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ABSTRACT 

In this paper, we extended the well-known alternating direction method of multipliers (ADMM) for 

optimization problems to generalized Nash equilibrium problems (GNEP) with shared constraints. We 

developed an ADMM-type algorithm with fixed regularization to tackle the problem (GNEP) where an upper 

estimate for the operator norm is not known and then we apply a multiplier-penalty in order to get rid of the 

joint constraints. We equipped the Hilbert space with an appropriate weighted scalar product and it turns out 

to be weakly convergent under a lipschitz and monotonicity assumption. A proximal term is then added to 

improve the convergence properties. Furthermore, a comparative analysis of quasi-variational inequality 

method, interior point method, penalty method and the proposed method are discussed.  
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INTRODUCTION 

Let H be a real Hilbert space with inner product 〈. , . 〉 and 

norm ǁ.ǁ.   Let 𝑓𝑖: 𝐻 → ℝ be a proper, convex and lower semi-

continuous function and 𝑔𝑖: 𝐻 → ℝ be continuously Fr𝑒́chet-

differentiable with 𝑔𝑖(𝑥𝑖 , 𝑥−𝑖)  being convex for any fixed 

(𝑥−𝑖). Let 𝐴𝑖 and 𝐵𝑖 be linear operators from 𝐻 to C, and b ∈
C is a vector. Thus, C is a non-empty, closed, convex cone and 

subset of  𝐻. A generalized Nash equilibrium problem is of 

the form 

min
𝑥𝑛∈ℝ

𝑛
𝑓𝑖(𝑢𝑖 ,⋯ , 𝑢𝑖−1, 𝑥𝑖 , 𝑢𝑖+1, ⋯ , 𝑥𝑁) 

   

s. t   ∑ 𝐴𝑖𝑋𝑖 = 𝑏,
𝑛
𝑖=1       𝑥𝑖 ∈ 𝑋𝑖           (1) 

 

For all i = 1,⋯ , N. 
Let  

L(x, μ) ∶= 𝑓𝑖(𝑥𝑖 , 𝑥−𝑖) + (𝜇|𝐴𝑖𝑥𝑖 − 𝑏) 

LA(x, μ) ∶= 𝑓𝑖(𝑥𝑖 , 𝑥−𝑖) + (𝜇|𝐴𝑖𝑥𝑖 − 𝑏) +
𝛽

2
‖𝐴𝑖𝑥𝑖 − 𝑏‖ 

denote the Lagrangian and the augmented Lagrangian of (1), 

respectively, where 𝛽 > 0is the penalty parameter. Then a 

standard optimization technique for minimizing the 

generalized. Nash equilibrium problem of this kind (1) is 

given by 

{

𝛼1 , 𝜇1 ∈ 𝐶                                                           

𝑥𝑖
𝑘+1 =𝑎𝑟𝑔min

𝑥∈𝑋
LA(xi, xi

k)                             

𝜇𝑘+1 = 𝜇𝑘 + 𝛽(𝐴𝑖 , 𝑥𝑖
𝑘+1 − 𝑏), 𝑘 ≥ 1    

 

provided that a minimum of the augmented Lagrangian exists. 

Another fruitful concept in applied mathematics is the Nash 

equilibrium problems (NEPs), which were initially developed 

by John F. Nash in the 1950s, see (Nie, J et.al. 2023). Over the 

years, Nash’s theory has been extended and broadly applied 

to many fields in biology, economics and engineering, see for 

instance (Benenati et. al 2023; Chen et. al. 2023; Gahururu et. 

al. 2023; Nash Jr. et. al. 1950; Shi et. al. 2023; Shehu et. al. 

2019) and the references therein. Consequently, the demand 

for numerical methods tackling these kinds of problems rose. 

Since Nash and generalized Nash problems are intertwined 

optimization problems, the optimization theory and certain 

algorithms were extended to these problem classes. For an 

introduction to the theory and algorithmic of generalized 

Nash problems, see for example (Chen et. al. 2023). The 

structure of these (generalized) Nash problems suggests that 

a suitable generalization of the splitting methods described 

above could yield efficient algorithms, which could serve as 

tools to solve these kinds of problems. Furthermore, it is 

desirable to develop such splitting methods because they tend 

to resemble the structure of applications where each player 

decides on his or her own how to react. There exist many 

approaches for the numerical solution of GNEPs, and the 

interested reader is referred to the survey papers (Chen, et. al 

2023; Deng, et. al. 2023) for more details. However, these 

survey papers consider the finite-dimensional case only. 

