2) and (25) together. Even 

though equation (25) is a special case of equation (2), the 

procedures for the two approaches GST and DF are different. 

Generalized Sundman transformation is a non-point 

transformation as opposed to differential forms, which is a 

point transformation. 

 

CONCLUSION 

The variable frequency oscillator equation and the modified 

Ivey's equation are two nonlinear ordinary differential 

equations that are taken into consideration. Differential forms 

(DF) and the generalized Sundman transformation (GST) 

were used to linearize the aforementioned equations. It was 

discovered that the non-Laguerre form of GST can linearize 

the modified Ivey's differential equation, but that DF cannot. 

Additionally, the differential forms (DF) and the Laguerre-

form of the generalized Sundman transformation, in the case 

when 𝑓3 = 0, 𝑓4 = 0 , allow for the linearization of the 

variable frequency oscillator equation.   During the 

linearization procedure, the general solutions to the two 

nonlinear differential equations were also discovered. 
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