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ABSTRACT

In this study, we present a 6-step linear multistep mehod in union with some newton-cote quadrature family
for solving third order Linear Fredholm Integro-Differential Equation(LIDE). The schemes were derived using
Vieta-Pell-Lucas Polynomial as the approximating function. The linear multi-step component is for the non
integral part while the quadrature family is for the Integral part. The quaudrature methods Boole , Simpson 3/8
and Trapezoidal rule were separately combined with the linear multistep method. The qualititaive analysis of
the scheme revealed that the method is consistence, stable and convergent. In order to further attest to the
behavioural attribute of the methods, numerical experiments were carried out on some selected Initial Value
Problems.The results from the tested problems and their absolute errors of deviation revealed that the new
method is very suitbale for solution to the tested problems. The scheme when combined with Boole and
Simpson 3/8 merhod, performed better with Tracendental function than when combined with Trapezoidal rule
and vice —versa. The results further showed that the proposed method perform creditably well with lesser

computional steps when compared with some existing methods when applied to the selected examples.

Keywords: Booles, Fredholm, Integro-differential equation, Simpson 3/8, Trapezoidal, Vieta-Pell-Lucas,

Newton Cote Quadrature method

INTRODUCTION

Fredholm Integro differential equation has a far reaching
applications in the area of sciences, engineering and in all
facet of human endeavors such as kinetic theory of gases,
geophysics, communication theory, mathematical economics,
queuing theory, hereditary phenomena in physics and
biology.It is however difficult if not impossible to solve some
of the mathematical models representing the Fredholm,
Volterra, Fredholm-Volterra analytically, hence the need to
solve them numerically using any suitable method. Many
reseachers has proposed different methods for solving the
differential and integral parts of integro diferrential equations
.Such works include Ogunrinde (2010), Ogunrinde et al.
(2020), Obayomi (2012),0Obayomi and Ogunrinde(2015) in
which both Finite Difference and Non Standard Finite
Difference methods were proposed for Ordinary Differential
Equations. In the same vein,Salawu et al. (2022) worked on
linear multistep method for solving ordinary differential
equations. Many scholars have devoted their time in studying
Integral ~ equations,  Fredholm Integro  differential
equations,Volterra integro differential equations since its
discovery in 1900.Such works include the celebrated works
of Feldstein and Sopka.(1974), Behrouz (2010) in which
numerical methods for nonlinear volterra equations was
introduced. Bruner (1984) presented Implicit Runge- Kutta
methods for optimal order for Volterra integro differential
equations ,Yalcinbas and Sezer (2000) considered the
approximate solution of higher linear Volterrra-Fredholm
integro differential equations in terms of Taylor Polynomials,
Al-Timeme and Atifa (2003) presented the quadrature rules
for finding the numerical solutions of Initial Value Problems
to Volterra integro differential equation. Kamoh, et al (2019)
and Kamoh, et al (2017) proposed Continuous Linear
Multistep Method for First and Second order integro
differential equation using different orthogonal polynomial as
approximating function. This research work proposed a 6-step
continuous linear multistep method for third order Fredholm

integro differential equations with Vieta-Pell-Lucas as
approximating polynomial.

METHODOLOGY

We derived a 6 —step Linear Multistep Method (LMM) which
combined with newton-cotes quadrature to solve third order
linear integro-differential equation.

Derivation of the 6-step Linear Multistep Methods(LMM)
We consider a reliable method for solving linear Fredholm
Integro-Differential Equation of the form:

Y =f0) + ff o(x,)y(®)dt,y (@) = by, y'(a) = b,
)

where K (x, t) is the kernel, a(x) and B(x) are the limits of
the integral and f(x) are given in advance.The solution to
ordinary derivative part of (1) is approximated by using
Horadam family of Orthogonal polynomials called Vieta-
Pell-Lucas which is of the of the form:

y(x) = X% a;s;(x) 2

Where a;(x) are real undetermined coefficient and s;(x) are
the terms of the Vieta-Pell-Lucas Polynomials given by
recurrence formulaS;(x) = 2xS;_1(x) — S;_,(x) ,where i >
2,50(x) = 2and S;(x) = 2x,m = 9.

