



# ASSESSING THE EFFECT OF COVID-19 ON TUBERCULOSIS TREATMENT OUTCOME IN ADAMAWA AND TARABA STATES, NORTH EASTERN NIGERIA

# \*Danjuma Jibasen, I. J. Dike, Barma Modu and B. Z. Reuben

Department of Statistics and Operations Research, Modibbo Adama University, Yola.

\*Corresponding authors' email: djibasen@mau.edu.ng

# ABSTRACT

Tuberculosis is a common, and in many cases lethal, infectious disease caused by various strains of mycobacteria. Successes in treatment of tuberculosis lead to reduction in transmission, complications, and mortality among patients. The outbreak of COVID-19 drew the attention of governments and healthcare practitioners. This study considers the effect of COVID-19 on Tuberculosis treatment. Data were sourced from Taraba and Adamawa States in North-east Nigeria. A total of 8820 patients', records were used, with 3001 from Adamawa State and 5819 from Taraba State which involved TB patients' records. At the bivariate level, the Pearson Chi-square test was employed to measure the association between the treatment outcome and the independent variables (local government area, treatment facility ownership, treatment regimen, patients' supported, disease site, gender, HIV status and year of treatment). Thereafter multinomial Poisson regression analysis was performed on all statistically significant variables identified at the bivariate analysis. Decisions were taken based on p-value and odds ratios. The results of this study shows that the overall treatment success and cure rate across the States was on the average, 92.7% and 49.8% respectively. The highest treatment success rate of 94.5% was achieved in year 2021, while the year 2020 witnessed the highest cure rate of 53.5%. The overall cure rate of 49.8% is below the WHO recommendation. This study recommends that the non-pharmaceutical protocols to curtail the spread of COVID-19 should be strengthened in order to curtail TB spread, and that all TB patients should be tested for HIV.

Keywords: Tuberculosis, COVID-19, HIV, treatment outcome, North eastern Nigeria

# INTRODUCTION

Tuberculosis (TB) is present in all countries and age group, it is a global public health problem especially in low and middle-income countries (Amiri et al., 2021; WHO, 2021a). Recent World Health Organization (WHO,2021b) report has it that: a total of 1.5 million people died from TB in 2020 (including 214 000 people with HIV), 10 million people are estimated to be infected with tuberculosis (TB) worldwide. Furthermore, 5.6 million men, 3.3 million women, and 1.1 million children. One of the United Nations Sustainable Development Goals (SDGs) health targets, is ending the TB epidemic by 2030 (WHO, 2017). The control of tuberculosis is dependent on early identification of cases and timely notification to public health facilities to ensure appropriate treatment of cases and control. Surveillance is an important public health function in the prevention and control of tuberculosis. Accurate and complete timely information improves the quality of surveillance data and supports public health decision-making.

In Nigeria, the national TB control activities are coordinated by the National Tuberculosis and Leprosy Control Programme (NTBLCP), NTBLCP is structured along the three tiers of Nigerian government thus: The Federal, State, and Local government areas (LGAs). Each level provides technical and management support to the one directly below it. The NTBLCP is saddled with the responsibility of policy development, tertiary patient care, mobilization and development to human and material resources. The States' TB programmes are responsible for coordinating TB control activities within the States, and provision of secondary patients' care. The operational level of the national TB control programme is the LGAs and it is based on the principles of Primary health-care (PHC) (NTBLCP. (n. d.))

Governments, the world over is facing a torturous path, navigating between the imminent disaster of COVID-19 and the long-running plague of TB. Also, COVID-19 pandemic

has disruptive tendencies on routine health services and progress towards Sustainable Development Goals (SDGs). An analysis of survey responses conducted by Global Partnership for Zero Leprosy (GPZL, 2020) indicates that COVID-19 was having a direct impact on the majority of countries. Seventy-six percent of respondents (26 countries) said the outbreak was impacting their program. Their responses varied from clinics and offices being completely closed, to open clinics with limited case finding and community-based activities. This research is aimed at evaluating the effect of COVID-19 on tuberculosis treatment outcomes in Adamawa and Taraba States, Northeast Nigeria. Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to be the leading source of mortality and morbidity across the world (Ahmed & Hussain, 2011). TB is a preventable and curable disease, and its control is a highly cost-effective health intervention. However, diagnostic delay and inadequate treatment contribute to the severity and mortality of the disease as well as the risk of transmission and development of drug resistance (Alagna et al., 2020). The World Health Organization (WHO, 2021a) estimates that there are nearly 2 million deaths worldwide from tuberculosis annually, with the disease ranking second only to human immunodeficiency virus (HIV) as an infectious cause of death. Nearly one third of the world's population is infected with Mycobacterium tuberculosis, and the rate continues to increase.

Oshi et al. (2017) conducted a retrospective evaluation of an active case-finding intervention utilizing community-based approaches and targeted systematic TB screening in Ebonyi State, Nigeria. John et al. (2015) carried out an active case finding for TB among nomadic populations over a 2-year period in Adamawa State and they found that Nomads in Nigeria have high TB rates, and active case-finding approaches may be useful in identifying and successfully treating them. Large-scale interventions in vulnerable

populations can improve TB case detection. In their work, Ukwaja et al. (2013) discovered that patient and household costs for TB care were potentially catastrophic even where services are provided free-of-charge and suggested a change in strategy.

In their work, Tadolini et al. (2020) raised two important issues, namely the possible association between tuberculosis (TB) and coronavirus disease 2019 (COVID-19); whether infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can re-activate TB, and the effects of TB on early mortality in co-infected patients. Boffan et al. (2020) noted that regardless of HIV status, people with undiagnosed pulmonary TB (PTB), those with drug-resistant TB or complex presentations such as disseminated forms, and those who have only just begun PTB treatment may be at increased risk for severe responses if they become infected with COVID-19. With same symptoms, aside HIV/AIDS, the emergence of COVID-19 added another probable coinfection with TB, (Visca et al., 2021).

Izudi et al. (2020) constructed a retrospective cohort of persons with BC-PTB from a routine tuberculosis clinic database in eastern Uganda and performed bivariate and multivariate analysis at the 5% level of significance. The results revealed that, out of the 1123 records retrieved, 81.1% of the 987 persons with BC-PTB that had treatment outcome, were successfully treated. Successful treatment of tuberculosis was less likely to occur among those with HIV infection. They concluded that, treatment success rate among adult persons with BC-PTB in rural eastern Uganda is suboptimal and mortality rate is high. HIV infection and older age reduce chances of treatment success, and increase mortality rate. Older and HIV infected persons with BC-PTB will require special consideration to optimize treatment success rate and reduce mortality rate.

