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ABSTRACT 

In this study, we present a 6-step linear multistep mehod in union with some newton-cote quadrature family 

for solving third order Linear Fredholm Integro-Differential Equation(LIDE). The schemes were derived using 

Vieta-Pell-Lucas Polynomial as the approximating function. The linear multi-step component is for the non 

integral part while the quadrature family is for the Integral part. The quaudrature methods Boole , Simpson 3/8 

and Trapezoidal rule were separately combined with the linear multistep method. The qualititaive analysis of 

the scheme revealed that the method is consistence, stable and convergent. In order to further attest to the 

behavioural attribute of the methods, numerical experiments were carried out on some selected Initial Value 

Problems.The results from the tested problems and their absolute errors of  deviation revealed that the new 

method is very suitbale for solution to the tested problems.  The scheme when combined with Boole and 

Simpson 3/8 merhod, performed better with Tracendental function than when combined with Trapezoidal rule 

and vice –versa. The results further showed that the proposed method perform creditably well with lesser 

computional steps when compared with some existing methods when applied to the selected examples.  

 

Keywords: Booles, Fredholm, Integro-differential equation, Simpson 3/8, Trapezoidal, Vieta-Pell-Lucas,  

Newton Cote Quadrature method 

 

INTRODUCTION 

Fredholm Integro differential equation has a far reaching 

applications in the area of sciences, engineering  and in  all 

facet of human endeavors such as kinetic theory of gases, 

geophysics, communication theory, mathematical economics, 

queuing theory, hereditary phenomena in physics and 

biology.It is however difficult if not impossible to solve some 

of the mathematical models representing the Fredholm, 

Volterra, Fredholm-Volterra analytically, hence the need to 

solve them numerically using any suitable method. Many 

reseachers has proposed different methods for solving the 

differential and integral parts of integro diferrential equations 

.Such works include Ogunrinde (2010), Ogunrinde et al. 

(2020), Obayomi (2012),Obayomi and Ogunrinde(2015) in 

which both Finite Difference and Non Standard Finite 

Difference methods were proposed for Ordinary Differential 

Equations. In the same vein,Salawu et al. (2022) worked on 

linear multistep method for solving ordinary differential 

equations. Many scholars have devoted their time in studying 

Integral equations, Fredholm Integro differential 

equations,Volterra integro differential equations since its 

discovery in 1900.Such works include the celebrated works 

of Feldstein and Sopka.(1974), Behrouz (2010) in which 

numerical methods  for nonlinear volterra equations was 

introduced. Bruner (1984) presented Implicit Runge- Kutta 

methods for optimal order for Volterra integro differential 

equations ,Yalcinbas and Sezer (2000) considered the 

approximate solution of higher linear Volterrra-Fredholm 

integro differential equations in terms of Taylor Polynomials, 

Al-Timeme and Atifa (2003) presented the quadrature rules 

for finding the numerical solutions of Initial Value Problems 

to Volterra integro differential equation. Kamoh, et al (2019) 

and Kamoh, et al (2017) proposed Continuous Linear 

Multistep Method for First and Second order integro 

differential equation using different orthogonal polynomial as 

approximating function. This research work proposed a 6-step 

continuous linear multistep method for third order Fredholm 

integro differential equations with Vieta-Pell-Lucas as 

approximating polynomial. 

 

METHODOLOGY 

We derived a 6 –step Linear Multistep Method (LMM) which 

combined with newton-cotes quadrature to solve third order 

linear integro-differential equation. 

 

Derivation of the 6-step Linear Multistep Methods(LMM) 

We consider a reliable method for solving  linear Fredholm 

Integro-Differential Equation of the form: 

𝑦‴(𝑥) = 𝑓(𝑥) + ∫ 𝜑(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡, 𝑦′(𝑎) = 𝑏11,
𝛽

𝛼
𝑦″(𝑎) = 𝑏2

     (1) 

where 𝐾(𝑥, 𝑡) is the kernel, 𝛼(𝑥) and 𝛽(𝑥) are the limits of 

the integral and 𝑓(𝑥) are given in advance.The solution to 

ordinary derivative part of (1) is approximated by using 

Horadam family of Orthogonal polynomials called Vieta-

Pell-Lucas which is of the of the form: 

𝑦(𝑥) = ∑ 𝑎𝑖
𝑚
𝑖=0 𝑠𝑖(𝑥)    (2) 

Where 𝑎𝑖(𝑥) are real undetermined coefficient and 𝑠𝑖(𝑥) are 

the terms of the Vieta-Pell-Lucas Polynomials given by 

recurrence formula𝑆𝑖(𝑥) = 2𝑥𝑆𝑖−1(𝑥) − 𝑆𝑖−2(𝑥) ,where 𝑖 ≥
2,𝑆0(𝑥) = 2and 𝑆1(𝑥) = 2𝑥,𝑚 = 9. 