The third derivative of (2.1) is obtained as a system of
equation of the form:
y (x) =XiZoa; si(x) 3

The method is derived by interpolating (2) and collocating (3)
at x,.; where j=0,2,4,5and j=0,1,3,4,5,6 respectively
which yield a system of interpolation and collocation
equations. The resulting system of equations are solved using
linear algebra suitable method via MAPLE 18 software in
order to obtain the values of unknowna;'s.

The values of a;'sare simplified and substituted into (2) to
obtain a continuous scheme of the form
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y(x) = Z{":o a;(X)Ynyi +
W 2o By (O f Conin Y Conris 2(Xnsi))
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are the embedded weight functions of Boole,Simpson 3/8 and
Trapezoidal quadrature formulae obtained.
Consequently, the continuous scheme of the form (4) is

4) .
where h is the step size and evaluated at points X1, Xp43, Xnts » Xni7 .- FUrther
2(Xnst) = h Y a; COWniT (s Xi0 Vi) (5) simplification with collection of terms in power of Agives the
first four discrete schemes:
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Evaluating the first and second derivative of (4) at all the grid points leads to a system of discrete schemes:
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Where b[n + k] = y,x, cln + k] =y, 0 < k < 6.
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Evaluating the third derivative of the continuous scheme at x,,,, and further simplification gives the remaining part of the
scheme:

703 73 484 7675 14764 9
Jn+2™ " T78755 n T 178755 Mnt6 T 9585 Jnts T 11917 Mn+4 T Sosgs Jut1 ©
6048 20160 30240 16128
2880 11917 Yo 917 M +2 1917 Yn+4 T 1917 Fnts

35751 /n+3 JE

The derived block of eighteen discrete schemes of (6),(7), (8) and (9) simultaneously solves third order linear integro-
differential equation with the choices of Boole, Simpson 3/8 and Trapezoidal quadrature rules.

Quadrature formulae
In order to solve the third order linear integro —differential equations,quadrature formulae are employed to approximate the
integral parts of the LIDEs.Thus,the choice of quadrature rules: Boole, Simpson 3/8 and Trapezoidal quadrature rules defined

respectively as follows:
2h

b
L ydx =22 [7(r0 + yn) + 32001 + 3 + s + ) + 120 + Yo + Yao + ) + 140 + Yo + Yz + )

4

b 3h
Jo y@)dx = [(y1 +3y2 +3y3 +2ys +3ys + 3y + -+ 2yn_z + 3¥n-1 + 3¥n + Y1) —

b h
Jo y@)dx = [(y1 +2y2 +2y3 +2y4 + 2y5 + 2y + o+ 2Ynp + 2Yn-1 + 2Vn + Y1) —

Where x;i =a+ij,(i=9=0,12,..,n) are the abscissas
of the partition points of the integration in interval [a, b],h is
the step size which is given by

(13)

where n is the number of subinterval in the interval [a, b] and

7 Vi _ 4,10 _ 2,11
the terms —8(h)94ys ©) b’ yTE) oy b “)fzy © are the

error terms for Boole,Simpson 3/8 and Trapezoidal rules
respectively.

Analysis of the 6-Step LMM

The basic behavioural properties of the methods are analyzed
to establish the efficiency, reliability and validity of the
method. These properties include order, error constant,
consistence, stability and convergence.

Order and Error constant of the main schemes and its
derivatives

Employing the Taylor series of the main scheme y,,, ¢(x) of
(4), its first and second derivatives y,,,¢(x) and y;,¢(x) of
(7) and (8) respectively by collecting the like terms in term of

h we obtained the error constants
as
Co=CL=Cp=C3=Cp=Cs=ce=0,0, =—220_
0= =G =C0G=0G=06=C6=U,0 =00
Cop=C=C=C=C,=C=c¢=0,¢,= 20417 L
0= 0= =06=0G=06=C=U0="
Cop=C=C =C3=C=Cgs=C¢C, =0, = 164859
07 =277 M TR T T W7 T T 19873350
(14)

By extension, the block of eighteen discrete schemes in (6),
(7), (8) and (9) is found to be of uniform order p = 7with a
varying error constant.