Jain et al. (2020) assessed the challenges due to COVID-19 pandemic on management of Tuberculosis and current strategies adopted to mitigate them. The study revealed the disruption in Tuberculosis service provisions both in the primary care and hospital settings. That the COVID-19 protocols; lockdown, social distancing, and isolation strategies impacted the delivery of all aspects of Tuberculosis care. Also, Udwadia et al. (2020) and Cilloni et al. (2020) posited that the consequences of the COVID-19 pandemic, and the global response to it with lockdowns, are likely to leave a profound and long-lasting impact on TB diagnosis and control. Others too, held the same position, that as resources are diverted and the public has been asked to shelter-in-place, the surveillance for and diagnosis of other communicable diseases of public health importance could become more challenging. For tuberculosis (TB), with an untreated case fatality rate of approximately 10%, there could be potential consequences of delayed or missed diagnoses which can lead to increase in TB related hospitalizations and death (Louie et al., 2020; Liu et al., 2021; Togun et al., 2020)

Nath et al. (2021) examined the effect of COVID-19 pandemic on tuberculosis notification in India. To understand the potential effect of the COVID-19 response on TB epidemiology, they indicated that modelling studies published by Stop TB Partnership showed that for every month of Lockdown, 232,665 excess Cases and 71,290 Deaths were added in India. They submitted that the first decline in TB notification was in 2020 during the lockdown across the country due to COVID-19.

Due to certain similarities in the behavior of TB and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generally called COVID-19, There have been inevitable consequences. On one hand, administrative measures to contain SARS-CoV-2 have simultaneously led to a breaking in the chain of tuberculosis (TB) management (Nath et al., 2021; Soko et al., 2021; Madhukar et al., 2022; CDC March, 2022).

Kant and Tyagi (2021) opined that, in order to contain severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), lockdowns were imposed by countries worldwide, people were forced to stay indoors, resulting in a number of effects. Furthermore, that the symptom similarity between TB and COVID-19 probably resulted in a delay in suspecting TB, as most people could have attributed similar symptoms to COVID-19 and preferred to wait it out. Also, pre-existing stigma around TB and the added stigma of COVID-19 might have discouraged people from getting tested, even after experiencing symptoms common to both diseases. They stated that, already diagnosed patients might have also suffered during COVID-19 lockdown; outpatient departments have not been functional, while laboratories have mostly been dedicated to the processing of samples of COVID-19 patients; the follow-up and response evaluation of pulmonary TB patients is chiefly done by sputum microscopy and culture growth, this assessment was lost during lockdown. Those who had treatment failure, relapse, or who had developed drug resistance could not be timely identified and may have continued to deteriorate. Furthermore, extensive counseling and motivation is needed for patients to deal with this disease, its side effects, the stigma associated with it, and the long duration of treatment. The entire process came to a standstill with the implementation of lockdown.

Aggarwal et al. (2022) reported that India contributes about a quarter of world tuberculosis burden. However, COVID-19 outshined it leading to several gaps which have caused significant setback in the National Tuberculosis Elimination Program (NTEP). The consequences include reduced and delayed notification of newly detected cases. They applied Winters additive time series model on data obtained for 2018 and 2019 to forecast for 2020 and 2021. They concluded that the decline in recognition of new cases can lead to long-term upsurge in tuberculosis incidence and mortality.

## **Definition of basic terms**

The following terms were defined and used based on WHO (2003) criteria;

Treatment success rate: Is the percentage of cured TB cases and treatment completed. Mortality rate: Is the percentage of persons with TB who died from any cause during tuberculosis treatment.

Cured: Bacteriological positive patient who was sputum negative in the last month of the treatment and on at least one previous occasion.

Treatment completed: Patients who have completed treatment but who do not meet criteria to be classified as cured or failed treatment.

Successful Treatment: Cured plus Treatment completed cases.

Unsuccessful Treatment: Patients whose treatment failed and those who were lost to follow up.

# MATERIALS AND METHODS

We retrieved and reviewed records for patients PTB and EPTB, persons with a biological specimen that is positive for Mycobacterium tuberculosis (MTB) on smear microscopy, culture, or molecular test like GeneXpert. We selected 3 LGAs each from Adamawa and Taraba States, North-east Nigeria, between 2017 and 2021. The records are routinely collected by the DOTs centres under the supervision of the LGA TB programme supervisors. The records capture

include; DOTS centre, health facility ownership type (private or public health facilities) and LGA where the patients received treatment, gender, age category, site of disease (pulmonary or extrapulmonary), type of drug regimen, HIV status, and availability of a treatment supporter with clinical outcomes as the dependent variable.

## **Methods of Data Analysis**

The data collected was analysed at the univariate, bivariate and multivariate levels. In the univariate analysis, frequencies and percentages were employed to elucidate information on the categorical variables. At the bivariate level, the Pearson Chi-square test was employed to measure the association between the dependent variables and the independent variables using *P*-value < 0.05 as the criterion for significance. At the multivariate level, multinomial Poisson regression analysis was performed on all statistically significant variables identified at the bivariate level and reported the results as odds ratios. Variables and their levels were deemed significant if the *P*-value associated with the odds ratio is < 0.05.

In constructing the multinomial Poisson regression model, dependent variable is the treatment outcome, this was categorised as; cured, treatment completed, died, lost to follow up, not evaluated, transferred. These were again classified as, successful and unsuccessful for the multinomial Poisson regression. The explanatory variables are; local government area, treatment facility ownership, treatment regimen, patients' supported, disease site, gender, age group, HIV status and year of treatment.

Let  $\pi_j$  denote the probability of an observation falling in the multinomial probability of an observation falling in the j<sup>th</sup> category, to find the relationship between this probability and the *p* explanatory variables,  $X_1, X_2, \ldots, X_p$ . The multinomial Poisson regression model used is:

$$log\left(\frac{\pi_j(x_i)}{\pi_k(x_i)}\right) = \alpha_{0i} + \beta_{1j}x_{1i} + \beta_{2j}x_{2i} + \dots + \beta_{pj}x_{pi}$$

Where,  $\beta$  refers to the effect of the independent variables  $x_i$  on the log odds of the occurrence of the dependent variable (treatment outcome).

All statistical analyses were performed using IBM SPSS 23. All patients' record with no treatment outcome evaluation namely; those who were transferred out to other health facilities and those whom treatment outcome was not reported as at the time of data extraction, were excluded.