The third derivative of (2.1) is obtained as  a system of 

equation of the form: 

𝑦‴(𝑥) = ∑ 𝑎𝑖
𝑚
𝑖=0 𝑠𝑖(𝑥)    (3) 

The method is derived by interpolating (2) and collocating (3) 

at 𝑥𝑛+𝑗 where 𝑗 = 0,2,4,5 and 𝑗 = 0,1,3,4,5,6 respectively 

which yield a system of interpolation and collocation 

equations. The resulting system of equations are solved using 

linear algebra suitable method via MAPLE 18 software in 

order to obtain the values of unknown𝑎𝑖 ′𝑠. 
The values of 𝑎𝑖 ′𝑠are simplified and substituted into (2) to 

obtain a continuous scheme of the form 
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𝑦(𝑥) = ∑ 𝛼𝑖(𝑥)𝑦𝑛+𝑖
𝑘
𝑖=0 +

ℎ
3∑ 𝛽𝑖

𝑘
𝑖=0 (𝑥)𝑓(𝑥𝑛+𝑖 , 𝑦(𝑥𝑛+𝑖 , 𝑧(𝑥𝑛+𝑖)))  

     (4) 

where ℎ is the step size and  

𝑧(𝑥𝑛+𝑖) = ℎ∑𝛼𝑖 (𝑥)𝑤𝑛𝑖𝜏(𝑥𝑛 , 𝑥𝑖 , 𝑦𝑖)  (5) 

are the embedded weight functions of Boole,Simpson 3/8 and 

Trapezoidal quadrature formulae obtained. 

Consequently, the continuous scheme of the form (4) is 

evaluated at points 𝑥𝑛+1, 𝑥𝑛+3, 𝑥𝑛+5 , 𝑥𝑛+7 . Further 

simplification with collection of terms in power of ℎgives the 

first four discrete schemes: 

  

 

 

}
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  (6) 

Evaluating the first and second derivative of (4) at all the grid points leads to a system of discrete schemes: 
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}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (8) 

Where 𝑏[𝑛 + 𝑘] = 𝑦𝑛+𝑘
′ , 𝑐[𝑛 + 𝑘] = 𝑦𝑛+𝑘

′′ , 0 ≤ 𝑘 ≤ 6. 
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Evaluating the third derivative of the continuous scheme at 𝑥𝑛+2 and further simplification gives the remaining part of the  

scheme: 

}
 
 
 
 
 
 

 
 
 
 
 
 

  (9) 

 

The derived block of eighteen discrete schemes of (6),(7), (8) and (9) simultaneously solves third order linear integro-

differential equation with the choices of Boole, Simpson 3/8 and Trapezoidal quadrature rules. 

 

Quadrature formulae 

In order to solve the third order linear integro –differential equations,quadrature formulae are employed to approximate the 

integral parts of the LIDEs.Thus,the choice of quadrature rules: Boole, Simpson 3/8 and Trapezoidal quadrature rules defined 

respectively as follows: 

∫ 𝑦(𝑥)𝑑𝑥 =
2ℎ

45

𝑏

𝑎
[7(𝑦0 + 𝑦𝑛) + 32(𝑦1 + 𝑦3 + 𝑦5 +⋯) + 12(𝑦2 + 𝑦6 + 𝑦10 +⋯) + 14(𝑦4 + 𝑦8 + 𝑦12 +⋯) −

8(ℎ)7𝑦𝑣𝑖(𝜀)

945
]

            (10) 

  

∫ 𝑦(𝑥)𝑑𝑥 =
3ℎ

8

𝑏

𝑎
[(𝑦1 + 3𝑦2 + 3𝑦3 + 2𝑦4 + 3𝑦5 + 3𝑦6 +⋯+ 2𝑦𝑛−2 + 3𝑦𝑛−1 + 3𝑦𝑛 + 𝑦𝑛+1) −

(𝑏−𝑎)ℎ4𝑦𝑖𝑣(𝜀)