3 s(n)7y”i(e)]

945
(10)
(b—a)hty™(e) (11)
180
(b-a)h®y"' (&) (12)

12

Consistency of the method
Definition 1: A linear multistep method is consistent if the
following conditions hold:

(&) The order is greater than one, i.e.p > 1

(b) ko =0

© pM=pM)=p'(1)=0

d) p(1)=316(1)
The main scheme y,,,¢(x) of (4) satisfies all the conditions in
definition 1, hence the main scheme is consistent and by
extension, other schemes are found to be consistent.

Zero stability

Definition 2: A linear multistep method is said to be zero
stable if no roots of the first characteristic polynomial p(r)
has modulus greater one, i.e |r| < land every root with
modulus is simple. Following thisdefinition,the roots of the
first characteristic polynomial

6 160768 5 24537 , 4441

_59585 3 11_917 11917
associated with main scheme are:

r, = 0.1940115796 — 4,107 1

2, 703 _
59585

0 (15)

~0.2736853527 — 3.244101616 107'°1

ry =
ry = -0.2221975033 + 3.684101616 10701
r=1
rs =1
e =1

(16)
Hence, the derived method is zero stable.
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Region of Absolute Stability of the main scheme
Using the function [](r, H) = p(r) — H&(r) .the region of

absolute stability is sketched for H(r) = 22 where r = e,

sy’
0 < 6 < 2m and presented

Figure 1: Region of absolute stability of the main scheme

Ogunrinde et al.,

FJS

Convergence

According to Lambert (1973) and Fatunla (1991), the
necessary and sufficient conditions for a Linear Muiltistep
Method (LMM) to be convergent are that it must be consistent
and zero- stable.Hence,the proposed method is convergent.

Numerical Experiment

The selected third order initial value problems of FIDE are
solved to support our theoretical discussion on the derived
method; the method is implemented with the choice of
Boole,Simpson 3/8 and Trapezoidal rules. The experiments
are performed with the aid of MAPLE 18 software package
while the graphs are plotted with MATLAB R2016a software.
The error is defined as follows:

error = |y(exact) — y(numerical)|

Problem 1

Consider the linear FIDE y"(x) = 6 + x —

Jy xy"(®)dt, y(0) = —1,y'(0) = 1,y"(0) = —2 with exact
solutiony(x) = x3 —x2+x -1

Source: Wazwaz (1997)

Table 1: Solution to problem 1 using the derived scheme with Boole (6LMBL), Simpson 3/8 (6LMSP) and Trapezoidal

(6MTR) with N=12 partitions

x y(exact) 6LMBL 6LMSP 6LMTR E6LMBL E6LMSP E6LMTR
0.08333 -0.9230324074  -0.9230324067  -0.9230324066  -0.9230324073  7.00E-10  8.00E-10  1.00E-10
0.16667 -0.8564814815 -0.8564814800  -0.8564814799  -0.8564814810  1.50E-09 1.60E-09 5.00E-10
0.25 -0.7968750000 -0.7968749978  -0.7968749975  -0.7968749992  2.20E-09  2.50E-09  8.00E-10
0.33333 -0.7407407408  -0.7407407377  -0.7407407373  -0.7407407395  3.10E-09  3.50E-09  1.30E-09
0.41667 -0.6846064815 -0.6846064775  -0.6846064770  -0.6846064798  4.00E-09  4.50E-09  1.70E-09
0.5 -0.6250000001  -0.6249999951  -0.6249999945  -0.6249999978  5.00E-09  5.60E-09  2.30E-09
0.58333 -0.5584490742  -0.5584490679  -0.5584490672  -0.5584490710  6.30E-09  7.00E-09  3.20E-09
0.66667 -0.4814814817 -0.4814814739  -0.4814814731  -0.4814814774  7.80E-09 8.60E-09  4.30E-09
0.75 -0.3906250002  -0.3906249908  -0.3906249899  -0.3906249947  9.40E-09 1.03E-08  5.50E-09
0.83333 -0.2824074077  -0.2824073964  -0.2824073955  -0.2824074009  1.13E-08  1.22E-08 6.80E-09
0.91667 -0.1533564819  -0.1533564686  -0.1533564677  -0.1533564735  1.33E-08  1.42E-08  8.40E-09
1 -0.0000000006  0.0000000149 0.0000000158 0.0000000095 1.55E-08 1.64E-08 1.01E-08