## **RESULTS AND DISCUSSION**

A total of 8820patients record were used, with 3,001 from Adamawa State and 5,819 from Taraba State. Tables 1 and 2 show the results of the bivariate analysis of treatment outcomes versus other patients' variables. Tables 3 and 4 show the cure rate versus treatment success by year and local government.

|              |            |            | Treatment outcon |       |        |                |
|--------------|------------|------------|------------------|-------|--------|----------------|
| Variables    | Level      | Successful | Unsuccessful     | Died  | Total  | <b>P-value</b> |
|              | All cases  | 2811       | 70               | 120   | 3001   |                |
|              |            | 93.7%      | 2.3%             | 4.0%  | 100.0% |                |
| LGA          | Mubi South | 1080       | 0                | 14    | 1094   |                |
|              |            | 98.7%      | 0.0%             | 1.3%  | 100.0% | 0.000          |
|              | Yola North | 1376       | 68               | 92    | 1536   |                |
|              |            | 89.6%      | 4.4%             | 6.0%  | 100.0% |                |
|              | Numan      | 355        | 2                | 14    | 371    |                |
|              |            | 95.7%      | .5%              | 3.8%  | 100.0% |                |
| Treatment    | Public     | 2483       | 46               | 102   | 2631   |                |
| facility     |            | 94.4%      | 1.7%             | 3.9%  | 100.0% | 0.000          |
| ownership    | Private    | 328        | 24               | 18    | 370    |                |
|              |            | 88.6%      | 6.5%             | 4.9%  | 100.0% |                |
| Treatment    | 6 months   | 2758       | 69               | 109   | 2936   |                |
| regimen      |            | 93.9%      | 2.4%             | 3.7%  | 100.0% | 0.000          |
|              | 12 months  | 53         | 1                | 11    | 65     |                |
|              |            | 81.5%      | 1.5%             | 16.9% | 100.0% |                |
| Patient      | Yes        | 1214       | 57               | 84    | 1355   |                |
| supported    |            | 89.6%      | 4.2%             | 6.2%  | 100.0% | 0.000          |
|              | No         | 1597       | 13               | 36    | 1646   |                |
|              |            | 97.0%      | .8%              | 2.2%  | 100.0% |                |
| Disease site | Pulmonary  | 2704       | 66               | 107   | 2877   | 0.001          |
|              |            | 94.0%      | 2.3%             | 3.7%  | 100.0% |                |
|              | Extra      | 107        | 4                | 13    | 124    |                |
|              | Pulmonary  | 86.3%      | 3.2%             | 10.5% | 100.0% |                |
| HIV status   | Positive   | 313        | 10               | 35    | 358    |                |
|              |            | 87.4%      | 2.8%             | 9.8%  | 100.0% | 0.000          |
|              | Negative   | 2161       | 43               | 66    | 2270   |                |
|              |            | 95.2%      | 1.9%             | 2.9%  | 100.0% |                |
|              | Not Tested | 337        | 17               | 19    | 373    |                |
|              |            | 90.3%      | 4.6%             | 5.1%  | 100.0% |                |
| Gender       | Male       | 1942       | 59               | 78    | 2079   |                |
|              |            | 93.4%      | 2.8%             | 3.8%  | 100.0% | 0.0014         |
|              |            |            |                  |       |        |                |

|           | Female | 869    | 11   | 42   | 922    |       |
|-----------|--------|--------|------|------|--------|-------|
|           |        | 94.3%  | 1.2% | 4.6% | 100.0% |       |
| Age group | 0-4    | 29     | 0    | 0    | 29     |       |
|           |        | 100.0% | 0.0% | 0.0% | 100.0% | 0.002 |
|           | 5-14   | 98     | 0    | 3    | 101    |       |
|           |        | 97.0%  | 0.0% | 3.0% | 100.0% |       |
|           | 15-24  | 485    | 11   | 12   | 508    |       |
|           |        | 95.5%  | 2.2% | 2.4% | 100.0% |       |
|           | 25-34  | 1334   | 42   | 48   | 1424   |       |
|           |        | 93.7%  | 2.9% | 3.4% | 100.0% |       |
|           | 35-54  | 400    | 7    | 18   | 425    |       |
|           |        | 94.1%  | 1.6% | 4.2% | 100.0% |       |
|           | 55-64  | 230    | 6    | 20   | 256    |       |
|           |        | 89.8%  | 2.3% | 7.8% | 100.0% |       |
|           | >64    | 235    | 4    | 19   | 258    |       |
|           |        | 91.1%  | 1.6% | 7.4% | 100.0% |       |
| Year      | 2017   | 582    | 2    | 48   | 632    |       |
|           |        | 92.1%  | .3%  | 7.6% | 100.0% | 0.000 |
|           | 2018   | 453    | 21   | 21   | 495    |       |
|           |        | 91.5%  | 4.2% | 4.2% | 100.0% |       |
|           | 2019   | 549    | 17   | 20   | 586    |       |
|           |        | 93.7%  | 2.9% | 3.4% | 100.0% |       |
|           | 2020   | 601    | 21   | 23   | 645    |       |
|           |        | 93.2%  | 3.3% | 3.6% | 100.0% |       |
|           | 2021   | 626    | 9    | 8    | 643    |       |
|           |        | 97.4%  | 1.4% | 1.2% | 100.0% |       |

Table 1 shows that treatment success across the three LGAs in Adamawa State was at least 90%, the overall State treatment success is 93.70%. Treatment success in public health facilities are higher compared to private health facilities. 12 months treatment regimen has lower treatment success of 81.50%, while 6 months regimen is 93.90%. EPTB patients have treatment success of 86.30%, also patients with

HIV coinfection have lower treatment success (87.4%) compared to patients without HIV complication (95.20%). Across the Age group and Gender, there was treatment success of over 90% with 100% success for ages 0-4. All the variables are significant with *P*-values < 0.05, which implies that these variables are associated with treatment outcome.