Solution methods in an infinite-dimensional Hilbert space (or 

Banach space) are still in their infancy.  The ideas from the 

finite-dimensional setting can sometimes  be generalized to 

the Hilbert space setting, like the usage of the Nikaido-Isoda 

function and the application of Moreau-Yosida-type methods 

(Jordan, et. al. 2023; Laine 2023). The augmented Lagrangian 

methods from (Lee, 2023; Liu, 2023) may be viewed as 

extensions of this approach, but they have to solve a 

(standard) Nash equilibrium problem (NEP) in each iteration. 

Some other methods operating in an infinite-dimensional 

context are (Braouezec, et. al. 2023; Cai, et. al. 2023; 

Catellani, et. al. 2023; Meng, et. al. 2023) but none of them is 

a splitting-type method and many of them are situated in an 

optimal control context. Splitting methods for GNEPs that are 

based on such forward-backward methods can be found in 

(Borgens, et. al. 2023; Boyd, et. al. 2023; Singh, et. al 2023; 

Zhu, et. al 2023). These articles consider splitting-type 

methods that are based on forward-backward methods; in 

(Boyd, et. al. 2023), the authors focus on standard NEPs and 

show afterwards how to solve certain GNEPs under a 

cocoercivity assumption. On the other hand, the closely 

related algorithms considered in (Borgens, et. al. 2023; Singh, 

et. al 2023; Zhu, et. al. 2023) (for finite-dimensional 

problems) are fully distributed, but they use a strong 

monotonicity and Lipschitz assumption. Taking into account 

the situation of the standard ADMM-method for optimization 

problems, one might expect that (a) no regularization is 

necessary for GNEPs with N =2 players, and (b) arbitrary 

(possibly small) regularization parameters γi > 0  are 

sufficient for the global convergence of GNEPs with N ≥ 3 

players. The subsequent discussion shows that none of these 

statements hold. Hence, regularization is also necessary for 

two players, and the corresponding regularization parameters 
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have to be sufficiently large. 

 

Preliminaries 

This section contains some definitions and basic results that 

will be used in our subsequent analysis. The letter 𝐻 always 

denotes a real Hilbert space. We first state the formal 

definition of some classes of functions that play an essential 

role in our analysis. 

 

Definition 1. Let X ⊆ H  be a nonempty subset. Then a 

mapping A: X → H is called  

(a) monotone on X if 〈𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦〉 ≥ 0 for all x, y ∈ X 

(b) Lipschitz continuous on X if there exists a constant L > 0 

such that 
‖𝐴𝑥 − 𝐴𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖,    
for all 𝑥, 𝑦 ∈ 𝑋.  

 

We next recall some properties of the projection, let C ⊆ H 

be a nonempty, closed, and convex subset of 𝐻. For any 

point u ∈ H, there exists a unique point 𝑃𝐶𝑢 ∈ 𝐶 such that 
‖𝑢 − 𝑃𝐶𝑢‖ ≤ ‖𝑥 − 𝑦‖,   ∀ 𝑦 ∈ 𝐶. 
 

𝑃𝐶 is called the metric projection of H onto C. We know that 

𝑃𝐶 is a nonexpansive mapping of H onto C. It is also known 

that 𝑃𝐶 satisfies 

〈𝑥 − 𝑦〉 ≥ ‖𝑃𝐶𝑥 − 𝑃𝐶𝑦‖
2,       ∀ 𝑥, 𝑦 ∈ 𝐻.     (2) 

 

Furthermore, 𝑃𝐶𝑥 is characterized by the properties  

 

𝑃𝐶𝑥 ∈ 𝐶 and  〈𝑥 − 𝑃𝐶𝑥, 𝑦 − 𝑃𝐶𝑦〉   (3) 
 

This characterization implies that 

 
‖𝑥 − 𝑦‖2 ≥ ‖𝑥 − 𝑃𝐶𝑥‖

2 + ‖𝑦 − 𝑃𝐶𝑦‖
2,   ∀ 𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶.   

     (4) 

The following elementary lemma will be used in our 

convergence analysis.  

 

Lemma 1. In H, the following inequality holds: 

 
‖𝑥 + 𝑦‖2 ≤ ‖𝑥‖2 + 2〈𝑦, 𝑥 + 𝑦〉,   ∀𝑥, 𝑦 ∈ 𝐻. 
 