Table 2: Maximum Absolute Error (MaxE) of the Derived method with different quadrature rule for Problem 1 with
varying partition N

Quadrature Formula MaxE N=24 MaxE N=36 MaxE N=48

E6LMBL 8.8698E-09 1.2121E-08 1.7083E-07

E6LMSP 5.3000E-09 7.900E-09 6.6986E-08

E6LMTR 7.3493E-09 1.2206E-08 5.9391E-08
Problem 2

Consider the LFIDE y" (x) = sinx —x — fgxty"(t)dt,y(O) =1,y'(0) = 0,y"(0) = —1 with exact solution y(x) =

coS x

Source: Darania and Ali (2007)

Table 3: Solution to problem 2 using the derived scheme with Boole (6LMBL), Simpson 3/8 (6LMSP) and Trapezoidal
(6LMTR) with N=12 partitions

¥ y(exact) 6LMBL 6LMSP 6LMTR E6LMBL E6LMSP E6LMTR
0.13093  0.9914412786  0.9914412839  0.9914412838  0.9914412971 5.30E-09  5.20E-09 1.85E-09
0.26185 0.9659116177  0.9659116954  0.9659116938  0.9659119068 7.77E-08  7.61E-08  2.89E-07
0.39278  0.9238480199  0.9238484103  0.9238484019  0.9238494805 3.90E-07  3.82E-07 1.46E-06
0.52371 0.8659705064  0.8659717380  0.8659717114  0.8659751203 1.23E-06 1.21E-06 4.61E-06
0.65464  0.7932697922  0.7932727969  0.7932727322  0.7932810547 3.00E-06  2.94E-06 1.13E-05
0.78556  0.7069903277  0.7069965561  0.7069964219  0.7070136795 6.23E-06 6.10E-06  2.34E-05
0.91649 0.6086089966  0.6086205340  0.6086202854  0.6086522572 1.15E-06 1.13E-05 4.33E-05
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1.04742
1.17834
1.30927
1.44020
1.57113

0.4998098358
0.3824552087
0.2585539264
0.1302268620
-0.0003293532

0.4998295159
0.3824867296
0.2586019661
0.1302971935
-0.0002297466

0.4998290918
0.3824860503
0.2586009307
0.1302956776
-0.0002318937

0.4998836341
0.3825734166
0.2587340908
0.1304906373
0.0000442271

197E-05 1.93E-05
3.15E-05  3.08E-04
4.80E-05 4.70E-04
7.03E-05 6.88E-04
9.96E-05  9.75E-04

7.37E-05
1.18E-04
1.80E-04
2.64E-04
3.74E-04

Table 4: Maximum Absolute Error (MaxE) of the Derived method with different quadrature rule for Problem 2 with
varying partition N

Quadrature Formula MaxE N=24 MaxE N=36 MaxE N=48
E6LMBL 1.4362E-05 9.9587E-05 2.1403E-04
E6LMSP 1.4495E-05 9.9561E-05 2.1402E-04
E6LMTR 5.4275E-05 1.3008E-04 2.3118E-04

Table 5: Comparison of Maximum Absolute Error (MaxE) of the Derived method with Darania and Ali (2007) for
Problem 2 with varying partition N

Method No of partition MaxE

6LMSP 6 1.6280E-04
6LMTR 6 1.1327E-03
Darania and Ali (2007) 10 5.2938E-01

Problem 3

Consider the LFIDE y"(x) =1—e +e* + cosx + fol y(t)dt,y(0) = y'(0) = y”(0) = 1 with exact solution y(x) = e*
Source: Gegele et al. (2014)