|              |           |            | Treatment outo | come |        |         |
|--------------|-----------|------------|----------------|------|--------|---------|
| Variables    | Level     | Successful | Unsuccessful   | Died | Total  | p-value |
|              | All casas | 5365       | 218            | 236  | 5819   |         |
|              |           | 92.2%      | 3.7%           | 4.1% | 100.0% |         |
| LGA          | Jalingo   | 3634       | 105            | 160  | 3899   |         |
|              |           | 93.2%      | 2.7%           | 4.1% | 100.0% | 0.000   |
|              | Gassol    | 1379       | 80             | 34   | 1493   |         |
|              |           | 92.4%      | 5.4%           | 2.3% | 100.0% |         |
|              | Wukari    | 352        | 33             | 42   | 427    |         |
|              |           | 82.4%      | 7.7%           | 9.8% | 100.0% |         |
| Treatment    | Public    | 4941       | 160            | 210  | 5311   |         |
| facility     |           | 93.0%      | 3.0%           | 4.0% | 100.0% | 0.000   |
| ownership    | Private   | 424        | 58             | 26   | 508    |         |
|              |           | 83.5%      | 11.4%          | 5.1% | 100.0% |         |
| Treatment    | 6 months  | 5343       | 217            | 234  | 5794   |         |
| regimen      |           | 92.2%      | 3.7%           | 4.0% | 100.0% | 0.672*  |
|              | 12 months | 22         | 1              | 2    | 25     |         |
|              |           | 88.0%      | 4.0%           | 8.0% | 100.0% |         |
| Patient      | Yes       | 5283       | 215            | 229  | 5727   |         |
| supported    |           | 92.2%      | 3.8%           | 4.0% | 100.0% | 0.216*  |
|              | No        | 82         | 3              | 7    | 92     |         |
|              |           | 89.1%      | 3.3%           | 7.6% | 100.0% |         |
| Disease site | Pulmonary | 5319       | 217            | 234  | 5770   |         |
|              |           | 92.2%      | 3.8%           | 4.1% | 100.0% | 0.819*  |
|              |           | 46         | 1              | 2    | 49     |         |

|                 | Extra<br>Pulmonary | 93.9%  | 2.0%  | 4.1%  | 100.0%  |        |
|-----------------|--------------------|--------|-------|-------|---------|--------|
| HIV status      | Positive           | 677    | 35    | 63    | 775     |        |
|                 |                    | 87.4%  | 4.5%  | 8.1%  | 100.0%  | 0.000  |
|                 | Negative           | 4035   | 160   | 160   | 4355    |        |
|                 |                    | 92.7%  | 3.7%  | 3.7%  | 100.0%  |        |
|                 | Not tested         | 653    | 23    | 13    | 689     |        |
|                 |                    | 94.8%  | 3.3%  | 1.9%  | 100.0%  |        |
| Gender          | Male               | 3250   | 125   | 147   | 3522    |        |
|                 |                    | 92.3%  | 3.5%  | 4.2%  | 100.0%  | 0.538* |
|                 | Female             | 2115   | 93    | 89    | 2297    |        |
|                 |                    | 92.1%  | 4.0%  | 3.9%  | 100.0%  |        |
| Age group       | 0-4                | 68     | 2     | 6     | 76      |        |
|                 |                    | 89.5%  | 2.6%  | 7.9%  | 100.0%  | 0.073* |
|                 | 5-14               | 277    | 7     | 15    | 299     |        |
|                 |                    | 92.6%  | 2.3%  | 5.0%  | 100.0%  |        |
|                 | 15-24              | 787    | 27    | 19    | 833     |        |
|                 |                    | 94.5%  | 3.2%  | 2.3%  | 100.0%  |        |
|                 | 25-34              | 2536   | 104   | 103   | 2743    |        |
|                 |                    | 92.5%  | 3.8%  | 3.8%  | 100.0%  |        |
|                 | 35-54              | 762    | 37    | 45    | 844     |        |
|                 |                    | 90.3%  | 4.4%  | 5.3%  | 100.0%  |        |
|                 | 55-64              | 445    | 21    | 22    | 488     |        |
|                 |                    | 91.2%  | 4.3%  | 4.5%  | 100.0%  |        |
|                 | >64                | 490    | 20    | 26    | 536     |        |
|                 |                    | 91.4%  | 3.7%  | 4.9%  | 100.0%  |        |
| Year            | 2017               | 763    | 15    | 67    | 845     |        |
|                 |                    | 90.3%  | 1.8%  | 7.9%  | 100.0%  | 0.000  |
|                 | 2018               | 923    | 24    | 23    | 970     |        |
|                 |                    | 95.2%  | 2.5%  | 2.4%  | 100.0%  |        |
|                 | 2019               | 1044   | 85    | 41    | 1170    |        |
|                 |                    | 89.2%  | 7.3%  | 3.5%  | 100.0%  |        |
|                 | 2020               | 1081   | 41    | 57    | 1179    |        |
|                 |                    | 91.7%  | 3.5%  | 4.8%  | 100.0%  |        |
|                 | 2021               | 1554   | 53    | 48    | 1655    |        |
|                 |                    | 93.9%  | 3.2%  | 2.9%  | 100.0%  |        |
| *no significant | association        | 20.270 | 5.270 | 2.770 | 100.070 |        |

\*no significant association

In Taraba State (Table 2), the overall treatment success in the State was 92.20% with Wukari LGA having the lowest at 82.4%, the 12 months treatment regimen has treatment success less than 90% so also patients treated at private facilities. Both PTB and EPTB patients had treatment success greater than 90%, and patients with HIV coinfection had 87.40% treatment success. There was no significant difference in treatment success rate with respect to treatment

regimen, site of the disease, patient supporter, age group and gender. Tables 1 and 2 show that treatment success and mortality rates for TB patients with HIV complications were 87.4% and 9.8% respectively in Adamawa State, while in Taraba State, there were 87.4% and 8.1% treatment success and mortality rate respectively. There was also a decrease in treatment success rate in 2019 and an increase in mortality rate in 2020.

| Variables                    | <i>p</i> -value |
|------------------------------|-----------------|
| States                       | 0.002           |
| LGA                          | 0.000           |
| Treatment facility ownership | 0.000           |
| Treatment regimen            | 0.000           |
| Patient supported            | 0.000           |
| Disease site                 | 0.007           |
| HIV status                   | 0.000           |
| Age group                    | 0.001           |
| Gender                       | 0.984*          |
| Year                         | 0.000           |

\*Not significant

Table 3 shows that there was significant difference in the treatment outcome across the two States and for all variables except for Gender. That is, the variable, Gender is not significantly associated with treatment success when the data was combined.