180
] (11) 

 

∫ 𝑦(𝑥)𝑑𝑥 =
ℎ

2

𝑏

𝑎
[(𝑦1 + 2𝑦2 + 2𝑦3 + 2𝑦4 + 2𝑦5 + 2𝑦6 +⋯+ 2𝑦𝑛−2 + 2𝑦𝑛−1 + 2𝑦𝑛 + 𝑦𝑛+1) −

(𝑏−𝑎)ℎ2𝑦′′(𝜀)

12
]  (12) 

 

Where 𝑥𝑖𝑖 = 𝑎 + 𝑖𝑗, (𝑖 = 9 = 0,1,2,… , 𝑛)  are the abscissas 

of the partition points of the integration in interval ⌈𝑎, 𝑏⌉,h is 

the step size which is given by  

 

ℎ =
𝑏−𝑎

𝑛
      

  (13)    

       

where n is the number of subinterval in the interval ⌈𝑎, 𝑏⌉ and 

the terms −
8(ℎ)7𝑦𝑣𝑖(𝜀)

945
, 
(𝑏−𝑎)ℎ4𝑦𝑖𝑣(𝜀)

180
 and 

(𝑏−𝑎)ℎ2𝑦′′(𝜀)

12
 are the 

error terms for Boole,Simpson 3/8 and Trapezoidal rules 

respectively. 

 

Analysis of the  6-Step LMM 

The basic behavioural properties of the methods are analyzed 

to establish the efficiency, reliability and validity of the 

method. These properties include order, error constant, 

consistence, stability and convergence. 

 

Order and Error constant of the main schemes and its 

derivatives 

Employing the Taylor series of the main scheme 𝑦𝑛+6(𝑥) of 

(4), its first and second derivatives 𝑦𝑛+6
′ (𝑥) and 𝑦𝑛+6

″ (𝑥) of 

(7) and (8) respectively by collecting the like terms in term of 

ℎ ,we obtained the error constants 

as

𝑐0 = 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 𝑐5 = 𝑐6 = 0, 𝑐7 =
1256

3312225
 

𝑐0 = 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 𝑐5 = 𝑐6 = 0, 𝑐7 = −
20417

9936675
 

𝑐0 = 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 𝑐.5 = 𝑐6 = 0, 𝑐7 = −
184859

19873350}
 
 

 
 

   

(14) 

By extension, the block of eighteen discrete schemes in (6), 

(7), (8) and (9) is found to be of uniform order 𝜌 = 7with a 

varying error constant. 

 

Consistency of the method 

Definition 1: A linear multistep method is consistent if the 

following conditions hold: 

(a) The order is greater than one, i.e. 𝜌 ≥ 1 

(b) ∑ 𝛼𝑖
𝑘
𝑖=0 = 0 

(c) 𝜌(1) = 𝑝′(1) = 𝜌″(1) = 0 

(d) 𝜌‴(1) = 3! 𝛿(1) 
The main scheme 𝑦𝑛+6(𝑥) of (4) satisfies all the conditions in 

definition 1, hence the main scheme is consistent and by 

extension, other schemes are found to be consistent. 

Zero stability 

Definition 2: A linear multistep method is said to be zero 

stable if no roots of the first characteristic polynomial 𝜌(𝑟) 
has modulus greater one, i.e |𝑟| ≤ 1 and every root with 

modulus is simple. Following thisdefinition,the roots of the 

first characteristic polynomial 

 

𝑟6 −
160768

59585
𝑟5 +

24537

11917
𝑟4 −

4441

11917
𝑟2 +

703

59585
= 0           (15) 

associated with main scheme are: 

𝑟1 =
 

𝑟2 =
 

𝑟3 =
 

𝑟4 = 1
 

𝑟5 = 1
 

𝑟6 = 1 }
 
 
 
 
 
 

 
 
 
 
 
 

 

                (16) 

Hence, the derived method is zero stable. 