Lemma 2. The following identities hold in H: 

 

(a) ‖𝑥 + 𝑦‖2 = ‖𝑥‖2 + 2〈𝑥, 𝑦〉 + ‖𝑦‖2,  for all x, y ∈ H.  

(b) ‖𝜆𝑥 + (1 − 𝜆𝑦)‖2 = 𝜆‖𝑥‖2 + (1 − 𝜆𝑦)‖𝑦‖2 + 𝜆(1 −
𝜆𝑦)‖𝑥 − 𝑦‖2 for all x, y ∈ H and λ ∈ ℝ. 

 

Lemma 3. Let C  be a nonempty set of H  and {𝑥𝑛}  be a 

sequence in Hsuch that the following two conditions hold:  

(a) for any x ∈ C, lim
𝑛→∞

‖𝑥𝑛 − 𝑥‖exists;  

(b) every sequential weak cluster point of {𝑥𝑛} is in C.  

Then {𝑥𝑛} converges weakly to a point in C.  

 

MATERIALS AND METHODS 

This section is devoted to developing an algorithm for finding the solution of a convex generalized Nash equilibrium problem 

(GNEP). The method presented here uses a fixed regularization parameter. The precise statement of the algorithm is given 

below. 

Algorithm 1 (Proposed Method).  

Initialization: Choose a starting point (x0, μ0) ∈ C, parameters β > 0, 𝛾𝑖 > 0 for all i = 1,⋯ , N, and set k ∶= 0 

Step 1: If a suitable termination criterion is satisfied: STOP  

Step 2: For i = 1,⋯ , N, compute  

Step 3: 𝑥𝑖
𝑘+1 ∶= 𝑎𝑟𝑔 min

𝑥𝑖∈𝑋𝑖
{𝑓𝑖(𝑥𝑖) + 𝑔𝑖(𝑥1

𝑘+1, ⋯ , 𝑥𝑖−1
𝑘+1, 𝑥𝑖 , 𝑥𝑖+1

𝑘+1 , ⋯ , 𝑥𝑁
𝑘) 

               +〈μk|AixI〉C +
γi

2
‖xi − xi

k‖
H

2
 

                                            +β

2
|| Aixi + ∑ Aixi

k+1 + ∑ Aixi
k − bN

i=k+1
k−1
i=1 ||H

2 }       (5) 

Step 4: Define  

𝜇𝑘+1 ∶= 𝜇𝑘 + 𝛽(∑ Aixi
k − bN

i=k+1 )                   (6) 

 

Step 5: Set k ← k + 1, and go to Step 2.  

We note that every subproblem (5) is strongly convex for all i  and all iterations k . Hence, all iterates 𝑥𝑘+1

∶= (𝑥𝑘+1, ⋯ , 𝑥𝑁
𝑘+1) are well defined and uniquely determined.  

 

RESULT AND DISCUSSION  

Numerical Experiments 

In this section, we provide some concrete example including 

numerical results of the problem considered in Section 3 of 

this paper. All codes were written in Matlab 2016b, and 

installed on a personal computer with Intel(R) Core(TM) i5-

2600 CPU@2.30GHz and 8.00 GB (7.78 GB usable) RAM 

running on Windows 10 operating system.  

 

Example 1. Consider the 2-player GNEP 

1st player 

min
𝑥1∈ℝ

2
(𝑥1,1)

4 + 2(𝑥1,2)
2 +∑𝑥1,𝑗(𝑥2,𝑗)

2

2

𝑗=1

 

s. t.      x1,1 + 2x1,2 − x2,1 ≤ 1 

                      3x1,1 + 2x1,2 − x2,1 ≤ 1.5, 

            (x1,1)
2 + (x2,1)

2 ≤ 3 

(x1,1) ≥ 0.        
 

2nd player 

 

min
𝑥2∈ℝ

2

1

2
‖𝑥‖2∙‖𝑥‖2+𝑥2,1−𝑥1,1 + 2𝑥1,1𝑥1,2𝑥2,1𝑥2,2 

s. t.      (x2,1)
2 + x1,2x2,2 ≤ 2, 

(x1,1)
2 + (x2,2)

2 ≤ 3, 
(x2,2) ≥ 0.        
 

By Algorithm 1, we got the GNE, u = (u1, u2) with  

 

𝑢1 ≈ (0.0000,−0.7500), u2  
≈  (−1.0881, 1.7321), q1(u)  
≈  0.2591, q2(u)  ≈  2.4028. 