| Treatment outcome |                     | 2017  | 2018  | 2019  | 2020  | 2021  | Total |
|-------------------|---------------------|-------|-------|-------|-------|-------|-------|
|                   | Cured               | 749   | 871   | 915   | 1020  | 1364  | 4919  |
|                   |                     | 47.0% | 53.1% | 47.9% | 53.5% | 48.2% | 49.8% |
|                   | Treatment completed | 596   | 505   | 677   | 662   | 817   | 3257  |
|                   |                     | 37.4% | 30.8% | 35.4% | 34.7% | 28.9% | 33.0% |
|                   | Treatment failed    | 3     | 4     | 8     | 2     | 5     | 22    |
|                   |                     | .2%   | .2%   | .4%   | .1%   | .2%   | .2%   |
|                   | Died                | 115   | 44    | 61    | 80    | 56    | 356   |
|                   |                     | 7.2%  | 2.7%  | 3.2%  | 4.2%  | 2.0%  | 3.6%  |
|                   | Lost to follow up   | 14    | 41    | 94    | 60    | 57    | 266   |
|                   |                     | .9%   | 2.5%  | 4.9%  | 3.1%  | 2.0%  | 2.7%  |
|                   | Not evaluated       | 116   | 174   | 153   | 80    | 518   | 1041  |
|                   |                     | 7.3%  | 10.6% | 8.0%  | 4.2%  | 18.3% | 10.5% |
|                   | Transferred         | 1     | 0     | 2     | 3     | 10    | 16    |
|                   |                     | .1%   | 0.0%  | .1%   | .2%   | .4%   | .2%   |
| Total             |                     | 1594  | 1639  | 1910  | 1907  | 2827  | 9877  |
|                   | Successful          | 1345  | 1376  | 1593  | 1682  | 2180  | 8176  |
|                   |                     | 91.1% | 93.9% | 90.7% | 92.2% | 94.9% | 92.7% |
|                   | Unsuccessful        | 132   | 89    | 163   | 142   | 118   | 644   |
|                   |                     | 8.9%  | 6.1%  | 9.3%  | 7.8%  | 5.1%  | 7.3%  |
| Total             |                     | 1477  | 1465  | 1756  | 1824  | 2298  | 8820  |

In computing treatment success and mortality rate, patients with incomplete record (n = 1057) and those transfered out were excluded.

Treatment success rate ranges between 90% and 95% over the 5 years period, while the cure rate ranges between 47% and 54%, with mortality rate as high as 7.2% in 2017 and 4.2% in

2020 as shown in Table 4. On the LGA basis, treatment success rate ranges between 98.7% in Mubi South and 82.4% in Wukari, while cure rate ranges between 23.1% in Yola North to 84.7% in Gassol. Mortality rate ranges between 1.0% in Mubi South to 7.3% in Wukari (see Table 5).

|                   |            |            | LGA   | <b>`</b> |        |        | _     |
|-------------------|------------|------------|-------|----------|--------|--------|-------|
| Treatment outcome | Mubi South | Yola North | Numan | Jalingo  | Gassol | Wukari | Total |
| Cured             | 539        | 368        | 129   | 2320     | 1299   | 264    | 4919  |
|                   | 40.0%      | 23.1%      | 15.6% | 57.9%    | 84.7%  | 45.9%  | 49.8% |
| Treatment         | 542        | 1008       | 226   | 1313     | 80     | 88     | 3257  |
| completed         | 40.2%      | 63.4%      | 27.3% | 32.8%    | 5.2%   | 15.3%  | 33.0% |
| Treatment failed  | 0          | 12         | 0     | 8        | 1      | 1      | 22    |
|                   | 0.0%       | .8%        | 0.0%  | .2%      | .1%    | .2%    | .2%   |
| Died              | 14         | 92         | 14    | 160      | 34     | 42     | 356   |
|                   | 1.0%       | 5.8%       | 1.7%  | 4.0%     | 2.2%   | 7.3%   | 3.6%  |
| Lost to follow up | 0          | 56         | 2     | 97       | 79     | 32     | 266   |
|                   | 0.0%       | 3.5%       | .2%   | 2.4%     | 5.1%   | 5.6%   | 2.7%  |
| Not evaluated     | 252        | 54         | 456   | 92       | 39     | 148    | 1041  |
|                   | 18.7%      | 3.4%       | 55.1% | 2.3%     | 2.5%   | 25.7%  | 10.5% |
| Transferred       | 0          | 0          | 0     | 14       | 2      | 0      | 16    |
|                   | 0.0%       | 0.0%       | 0.0%  | .3%      | .1%    | 0.0%   | .2%   |
| Total             | 1347       | 1590       | 827   | 4004     | 1534   | 575    | 9877  |
| Successful        | 1080       | 1376       | 355   | 3634     | 1379   | 352    | 8176  |
|                   | 98.7%      | 89.6%      | 95.7% | 93.2%    | 92.4%  | 82.4%  | 92.7% |
| Unsuccessful      | 14         | 160        | 16    | 265      | 114    | 75     | 644   |
|                   | 1.3%       | 10.4%      | 4.3%  | 6.8%     | 9.6%   | 17.6%  | 7.3%  |
| Total             | 1094       | 1536       | 371   | 3899     | 1493   | 427    | 8820  |

In computing treatment success and mortality rate, patients with incomplete record (n = 1057) and those transferred out were excluded.

# Multinomial Poisson regression analysis of the significant variables

In this section, variables that were judged significant at the bivariate levels were further analysed for significance based on their levels and their contributions to the levels of the dependent variable (treatment successful and unsuccessful while Died is the reference category), the results are reported as odds ratio (OR). The multinomial regression results are presented in Tables 6a-6c.

|                           | Model Fitting Criteria | Likelihood Ratio Tests |    |         |  |  |
|---------------------------|------------------------|------------------------|----|---------|--|--|
| Model                     | -2 Log Likelihood      | Chi-Square             | df | P-value |  |  |
| Intercept                 | 811.958                | 0.000                  | 0  |         |  |  |
| LGA                       | 860.481                | 48.523                 | 4  | .000    |  |  |
| Age group                 | 844.101                | 32.143                 | 12 | .001    |  |  |
| Health facility ownership | 817.950                | 5.992                  | 2  | .050    |  |  |
| Treatment regimen         | 816.918                | 4.960                  | 2  | .084    |  |  |
| Patient supported         | 822.285                | 10.327                 | 2  | .006    |  |  |
| Disease site              | 813.165                | 1.207                  | 2  | .547    |  |  |
| HIV status                | 840.353                | 28.395                 | 4  | .000    |  |  |
| Gender                    | 821.947                | 9.989                  | 2  | .007    |  |  |
| Year                      | 888.831                | 76.873                 | 8  | .000    |  |  |

# Table 6a: Model fitting information

Table 6a shows that there was no significant difference in ownership, treatment regimen, and disease site (though these treatment success rate with respect to health facility variables were significant at the bivariate level).