NUMERICAL SOLUTIONS OF THIRD…      Ogunrinde et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 7 No. 3, June, 2023, pp 33 - 44 38 

Region of Absolute Stability of the main scheme 

Using the function ∏(𝑟, 𝐻) = 𝜌(𝑟) − 𝐻𝛿(𝑟) .the region of 

absolute stability is sketched for 𝐻(𝑟) =
𝜌(𝑟)

𝛿(𝑟)
,where 𝑟 = 𝑒𝑖𝜃, 

0 ≤ 𝜃 ≤ 2𝜋 and presented 

 

 
Figure 1: Region of absolute stability of the main scheme 

Convergence 

According to Lambert (1973) and Fatunla (1991), the 

necessary and sufficient conditions for a Linear Muiltistep 

Method (LMM) to be convergent are that it must be consistent 

and zero- stable.Hence,the proposed method is convergent. 

Numerical Experiment  

The selected third order initial value problems of FIDE are 

solved to support our theoretical discussion on the derived 

method; the method is implemented with the choice of 

Boole,Simpson 3/8 and Trapezoidal rules. The experiments 

are performed with the aid of MAPLE 18 software package 

while the graphs are plotted with MATLAB R2016a software. 

The error is defined as follows: 

𝑒𝑟𝑟𝑜𝑟 = |𝑦(𝑒𝑥𝑎𝑐𝑡) − 𝑦(𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙)| 
 

Problem 1 

Consider the linear FIDE 𝑦‴(𝑥) = 6 + 𝑥 −

∫ 𝑥𝑦″(𝑡)𝑑𝑡
1

0
, 𝑦(0) = −1, 𝑦′(0) = 1, 𝑦″(0) = −2 with exact 

solution 𝑦(𝑥) = 𝑥3 − 𝑥2 + 𝑥 −1 

Source: Wazwaz (1997) 

 

Table 1: Solution to problem 1 using the derived scheme with Boole (6LMBL), Simpson 3/8 (6LMSP) and Trapezoidal 

(6MTR) with N=12 partitions 

 
 

y(exact) 6LMBL 6LMSP 6LMTR E6LMBL E6LMSP E6LMTR 

0.08333 -0.9230324074 -0.9230324067 -0.9230324066 -0.9230324073 7.00E-10 8.00E-10 1.00E-10 

0.16667 -0.8564814815 -0.8564814800 -0.8564814799 -0.8564814810 1.50E-09 1.60E-09 5.00E-10 

0.25 -0.7968750000 -0.7968749978 -0.7968749975 -0.7968749992 2.20E-09 2.50E-09 8.00E-10 

0.33333 -0.7407407408 -0.7407407377 -0.7407407373 -0.7407407395 3.10E-09 3.50E-09 1.30E-09 

0.41667 -0.6846064815 -0.6846064775 -0.6846064770 -0.6846064798 4.00E-09 4.50E-09 1.70E-09 

0.5 -0.6250000001 -0.6249999951 -0.6249999945 -0.6249999978 5.00E-09 5.60E-09 2.30E-09 

0.58333 -0.5584490742 -0.5584490679 -0.5584490672 -0.5584490710 6.30E-09 7.00E-09 3.20E-09 

0.66667 -0.4814814817 -0.4814814739 -0.4814814731 -0.4814814774 7.80E-09 8.60E-09 4.30E-09 

0.75 -0.3906250002 -0.3906249908 -0.3906249899 -0.3906249947 9.40E-09 1.03E-08 5.50E-09 

0.83333 -0.2824074077 -0.2824073964 -0.2824073955 -0.2824074009 1.13E-08 1.22E-08 6.80E-09 

0.91667 -0.1533564819 -0.1533564686 -0.1533564677 -0.1533564735 1.33E-08 1.42E-08 8.40E-09 

1 -0.0000000006 0.0000000149 0.0000000158 0.0000000095 1.55E-08 1.64E-08 1.01E-08 

 

Table 2: Maximum Absolute Error (MaxE) of the Derived method with different quadrature rule for Problem 1 with 

varying partition N 

Quadrature Formula MaxE N=24  MaxE  N=36 MaxE N=48 

E6LMBL 8.8698E-09 1.2121E-08 1.7083E-07 

E6LMSP 5.3000E-09 7.900E-09 6.6986E-08 

E6LMTR 7.3493E-09 1.2206E-08 5.9391E-08 

 

Problem 2 

Consider the LFIDE 𝑦‴(𝑥) = 𝑠𝑖𝑛 𝑥 − 𝑥 − ∫ 𝑥𝑡𝑦″(𝑡)𝑑𝑡
𝜋

2
0

, 𝑦(0) = 1, 𝑦′(0) = 0, 𝑦″(0) = −1 with exact solution 𝑦(𝑥) =

𝑐𝑜𝑠 𝑥 

Source: Darania and Ali (2007) 