 

It took around 0.34 second in solving for both players, and 

8.40 seconds to find the GNE. 
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Table 1: Numerical results of example 1 and comparing with different methods 

Algorithms 𝐮 time ‖𝒚𝒌 − 𝒚𝒆𝒙𝒂𝒄𝒕‖ 

QVI (0.4897, 1.0259, 0.7077) 

 

1.83  

 
2.5563 × 10−7 

 

Penalty (0.4897, 1.0259, 0.7077)  

 

6.49 

 
3.8589 × 10−6 

 

IPM (0.4897, 1.0259, 0.7077) 

 

0.02  

 
7.9280 × 10−8 

 

Alg. 1 (0.0000, -0.7500, -1.0881, 1.7321)  

 

0.34 

 
9.4049 × 10−9 

 

 

Example 2.  Consider the 3-player GNEP 

1st player 

{
min
𝑥1∈ℝ

2
𝑥2,2(𝑥1,1)

2 − 𝑥1,2𝑥3,1

     𝑠. 𝑡.         𝑥1
𝑇𝑥1 + 𝑥2

𝑇𝑥2 + (𝑥2,1 + 𝑥2,2)𝑥3
𝑇𝑥3 ≤ 1  

 

2nd player  

{
 
 

 
 min

𝑥1∈ℝ
2
(𝑥2,1)

2 + (𝑥1,1 − 1)𝑥2,1 + (𝑥3,2𝑥2,2)
2 − 𝑥3,1𝑥2,2

     𝑠. 𝑡.  𝑥1,1𝑥2,1𝑥3,1  + 𝑥1,1𝑥2,1𝑥3,1 + 0.1 ≥ 0, 1 −∑𝑥2,𝑗

2

𝑗=1

≥ 0
 

3rd player  

{
min
𝑥1∈ℝ

2
(𝑥3 − 𝑥1 + 𝑥2)

𝑇𝑥3

     𝑠. 𝑡.         (𝑥3,1 − 𝑥3,2)
2 ≤ 𝑥2,1, (𝑥3,1 + 𝑥3,2)

2 ≤ 3
 

 

 

The first player’s Lagrange multipliers have a rational expression, that 

𝜆1 =
−𝑥1

𝑇𝛻𝑥1𝑓1

2𝑞1(𝑥)
, 𝑞1(𝑥) = 1 − 𝑥2

𝑇𝑥2 − (𝑥2,1 + 𝑥2,2)𝑥3
𝑇𝑥3 

For the second player, with 𝑠2 = 1. For 𝜆3, if we  let 𝑞3 = 2𝑥2,1 − 2(𝑥3,1)
2 +  2(𝑥3,2)

2, then  

𝜆3,1 =
1

𝑞
(𝑥3

𝑇𝛻𝑥3𝑓3) 

 

Note that 𝑞1(𝑥) ≱ 0 on X. So we change the constraint, to make it work. By Algorithm 1, we got the GNE u = (u1, u2, u3) 
with 

 

𝑢1 ≈ (0.0000,−0.7993),   𝑢2 ≈ (0.5000,0.0000), 𝑢3 ≈ (−0.2500,−0.3997),  
 

𝑢1(𝑢) ≈ 0.6389, 𝑢2(𝑢) = 1, 𝑢3 ≈ 1.1944 

It took around 10.44 seconds.  

 

Table 2: Numerical results of example 2  and comparing with different methods. 

Algorithms 𝐮 time ‖𝒚𝒌 − 𝒚𝒆𝒙𝒂𝒄𝒕‖ 

QVI (0.0000, −1.1339, 1.5875) 

 

Not convergent Not convergent 

Penalty (0.3776, 0.0700, 1.5318) 

 

Not convergent Not convergent 

IPM (0.9407, 1.2194, −0.0360) 

 

Not convergent Not convergent 

Alg. 1 (0.6389, 1.0000, 1.1944) 

 

10.44 

 
5.4972 × 10−7 

 

 

Remark 1. We could observe that Algorithm 1 is robust, 

converges faster and easy to implement.  

 

CONCLUSION 

In this paper, we proposed a method for finding common 

solution to convex GNEP and give numerical illustrations of 

our results and show the numerical improvements of 

Algorithm 1 over quasi-variational inequality method, 

interior point method and penalty Method.  
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