# Table 6b: Pseudo R-square

| Pseudo R-Square | Value |
|-----------------|-------|
| Cox and Snell   | .096  |
| Nagelkerke      | .225  |
| McFadden        | .181  |

The sensitivity analysis presented in Table 6b showed that exclusion of the statistically non-significant variables; health facility ownership, treatment regimen, and disease site resulted in Pseudo R-square (measured by the Nagelkerke

statistic) decreasing from 22.5% to 15.6%, which means that these variables contributed in a little way to the variation of the outcome, hence these variables were retained.

| Variables/Level           | Successful |           | Unsuccessful |          |
|---------------------------|------------|-----------|--------------|----------|
| variables/Level           | p-value    | OR        | p-value      | OR       |
| Intercept                 | .000       |           | .012         |          |
| LGA                       |            |           |              |          |
| Mubi South                | .007       | 2.894     | .994         | 7.92E-08 |
| Yola North                | .518       | 0.804     | .119         | 3.698    |
| Numan                     | Reference  |           |              |          |
| Health facility ownership |            |           |              |          |
| Public                    | .964       | 0.987     | .066         | 0.483    |
| Private                   | Reference  |           |              |          |
| Treatment regimen         |            |           |              |          |
| 6 months                  | 0.097      | 2.861     | 0.06         | 11.978   |
| 12 months                 | Reference  |           |              |          |
| Patient supported         |            |           |              |          |
| Yes                       | 0.009      | 0.511     | 0.957        | 0.977    |
| No                        | Reference  |           |              |          |
| Disease site              |            |           |              |          |
| Pulmonary                 | 0.994      | 1.004     | 0.366        | 0.472    |
| Extra pulmonary           | Reference  |           |              |          |
| HIV status                |            |           |              |          |
| Positive                  | .001       | 0.340     | .159         | 0.477    |
| Negative                  | .414       | 1.263     | .858         | 1.076    |
| Not tested                | Reference  |           |              |          |
| Age group                 |            |           |              |          |
| 0-4                       | .998       | 264722719 | .998         | 6.834    |
| 5-14                      | .040       | 3.882     | .048         | 5.39E-08 |
| 15-24                     | .004       | 3.07      | .022         | 4.102    |
| 25-34                     | .001       | 2.725     | .520         | 4.068    |
| 35-54                     | .020       | 2.304     | .819         | 1.6      |
| 55-64                     | .947       | 1.024     | 0.171        | 1.186    |
| >64                       | Reference  |           |              |          |
| Gender                    |            |           |              |          |
| Male                      | .732       | 1.074     | 0.007        | 2.89     |
|                           |            |           |              |          |

FJS

| Female               | Reference |       |        |      |  |
|----------------------|-----------|-------|--------|------|--|
| Year of notification |           |       |        |      |  |
| 2017                 | .000      | 0.125 | -2.735 | .002 |  |
| 2018                 | .000      | 0.213 | 0.276  | .643 |  |
| 2019                 | .001      | 0.247 | 0.223  | .715 |  |
| 2020                 | .001      | 0.238 | 0.07   | .904 |  |
| 2021                 | Reference |       |        |      |  |

Table 6c show that success rate is higher in Mubi South (OR=2.894) than Numan LGA, but likely lower in Yola North LGA compared to Numan LGA, that is, patients treated in facilities in Yola North are likely to die compared to those treated in Numan, but more likely to have unsuccessful treatment rate (OR=1.308). The result further revealed that patients treated in public health facilities are likely to die compared to those treated at private health facilities with treatment success rate (OR=0.987) and unsuccessful treatment rate (OR=0.483), also, patients under 6 months regimen are most likely to survive than those on the 12 months regimen, treatment successful rate (OR=2.861), unsuccessful treatment rate (OR=11.978). On disease site, the result shows that, the PTB patients (OR=1.004) are likely to survive compared to the EPTB patients, while on HIV complications,

TB patients with HIV complications are more likely to die with treatment success rate (OR=0.340) and unsuccessful treatment rate (OR=0.477), whereas, those without HIV issues are more likely to survive with treatment success rate (OR=1.263), and unsuccessful treatment rate (OR=1.076). Furthermore, the result shows that the male patients are more likely to survive with high treatment success rate (OR=1.074) and high unsuccessful rate (OR=2.890), also the younger patients generally have more chances of survival than the other patients, the survivals of age 0-4 is superb, further, cases notified between 2017-2020 witnessed lower treatment success rate compared to those treated in 2021. Also, mortality was higher in 2020 compare to other years.

The results of the multinomial regression results for data retrieved from Taraba State is presented in Tables 7a and 7b.

# Table 7a: Model fitting information

|                           | Model Fitting Criteria |         |                      | Likelihood Ratio Tests |    |                 |
|---------------------------|------------------------|---------|----------------------|------------------------|----|-----------------|
| Model                     | AIC                    | BIC     | -2 Log<br>Likelihood | Chi-<br>Square         | df | <i>P</i> -value |
| Intercept                 | 532.398                | 665.776 | 492.398ª             | 0.000                  | 0  |                 |
| LGA                       | 587.253                | 693.955 | 555.253              | 62.854                 | 4  | .000            |
| Health facility ownership | 616.208                | 736.248 | 580.208              | 87.809                 | 2  | .000            |
| HIV Status                | 547.795                | 654.498 | 515.795              | 23.397                 | 4  | .000            |
| Year                      | 607.715                | 687.741 | 583.715              | 91.316                 | 8  | .000            |

This reduced model is equivalent to the final model because omitting the effect does not increase the degrees of freedom. Table 7a revealed further that the most significant variables are health facility ownership, HIV status and Year of treatment.

| Table 7b: Parameters estimates and odds ratio of factors associated with treatment outcome in Taraba St | tate |
|---------------------------------------------------------------------------------------------------------|------|
|---------------------------------------------------------------------------------------------------------|------|

| Variables / Levels        |           | Successful | Unsuccessful |       |  |  |
|---------------------------|-----------|------------|--------------|-------|--|--|
| variables / Levels        | p-value   | OR         | p-value      | OR    |  |  |
| Intercept                 | .000      |            | 0.006        |       |  |  |
| LGA                       |           |            |              |       |  |  |
| Jalingo                   | .000      | 2.198      | 0.08         | 0.618 |  |  |
| Gassol                    | .000      | 3.354      | 0.043        | 1.933 |  |  |
| Wukari                    | Reference |            |              |       |  |  |
| Health facility ownership |           |            |              |       |  |  |
| Public                    | 0.017     | 1.702      | .000         | 0.282 |  |  |
| Private                   | Reference |            |              |       |  |  |
| HIV status                |           |            |              |       |  |  |
| Positive                  | .000      | 0.300      | 0.065        | 0.458 |  |  |
| Negative                  | 0.063     | 0.576      | 0.218        | 0.631 |  |  |
| Not tested                | Reference |            |              |       |  |  |
| Year of notification      |           |            |              |       |  |  |
| 2017                      | 0.001     | 0.495      | 0.01         | 0.387 |  |  |
| 2018                      | 0.306     | 1.309      | 0.239        | 1.541 |  |  |
| 2019                      | 0.275     | 0.784      | .000         | 3.093 |  |  |
| 2020                      | 0.025     | 0.632      | 0.901        | 0.964 |  |  |
| 2021                      | Reference |            |              |       |  |  |