 

Table 3: Solution to problem 2  using the derived scheme with Boole (6LMBL), Simpson 3/8 (6LMSP) and Trapezoidal 

(6LMTR) with N=12 partitions  

 

y(exact) 6LMBL 6LMSP 6LMTR E6LMBL E6LMSP E6LMTR 

0.13093 0.9914412786 0.9914412839 0.9914412838 0.9914412971 5.30E-09 5.20E-09 1.85E-09 

0.26185 0.9659116177 0.9659116954 0.9659116938 0.9659119068 7.77E-08 7.61E-08 2.89E-07 

0.39278 0.9238480199 0.9238484103 0.9238484019 0.9238494805 3.90E-07 3.82E-07 1.46E-06 

0.52371 0.8659705064 0.8659717380 0.8659717114 0.8659751203 1.23E-06 1.21E-06 4.61E-06 

0.65464 0.7932697922 0.7932727969 0.7932727322 0.7932810547 3.00E-06 2.94E-06 1.13E-05 

0.78556 0.7069903277 0.7069965561 0.7069964219 0.7070136795 6.23E-06 6.10E-06 2.34E-05 

0.91649 0.6086089966 0.6086205340 0.6086202854 0.6086522572 1.15E-06 1.13E-05 4.33E-05 
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1.04742 0.4998098358 0.4998295159 0.4998290918 0.4998836341 1.97E-05 1.93E-05 7.37E-05 

1.17834 0.3824552087 0.3824867296 0.3824860503 0.3825734166 3.15E-05 3.08E-04 1.18E-04 

1.30927 0.2585539264 0.2586019661 0.2586009307 0.2587340908 4.80E-05 4.70E-04 1.80E-04 

1.44020 0.1302268620 0.1302971935 0.1302956776 0.1304906373 7.03E-05 6.88E-04 2.64E-04 

1.57113 -0.0003293532 -0.0002297466 -0.0002318937 0.0000442271 9.96E-05 9.75E-04 3.74E-04 

 

Table 4: Maximum Absolute Error (MaxE) of the Derived method with different quadrature rule for Problem 2 with 

varying partition N 

Quadrature Formula MaxE N=24  MaxE  N=36 MaxE N=48 

E6LMBL 1.4362E-05 9.9587E-05 2.1403E-04 

E6LMSP 1.4495E-05 9.9561E-05 2.1402E-04 

E6LMTR 5.4275E-05 1.3008E-04 2.3118E-04 

 

Table 5: Comparison of Maximum Absolute Error (MaxE) of the Derived method with Darania and Ali (2007) for 

Problem 2 with varying partition N 

Method No of partition MaxE 

6LMSP        6 1.6280E-04 

6LMTR        6 1.1327E-03 

Darania and Ali (2007)       10 5.2938E-01 

 

Problem 3 

Consider the LFIDE 𝑦‴(𝑥) = 1 − 𝑒 + 𝑒𝑥 + 𝑐𝑜𝑠 𝑥 + ∫ 𝑦(𝑡)𝑑𝑡
1

0
, 𝑦(0) = 𝑦′(0) = 𝑦″(0) = 1 with exact solution 𝑦(𝑥) = 𝑒𝑥 

Source: Gegele et al. (2014) 

 

Table 7: Solution to problem 3  using the derived scheme with Boole (6LMMBL), Simpson 3/8 (6LMMSP) and 

Trapezoidal (6LMMTR) with N=12 partitions 
 

 

