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ABSTRACT 

Identification is the most important stage of all the stages of the modeling process. This research identifies a 

suitable order for the two different time series models ARIMA and GARCH. For GARCH two different 

distributions that is GARCH-STD and GARCH-GED with different sample sizes in fitting and forecasting 

stationary and non-stationary data structures was considered. The study recommends the use smallest 

information criterion like AIC and BIC to select the order of the model.  
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INTRODUCTION 

Identification is the most important stage of all the stages of 

the modeling process as the other two directly depends on it. 

The identification attempt to provide a discernment of the 

characteristics of the stochastic of the series under 

investigation. Hypothesis testing regarding the generating 

mechanism, prediction of future values and related inquiries 

so that the general linear model   assumption is achieved 

(MODEL, 2016). proposed AIC and BIC, Predictive Least 

Squares (PLS) and Sequentially Normalized Least Squares 

(SNLS) for model selection Stadntska. T (2008). in a study 

comparison of automated procedures for ARMA model 

identification reported that model identifications are more 

precise for big dependency processes; SCAN and ESACF are 

superior to MINIC for mixed (1,1) models; the positive effect 

of simple size is more pronounced for MINIC than for SCAN 

and ESACF, SCAN and ESACF tend to select higher order 

mixed structures in larger samples. Their conclusions are 

confined to stationary non-seasonal time series. The reported 

findings of their Monte Carlo experiments could help in 

choosing an appropriate identification procedure if some 

knowledge about properties of the stochastic process under 

study is available. The evaluated methods were superior to 

subjective judgments, for some models and parameterizations 

their accuracy remained disappointing. Moreover, precise 

model identification is not guaranteed, even in very large 

samples. The autoregressive integrated moving average 

(ARIMA) has been commonly used in the field of social, 

management and behavioral sciences, Fortes, M., & 

Delignieres. (2005). demonstrate the procedure for model 

selection in production system with random output via the use 

of Adjusted Coefficient of Determination (R2), Akaike and 

Schwarz criteria tools.  

The main objective of this research is to determine the best 

order of some time series models such ARIMA and GARCH 

using simulation technique under different sample sizes. The 

rest of the article is organized as follows. Evaluation of the 

performance of the robust order selection using AIC and BIC 

is provided. Application of a real dataset in order to find the 

best order of the model in fitting and forecasting has also been 

provided. And finally, the conclusion is provided. 

 

MATERIAL AND METHODS 

Model Identification Procedures 

It is very pertinent at this juncture to explain some basic 

concepts that are very prominent in time series modeling, they 

are as follows 

Analetic Frame Work of the Study  

An autoregressive model is simply a linear regression of the 

current value of the series against one more prior value of the 

series. The value of (p) is called the order of the AR model. 

AR models can be analyzed with one of various methods, 

including standard linear least squares techniques (see Cryer 

and Chan, 2008 and the references therein for more details). 

Assume that a current value of the series is linearly upon its 

previous value, with some error. Then we could have linear 

relationship. 

Xt = α1xt-1 + α2x2xt-2 + …. + αpxt –p + et  (1) 

Where α1, α2, … αp are autoregressive parameter and et is a 

white noise process with zero mean and variance (σ2). 

Autoregressive are as their names suggest regressions on 

themselves. Specifically, apth-order autoregressive process 

(xt) satisfied the equation 3.1.0. The current value of the series 

Yt is a linear combination of the p most recent past values of 

itself plus an ‘innovation’ term et that incorporates everything 

new in the series at time t that is not explained by the past 

value. Thus, for every t, we assume that et is independent of 

Xt-1, Xt-2, Xt-3, ...  

Consider now the pth- order autoregressive model  

Yt= Ø1Yt-1 +Ø2Yt-2+...ØpYt-p+et  (2)  

With AR characteristic polynomial  

Ø(x) = 1– Ø1x–Ø2x2 … – Øpxp  (3) 

And the corresponding AR characteristic equation  

1– Ø1x–Ø2x2=0    (4) 

1– Ø1x–Ø2x2 … – Øpxp = 0   (5) 

Assume that et be independent of Yt –1, Yt-2,Yt-3…. a stationary 

solution to the Equation exists if and only if the p roots of the 

AR characteristic equation each exceed 1  in absolute value 

(modulus). Other relationships between polynomial root and 

coefficient may be used to show that the following two 

inequalities are necessary, but not sufficient, that both  

Ø1+Ø2 +…+Øp<1    (6) 

|Øp|<1      

     

Assuming stationary and zero means, we may multiply 

Equation by Yt-k, take expectations, divide by γØ, and obtain 

important recursive relationship  

ρk= Ø1ρk-1 + Ø2ρk-2 +…Øpρk-p…for k> 0          (7) 

  

Putting k= 1, 2…, and p into Equation (3.1.4) and using ρ0 = 

1 and ρ ̶ k = ρk, we get the general Yule-Walker equations  

ρ1= Ø1 + Ø2ρ1 + Ø3ρ2 + … Øpρp-1  (8) 

ρ2= Ø1ρ-1 + Ø2ρ0 + Ø3ρ1 + … Øpρp-2  (9) 

. 
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. 