The result presented in Table 7b shows that patients treated in Jalingo and Gassol are more likely to survive with odds ratio (OR=2.198) and (OR=3.354), with unsuccessful treatment

rates of (OR=0.618) and (OR=1.933) respectively, all levels of this variable LGA contributed significantly. Patients treated at public health facilities are more likely to survive

with treatment success rate (OR=1.702). On the other hand, patients with HIV complications are more likely to die with treatment success rate (OR=0.300), than those without HIV complications treatment success rate is (OR=0.576), the results show that the case of patients with unsuccessful treatment is worst, the survival rate is (OR=0.065) and (OR=0.218) respectively for HIV positive and HIV negative patients. On the year of disease notification, treatment success rate is poor across the years compared to the year 2021 except for the year 2018.

# Findings

The results of this study show that the overall treatment success and cure rate across the six LGAs were on the average of 92.7% (82.4%-98.7%) and 49.8% (15.6%-84.7%) respectively. The highest treatment success rate of 94.5% was achieved in year 2021, while the year 2020 witnessed the highest cure rate of 53.5%. The overall cure rate of 49.8% is below the WHO recommendation, WHO recommends that a good performing tuberculosis program should achieve at least 90% treatment success rate and 85% cure rate (WHO, 2003). This study also revealed that HIV infected persons with TB had a treatment success rate of 87.40% and mortality rate 8.6%. Thus, HIV in TB leads to high mortality, as attested by the multivariate analysis. These findings are in line with established relationship between HIV and tuberculosis, that, HIV is a known strong risk factor for tuberculosis disease (Ungvarski&Flaskerud, 1999; Izudi, et al., 2020). Furthermore, the study revealed that the TB program in the two States performed far below the global milestones and targets for reductions in the number of people who develop TB each year and reductions in the case fatality ratio (CFR) (WHO, 2021b). Thus, we recommend strengthening the collaboration between tuberculosis and HIV control programs to improve the management of HIV infected persons with tuberculosis. A situation where some TB patients have no known HIV status is counterproductive. The results further revealed that the year 2021 witnessed a higher survival rate, this could imply strict patients adherence to pharmaceutical measures of TB and non-pharmaceutical protocols of COVID-19.

#### CONCLUSION

The results of this work revealed COVID-19 affect TB treatment, hence there is every need to tackle COVID-19 pandemic quickly to pave way for the rebuilding of tuberculosis services in addition to other essential health services. Since both TB and COVID-19 are infectious diseases that primarily attack the lungs, both spread through droplets, and promoted via overcrowding, the non-pharmaceutical protocols to curtail the spread of COVID-19 should be strengthened among TB patients, relatives and health providers to also curtail TB spread.

The results further revealed that TB cure rate is far below the WHO expectations, thus, this posits a lot of danger for all of us, hence, the worsening tuberculosis epidemic needs to be highlighted. Tuberculosis programs should make available real-time TB dashboard, such that, governments can respond with the needed immediacy. Investments in digital data systems, connected diagnostics, and digital treatment-support tools could make tuberculosis data more visible and accessible, particularly for TB burden regions. Finally, there is need to ensure that all TB patients are tested for HIV, since there is an established relationship between HIV and TB. Also, all stakeholders should take the caution given by LoBue of CDC (March, 2022) with all seriousness, that, "Delayed or missed tuberculosis disease diagnoses are threatening the

health of people with TB disease and the communities where they live. A delayed or missed TB diagnosis leads to TB disease progression and can result in hospitalization or death – and the risk of transmitting TB to others"

# Human subjects' issues and ethics approval

This study was reviewed and approved by the Modibbo Adama University, Yola, Research Ethics Committee. The need for patient consent was waived by the ethics committee because data collection involved retrieval of records from large numbers of TB patients, for whom it would have been logistically impractical to reach and seek individual consent. Data were handled confidentially since names of patients were excluded.

## ACKNOWLEDGMENT

We acknowledged the TB programme managers of Adamawa and Taraba States and the LGAs TB supervisors in Mubi South, Yola North, Numan, Gassol, Jalingo and Wukari for granting administrative assistance and clearance to collect tuberculosis data at respective LGAs. We also acknowledge the support given by the Director and staff of Centre for Research and Development (CERAD), Modibbo Adama University, Yola for their support and coordination. Finally, we acknowledge the Tertiary Education Trust fund (TETFUND) for sponsoring this work as part of her 2021 Institutional Based Research (IBR) research grant circle.

## REFERENCE

Aggarwal, A. N., Agarwal, R., Dhooria, S., Prasad, K. T., Sehgal, I. S., and Muthu, V. (2022). Impact of COVID-19 pandemic on tuberculosis notifications in India. *Lung India*, 39(1) 89-91. Doi: 10.4103/lungindia.lungindia\_604\_21

Alagna, R., Besozzi, G., Codecasa, L. R., Gori, A., Migliori, G. B., Raviglione, M., and Cirillo, D. M. (2020). Celebrating World Tuberculosis Day at the time of COVID-19. *European Respiratory Journal*, *55*(4) 1-3.

Ahmed N. and Hasnain, S. (2011). "Molecular Epidemiology of Tuberculosis in India: Moving forward with a systems biology approach". *Tuberculosis* **91** (5): 407–413.

Amiri, H., Mohammadi, M.J., Alavi, S.M., Salmannzadeh, S., Hematnia F., and Azar, M. (2021). Capture - recapture based study on the completeness of smear positive pulmonary tuberculosis reporting in southwest Iran during 2016. *BMC Public Health* **21**, 2318 1-10. https://doi.org/10.1186/s12889-021-12398-w

Boffan, J., Mhlaba, T., Sulis, G., Moyo, S., Sifumba, Z., Pai, M., andDaftary, A. (2020). COVID-19 and tuberculosis in South Africa: A dangerous combination. *SAMJ: South African medical journal*, *110*(5), 1-2.

Centres for Disease Control and Prevention (CDC, 2022). Effect of COVID-19 on Tuberculosis in the U.S. CDC online newsroom: Thursday, March 24, 2022.