y(exact) 6LMBL 6LMSP 6LMTR E6LMBL E6LMSP E6LMTR 

0.08333 1.086904050 1.086904050 1.086904049 1.086904150 0.00E+00 1.00E-10 1.00E-07 

0.16667 1.181360413 1.181360414 1.181360413 1.181361214 1.00E-09 0.00E+00 8.01E-07 

0.25 1.284025417 1.284025418 1.284025420 1.284028120 1.00E-09 3.00E-09 2.70E-06 

0.33333 1.395612425 1.395612427 1.395612431 1.395618831 2.00E-09 6.00E-09 6.41E-06 

0.41667 1.516896796 1.516896798 1.516896809 1.516909308 2.00E-09 1.30E-08 1.25E-05 

0.5 1.648721271 1.648721273 1.648721294 1.648742891 2.00E-09 2.30E-08 2.16E-05 

0.58333 1.792001825 1.792001829 1.792001860 1.792036160 4.00E-09 3.50E-08 3.43E-05 

0.66667 1.947734041 1.947734045 1.947734092 1.947785292 4.00E-09 5.10E-08 5.13E-05 

0.75 2.117000016 2.117000023 2.117000090 2.117072989 7.00E-09 7.40E-08 7.30E-05 

0.83333 2.300975890 2.300975896 2.300975989 2.301075990 6.00E-09 9.90E-08 1.00E-04 

0.91667 2.500940013 2.500940018 2.500940144 2.501073244 5.00E-09 1.31E-07 1.33E-04 

1 2.718281828 2.718281835 2.718282000 2.718454797 7.00E-09 1.72E-07 1.73E-04 

 

Table 8: Maximum Absolute Error (MaxE) of the Derived method with different quadrature rule for Problem 3 with 

varying partition N 

Quadrature Formula MaxE N=24  MaxE  N=36 MaxE N=48 

E6LMBL 2.0400E-07 3.5700E-07 7.9000E-08 

E6LMSP 1.800E-08 3.6700E-07 9.1900E-09 

E6LMTR 4.3300E-05 1.9930E-05 1.1341E-05 

 

Table 9: Comparison of Maximum Absolute Error (MaxE) of the Derived method with Gegele et al. (2014) for 

Problem 3 with varying partition N 

Method No of Partition(N) MaxE  

E6LMSP  6 2.8610E-06 

Gegele et al. (2014) (CSSCM)                 10 2.2747E-05 

Gegele et al. (2014) (CSCGLCM)                   10 3.1782E-04 

 

Problem 4 

Consider the LFIDE 𝑦‴(𝑥) = 5lin2 − 3 − 𝑥 + 4 𝑐𝑜𝑠ℎ 𝑥 + ∫ (𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡
lin2

0
, 𝑦(0) = 𝑦″(0) = 0, 𝑦′(0) = 4 with exact 

solution 𝑦(𝑥) = 4 𝑠𝑖𝑛ℎ𝑥 

Source: Wazwaz (2011). 
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Table 10: Solution to problem 4  using the derived scheme with Boole (6LMMBL), Simpson 3/8 (6LMMSP) and 

Trapezoidal (6LMMTR) with N=12 partitions  

 

y(exact) 6LMBL 6LMSP 6LMTR E6LMBL E6LMSP E6LMTR 

0.05776 0.2311775634 0.2311775638 0.2311775636 0.2311775066 4.00E-10 2.00E-10 5.68E-08 

0.11552 0.4631266604 0.4631266612 0.4631266607 0.4631262044 8.00E-10 3.00E-10 4.56E-07 

0.17329 0.6966213996 0.6966214013 0.6966213994 0.6966198613 1.70E-09 2.00E-10 1.54E-06 

0.23105 0.9324410480 0.9324410494 0.9324410458 0.9324374061 1.40E-09 2.20E-09 3.64E-06 

0.28881 1.171372631 1.171372633 1.171372626 1.171365531 2.00E-09 5.00E-09 7.10E-06 

0.34657 1.414213562 1.414213563 1.414213551 1.414201317 1.00E-09 1.10E-08 1.22E-05 

0.40434 1.661774299 1.661774299 1.661774280 1.661754895 0.00E-09 1.90E-08 1.94E-05 

0.46210 1.914881053 1.914881054 1.914881024 1.914852149 1.00E-09 2.90E-08 2.89E-05 

0.51986 2.174378545 2.174378547 2.174378503 2.174337478 2.00E-09 4.20E-08 4.11E-05 

0.57762 2.441132823 2.441132824 2.441132764 2.441076607 1.00E-09 5.90E-08 5.62E-05 

0.63538 2.716034155 2.716034153 2.716034074 2.715959489 2.00E-09 8.10E-08 7.47E-05 

0.69315 2.999999998 2.999999992 2.999999891 2.999903268 6.00E-09 1.07E-07 9.67E-05 

 

Table 11: Maximum Absolute Error (MaxE) of the Derived method with different quadrature rule for Problem 4 

with varying partition N 

Quadrature Formula MaxE N=24  MaxE  N=36 MaxE N=48 

E6LMBL 6.6800E-08 1.4000E-07 4.3600E-07 

E6LMSP 9.0000E-09 1.3700E-07 2.8000E-08 

E6LMTR 2.4248E-05 1.0757E-05 6.8090E-06 

 