ρp= Ø1ρp-1 + Ø2ρp-2 + Ø3ρp-3 + …Øp  (10) 

        

Given numerical values for φ1, φ2…, φp, these linear equation 

can be solved to obtain numerical values for ρ1,ρ2,…, ρp. Then 

Equation can be used to obtain numerical values for ρ1 at any 

number of higher lags.  

Nothing that  

E(etYt) = E(et(Ø1Yt-1+Ø2Yt-2 +…ØpYt-p + et)) = E(et
2) = σe

2 

     (11) 

 

RESULT AND DISCUSSIONS  

In this section, we have identified suitable order identification 

for two different time series models with one considering two 

different distributions with four different sample sizes in 

fitting and forecasting stationary and non-stationary data 

structures. A simulation study is performed to generate a 

stationary and non-stationary dataset. 

 

Table 1: ADF unit root test with respect to the locations 

Sample  size Test values Lag order p-value Hypothesis Decision Remark 

20 -6.215 2 0.01 Unit root Reject (H0) Stationary 

60 -5.525 3 0.01 Unit root Reject (H0) Stationary 

100 -4.458 4 0.01 Unit root Reject (H0) Stationary 

140 -5.037 5 0.01 Unit root Reject (H0) Stationary 

 

Table 1. Gives the ADF test for stationarity were presented in 

the table above. A stationary data was simulated from a 

normal distribution at different sample size of 20, 60, 100 and 

140 to investigate empirically if they are stationary. The 

assumption of stationarity was confirmed in the simulated 

data. we can see that the unit root test for the simulated data 

with respect to the location at different sample sizes, the test 

reveals that the unit root doesn’t exist for the data at every 

location therefore we reject the null hypothesis n conclude the 

data is stationary. The figures show the auto correlation and 

partial auto correlation for the data respectively. 

 

 
Figure 1: ACF and PACF plot for the simulated data  

 

The figures above show the ACF and PACF behavior graphically at different sample sizes. 
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Figure 2: ACF and PACF plot for the simulated data  

 

The figures above show the ACF and PACF behavior graphically at different sample sizes. 

 

Table 2: AIC and BIC values for ARIMA (p,d,q) model 

 AIC  BIC 

Sample 

size  

ARIMA 

(1,1,1) 

ARIMA 

 (1,1,2) 

ARIMA 

 (2,1,1) 

ARIMA 

 (2,1,2) 

 ARIMA 

(1,1,1) 

ARIMA 

  (1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

20 62.99 63.10 64.91 65.05  65.82 66.88 68.69 69.8 

60 178.87 178.26 178.32 180.31  185.9 186.57 186.63 190.69 

100 293.34 295.37 295.29 296.83  301.13 305.75 305.67 309.81 

140 396.73 397.17 398.71 400.61  405.52 408.9 410.45 415.28 

 

Table 2: shows the AIC and BIC for the ARRIMA model at 

different sample sizes where the bolded one are the 

information criterion with least values. And we found the 

ARIMA (1,1,1) has the smallest value of all of the models 

therefore we selected the ARIMA (1,1,1) as a best model.   

 

Table 3: AIC and BIC values for GARCH (p,q) model with GED 

 AIC  BIC 

ample 

size  

GARCH 

(1,1) 

GARCH 

(1,2) 

GARCH 

(2,1) 

GARCH 

(2,2) 

 GARCH 

(1,1) 

GARCH 

(1,2) 

GARCH 

(2,1) 

GARCH 

(2,2) 

20 3.10 3.20 3.2 3.03  3.30 3.45 3.45 3.33 

60 2.97 3.03 3.01 3.03  3.11 3.18 3.02 3.25 

100 2.91 2.94 2.94 2.95  3.22 3.16 3.06 3.32 

140 2.92 2.90 2.93 2.96  2.92 2.93 2.95 2.98 

 

Table 3: above shows the goodness-of-fit for the GARCH 

(p,q) model where p,q=1,2. Four GARCH (p,q) models with 

the average values of AIC and BIC of 140 replications 

simulated from each model at various sample sizes. The 

bolded AIC and BIC are the criterion with minimum 

information values. 

 

Table 4: shows the estimated parameters and diagnostic of GARCH (1,1)-GED model. 

Parameters Generalized error distribution p-values 

Ω 1.439e^-01 0.0374* 

α1 1.000e^-04 0.0472** 

α2 0.420181 0.0411* 

β1 1.000e^+00 <2e^-16*** 

β2 3.6338 0.0002** 
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ARCH(1)- LM test 5.893 0.0012 

Q2 (15) 27.6709 0.0037 

Note: (*), (**) and (***) denote significance at 1%, 5% and 10% respectively.   

 

Table 4. Shows the diagnostic check for the GARCH (1,1)-

GED model from the table we found that all the values are 

significant at its significance level i.e., 1%, 5%, and 10% 

represent (*), (**) and (***) respectively. 