Cilloni, L., Fu, H., Vesga, J. F., Dowdy, D., Pretorius, C., Ahmedov, S., Nair, S. A., Mosneaga, A., Masini, E., Sahu, S., and Arinaminpathy, N. (2020). The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. *EClinicalMedicine*, 28, 100603. Global Partnership for Zero Leprosy (GPZL, 2020). Working group assesses challenges and a path forward for leprosy during COVID-19. zeroleprosy.org

Madhukar, P., Tereza, K., and Soumya S. (2022). COVID-19's Devastating Effect on Tuberculosis Care – A Path to Recovery. *The new England journal of medicine*; 386:1490-1493. doi: 10.1056/nejmp2118145

Izudi, J., Tamwesigire, I. K. and Bajunirwe, F. (2020). Treatment success and mortality among adults with tuberculosis in rural eastern Uganda: a retrospective cohort study. *BMC Public Health* (2020) 20:501 https://doi.org/10.1186/s12889-020-08646-0

Jain, V. K., Iyengar, K. P., Samy, D. A., and Vaishya, R. (2020). Tuberculosis in the era of COVID-19 in India. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews*, 14(5), 1439-1443.

John, S., Gidado, M., Dahiru, T., Fanning, A., Codlin, A. J., and Creswell, J. (2015). Tuberculosis among nomads in Adamawa, Nigeria: outcomes from two years of active case finding. *The International Journal of Tuberculosis and Lung Disease*, 19(4), 463-468.

Kant, S. and Tyagi, R. (2021). The impact of COVID-19 on tuberculosis: challenges and opportunities. *Therapeutic Advances in Infectious Diseases*. doi: 10.1177/20499361211016973

Liu, Q., Lu, P., Shen, Y., Li, C., Wang, J., Zhu, L., Lu. W., and Martinez, L. (2021). Collateral Impact of the Coronavirus Disease 2019 (COVID-19) Pandemic on Tuberculosis Control in Jiangsu Province, China. *Clinical Infectious Diseases*. 73(3) 542-544. https://doi.org/10.1093/cid/ciaa1289

Louie, J. K., Reid, M., Stella, J., Agraz-Lara, R., Graves, S., Chen, L. and Hopewell, P. (2020). A decrease in tuberculosis evaluations and diagnoses during the COVID-19 pandemic. *Int J Tuberc Lung Dis*, *24*(8), 860-2.

Nath, R., Gupta, N. K., Gupta, N., Tiwari, P., Kishore, J., and Ish, P. (2021). Effect of COVID-19 pandemic on tuberculosis notification. *Indian J. Tuberc*, doi: 10.1016/j.ijTb.2021.08.007 [Epub ahead of print]. Retrieved from https://www.ncbi.nih.gov/pmc/articles/PMC8358081/ on 6<sup>th</sup> June, 2022.

National Tuberculosis Leprosy Control Programme (NTLCP, (n. d)). https://www.leprosyinformation.org/organization/ntblcp-national-tuberculosisleprosy-control-programme.

Oshi, D. C., Omeje, J. C., Oshi, S. N., Alobu, I. N., Chukwu, N. E., Nwokocha, C., Emelumadu, C. L., Meka, A. o. and Ukwaja, K. N. (2017). An evaluation of innovative community-based approaches and systematic tuberculosis screening to improve tuberculosis case detection in Ebonyi state, Nigeria. *International journal of mycobacteriology*, *6*(3), 246-252.

Soko, R. N., Burke, R. M., Feasey, H. R. A., Sibande, W., Nliwasa, M., Henrion, M. Y. R., Khundi, M., Dodd, P. J., Ku, C. C., Kawalazira, G., Choko, A. T., Corbett, E. L., And MacPherson, P. (2021). Effects of Coronavirus Disease Pandemic on Tuberculosis Notification, Malawi. *Emerging Infectious Diseases*, 27(7), 1831-1839. Doi: 10.3201/eid2707.210557

Tadolini, M., García-García, J.-M., Blanc, F.-X., Borisov, S., Goletti, D., Motta, I., Codecasa, R, L., Tiberi, S., Sotgiu, G. and Migliori, G. B. (2020). On tuberculosis and COVID-19 co-infection. *European Respiratory Journal*, *56*(2)2002328.

Togun, T., Kampmann, B., Stoker, N. G. and Lipman, M. (2020). Anticipating the impact of the COVID-19 pandemic on TB patients and TB control programmes. *Annals of clinical microbiology and antimicrobials*, *19*, 1-6.

Udwadia, Z. F., Vora, A., Tripathi, A. R., Malu, K. N., Lange, C., and Raju, R. S. (2020). COVID-19-Tuberculosis interactions: When dark forces collide. *Indian Journal of Tuberculosis*. 67(4S):S155-S162. doi: 10.1016/j.ijtb.2020.07.003.

Ukwaja, K. N., Alobu, I. and Hopewell, P. C. (2013). The high cost of free tuberculosis services: patient and household costs associated with tuberculosis care in Ebonyi State, Nigeria. *PloS one*, 8(8), e73134.

Ungvarski, P. J., and Flaskerud, J. H. (1999). HIV/AIDS: A guide to primary care management: Philadelphia: WB Saunders

Visca, D., Ong, C. W. M., Tiberi, S., Centis, R., D'Ambrosio, L., Chen, B., Mueller J., Duarte, R., Dalcolmo, M., Sotgiu. G., Migliori G.B. and Goletti, D. (2021). Tuberculosis and COVID-19 interaction: a review of biological, clinical and public health effects. *Pulmonology*. 27(2):151-165. doi: 10.1016/j.pulmoe.2020.12.012.

World Health Organization (2003). Treatment of tuberculosis: guidelines for national programmes. Geneva

World Health Organization Regional Office for Africa (2017). Framework for implementing the End TB in African Region 2016-

 $2020 https://apps.who.int/iris/bitstream/handle/10665/259636\/TB strat-$ 

eng.pdf?sequence=1#:~:text=It%20aims%20to%20end%20t he,the%20TB%20epidemic%20by%202030.

World Health Organization (2021a). WHO consolidated guidelines on tuberculosis Module 2: Screening – Systematic screening for tuberculosis disease. https://www.who.int/publications/i/item/9789240022676

World Health Organization (2021b). Global tuberculosis report: TB Mortality. https://www.who.int/teams/globaltuberculosis-programme/tb-reports/global-tuberculosisreport-2021/disease-burden/mortality



©2023 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International license viewed via <u>https://creativecommons.org/licenses/by/4.0/</u> which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited appropriately.