 
Figure 2: A plot of Exact, 6LMBL, 6LMSP and 6LMTR Solutions for Problem 1 
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Figure 3: A plot of Exact, 6LMBL, 6LMSP and 6LMTR Solutions for Problem 2 

 
Figure 4: A plot of Exact, 6LMBL, 6LMSP and 6LMTR Solutions for Problem 3 
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Figure 5: A plot of Exact, 6LMBL, 6LMSP and 6LMTR Solutions for Problem 4 

 
Figure 6: Comparison of Mx6LMBL, Mx6LMSP and Mx6LMTR Solutions for Problem 1 

 
Figure 7: Comparison of Mx6LMBL, Mx6LMSP and Mx6LMTR Solutions for Problem 2
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RESULT AND DISCUSSION  

The tables and figures above represent the numerical 

experiment of  the  6-step linear multistep method in 

combination with some Newton cote quadrature family that 

can solve  third order Fredholm Integro-differential 

equation.The method is employed together with Booles 

(6LMBM).Simpson 3/8 (6LMSP) and Tarpezoidal(6LMTR) 

to solve some Initial Value Problems of  third order LFIDEs. 

The method was derived using Vieta-Pell-lucas polynomial as 

an approximate solution of the ordinary derivative part of the 

third order LFIDEs.The behavioural properties of the method 

have been  analysed and depicted in diagrams as well .The 

analysis revealed that the method is of uniform order (error of 

order seven) .It was also found that the method is 

consistent,stable and convergent. Four numerical examples 

were solved using the methods in order to confirm the 

theorical claims of consistence,stability and accuracy. 

The result of Problem 1 to 4 is presented  in tabular form.The 

results have been compared with Exact solutions of the 

Integro-differential equations.  Table 1,3,7 and 10  show the 

numerical solutions alongside the exact solutions and absolute 

errors and the various step sizes h. 

From table 1,it can be observed from  the absolute error that 

6LMTR performs slightly better when compared with  

6LMBL and 6LMSP. Furthemore,Tables 2,4,8 and 11 

displayed the performance of each of the schemes with 

different various number of  partitions  ( N=24,N=36 and 

N=48) and the resulting  maximum errors. 

The results of the problems are also displayed graphically  in 

Figure 2,Figure 3, Figure 4 and Figure 5 respectively. It’s 

obvious fron the figures that the methods perform favourably 

with the exact solutions. 

Figure 6 and Figure7 represent the graphical presentation of 

the maximum errors in each of the problems 1 and 2 with 

varying number of partition N=24,N=36 and N=48.  

Table 5 and 9 displayed the comparison between the derived 

methods and some earlier methods such as : Darania and Ali 

(2007) ,Gegele et al. (2014). The comaparative analysis of the 

derived method with some earlier methods also shows that the  

method perform better than that of  Darania and Ali (2007) 

and Gegele et al. (2014)  even when lesser number of partition 

(N=6) has being used. The use of lesser number of partition 

also confirm that lesser number of computions are used to get 

a better result than these  earlier methods.    

The following notations have been used as short form of : 

6LMBL= 6-step linear multistep method with Boole 

quadrature formula 

6LMSP = 6-step linear multistep method with Simpson 3/8 

quadrature formula 

6LMTR = 6-step linear multistep method with Trapezoidal 

quadrature formula 

MaxE = Maximum Error 

 

CONCLUSION 

It’s a known fact that some of   Integro –diiferential Equation 

are difficult to solve analytically if not impossible to solve, 

hence the need to approximate their solutions numerically. In 

this research,we present a 6-step linear multistep mehod 

which are implemented with the family of newton-cote 

quadrature formulae. The results show that the new method 

perform slightly better when implemented with Trapezoidal 

rule on problems that have linear and Non tracendental form 

in Problem1.The results further revealed superiority of the 

method when implemented with both Boole and Simpson 3/8 

on Problems involving tracendental functions of the form  in 

Problems 2 to 4.The comaparative analysis of the derived 

method with some earlier methods also shows that the  

method perform better than that of  Darania and Ali (2007) 

and Gegele et al. (2014)  even when lesser number of partition 

(N=6) has being used. The use of lesser number of partition 

also confirm that lesser number of computions are used to get 

a better result than these earlier methods.    
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