 

Table 5: AIC and BIC values for GARCH (p,q) model with StD 

 AIC  BIC 

sample 

size  

GARCH 

(1,1) 

GARCH 

(1,2) 

GARCH 

(2,1) 

GARCH 

(2,2) 

 GARCH 

(1,1) 

GARCH 

(1,2) 

GARCH 

(2,1) 

GARCH 

(2,2) 

20 3.29 3.39 3.85 3.48  3.49 3.63 3.63 3.78 

60 2.99 3.03 3.03 3.07  3.13 3.21 3.21 3.27 

100 2.91 2.93 2.93 2.95  3.02 3.06 3.06 3.11 

140 2.81 2.83 2.83 2.84  2.90 2.93 2.93 2.96 

 

Table 5: above shows the goodness-of-fit for the GARCH 

(p,q) model where p,q=1,2. Four GARCH (p,q) models with 

the average values of AIC and BIC of 140 replications 

simulated from each model at various sample sizes. The 

bolded AIC and BIC are the criterion with minimum 

information values. 

 

Table 6: shows the estimated parameters and diagnostic of GARCH (1,1)-StD model. 

Parameters Generalized error distribution p-values 

Ω 1.739e^-01 0.0271* 

α1 1.230e^-06 0.0322* 

α2 0.650181 0.0021* 

β1 1.10e^+04 <2e^-16*** 

β2 4.6365 0.0044** 

GARCH(1)- LM test 6.497 0.0065 

Q2 (15) 22.071 0.0143 

Note: (*), (**) and (***) denote significance at 1%, 5% and 10% respectively.   

 

Table 6 shows the diagnostic check for the selected model i.e. GARCH (1,1) StD and we found that all its parameters are 

significant at its level. 

 

Volatility Fitting and forecasting of the Selected Model with real data set 

 

Table 7: Stationarity Test for the Data  

Difference Test values Lag order p-value Hypothesis Decision Remark 

0 -2.8908 3 0.2272 Unit root Reject (H1) Not Stationary 

1st -2.7739 3 0.2732 Unit root Reject (H1) Not Stationary 

2nd -3.6421 3 0.0447 Unit root Reject (H0) Stationary 

 

Table 7. Shows a stationarity check for the real data set, we 

found that the data is not stationary without the differencing 

and at the first difference ADF R-value is 0.2272 and 0.2732 

respectively but after the 2nd difference the data turn to 

stationary therefore we will proceed with the analysis at the 

second difference. 

 
Figure 3: ACF and PACF plot for the Nigerian Meteorological Agency data  
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Figure 4: ACF and PACF plot for the Nigerian Meteorological Agency data  

 

Table 8: Estimated parameters for the selected models for ARIMA GARCH with generalized normal Distribution and 

Student t-Distribution  

Model  Parameters  Information criterion 

𝝁 𝜶𝟏 𝜷𝟏 p-values AIC BIC 

ARIMA (1,1,1) 119.09+05 -0.406 -1.000 0.0436 854.5 858.9 

GARCH(1,1)-GED 1.599e+02 7.448e-01 1.830e-07 0.0005 9.082 9.188 

GARCH(1,1)-StD 1.600e+02 9.0480e-01 1.875e-02 0.0030 9.068 9.099 

 

Table 8 is the estimated parameter and the information criteria 

for the selected models.  

Where ARIMA (1,2,1) has a p-value of 0.043 GARCH (1,1)-N 

0.0206, GARCH (1,1)-GED is 0.0005, GARCH (1,1)-StD is 

0.0030 and EGARCH (1,1) 0.0208 respectively. Therefore, we 

fail to reject the null hypothesis in favor of alternative for all of 

the models. 

 

Table 9 Diagnostic check of the selected model of the real dataset 

Model ARIMA (1,1) GARCH(1,1)-GED GARCH(1,1)-StD 

Test statistic Values P-value Values P-value Values P-value 

Jarque-Bera Test 12.20 0.007 0.995 0.020 1.474 0.079 

Shapiro-Wilk Test 2.800 0.002 0.042 0.000 0.801 0.000 

Ljung-Box Test (R2) 12.55 0.024 14.15 0.003 13.782 0.003 

LM Arch Test 15.36 0.223 15.38 0.012 20.298 0.061 

 

Table 9 is a diagnostic check for the validation of the above 

table and we found that all the model is validated with the p-

values i.e. they are less than the critical values. And the figure 

below is the forecasted model for the real data set where the 

shaded zone is the forecasted zone and the line is the fitted one. 

 

 
Figure 5: ARIMA (1,1,1) forecast   Figure 6: GARCH(1,1)-GED forecast  
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Figure 7: GARCH(1,1)-StD forecast 

 

CONCLUSION  

This study establishes the procedure for selecting the order of 

the model in order to get a good result in fitting and forecasting 

a time series data, the procedure was tested using a simulation 

with different sample size and validated with the diagnostic 

check after, the procedure was used to fit and forecast the real 

data set, which give us a good result. Indeed, this procedure is 

the best for selecting a time series order of a model. 

 

RECOMMENDATION 

Based on this study, we recommend the following procedure 

i. Use smallest Information Criteria to select the order like 

AIC and BIC 

ii. The coefficients must be significant 

iii. Use LJuag-Box Q2 statistic and Lm test as the diagnostic 

test. 
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