Table 7: Solution to problem 3 using the derived scheme with Boole (6LMMBL), Simpson 3/8 (ELMMSP) and
Trapezoidal (6LMMTR) with N=12 partitions

x y(exact) 6LMBL 6LMSP 6LMTR E6LMBL EGLMSP E6LMTR
0.08333  1.086904050 1.086904050 1.086904049  1.086904150 0.00E+00 1.00E-10 1.00E-07
0.16667  1.181360413 1.181360414 1.181360413 1.181361214 1.00E-09 0.00E+00 8.01E-07
0.25 1.284025417 1.284025418 1.284025420 1.284028120 1.00E-09 3.00E-09 2.70E-06
0.33333  1.395612425 1.395612427 1.395612431 1.395618831 2.00E-09 6.00E-09 6.41E-06
0.41667  1.516896796 1.516896798 1.516896809  1.516909308 2.00E-09 1.30E-08 1.25E-05
0.5 1.648721271 1.648721273 1.648721294  1.648742891 2.00E-09 2.30E-08 2.16E-05
0.58333  1.792001825 1.792001829 1.792001860 1.792036160 4.00E-09 3.50E-08 3.43E-05
0.66667  1.947734041 1.947734045 1.947734092 1.947785292 4.00E-09 5.10E-08 5.13E-05
0.75 2.117000016 2.117000023 2.117000090 2.117072989 7.00E-09 7.40E-08 7.30E-05
0.83333  2.300975890 2.300975896 2.300975989  2.301075990 6.00E-09 9.90E-08 1.00E-04
0.91667  2.500940013 2.500940018 2.500940144 2.501073244 5.00E-09 1.31E-07 1.33E-04
1 2718281828 2.718281835 2.718282000 2.718454797 7.00E-09 1.72E-07 1.73E-04

Table 8: Maximum Absolute Error (MaxE) of the Derived method with different quadrature rule for Problem 3 with
varying partition N

Quadrature Formula MaxE N=24 MaxE N=36 MaxE N=48
E6LMBL 2.0400E-07 3.5700E-07 7.9000E-08
E6LMSP 1.800E-08 3.6700E-07 9.1900E-09
E6LMTR 4.3300E-05 1.9930E-05 1.1341E-05

Table 9: Comparison of Maximum Absolute Error (MaxE) of the Derived method with Gegele et al. (2014) for
Problem 3 with varying partition N

Method No of Partition(N) MaxE

E6LMSP 6 2.8610E-06

Gegele et al. (2014) (CSSCM) 10 2.2747E-05

Gegele et al. (2014) (CSCGLCM) 10 3.1782E-04
Problem 4

in2

Consider the LFIDE y"” (x) = 5lin2 — 3 — x + 4 coshx + fé (x = t)y(t)dt,y(0) = y"(0) = 0,y'(0) = 4 with exact

solution y(x) = 4 sinhx
Source: Wazwaz (2011).
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Table 10: Solution to problem 4 using the derived scheme with Boole (6LMMBL), Simpson 3/8 (6LMMSP) and

Trapezoidal (6LMMTR) with N=12 partitions

X y(exact) 6LMBL 6LMSP 6LMTR E6LMBL E6LMSP E6LMTR

0.05776  0.2311775634  0.2311775638  0.2311775636  0.2311775066 4.00E-10  2.00E-10 5.68E-08
0.11552  0.4631266604  0.4631266612 0.4631266607 0.4631262044 8.00E-10  3.00E-10 4.56E-07
0.17329 0.6966213996  0.6966214013  0.6966213994  0.6966198613 1.70E-09  2.00E-10 1.54E-06
0.23105 0.9324410480  0.9324410494  0.9324410458  0.9324374061 1.40E-09  2.20E-09 3.64E-06
0.28881 1.171372631 1.171372633 1.171372626 1.171365531 2.00E-09  5.00E-09 7.10E-06
0.34657 1.414213562 1.414213563 1.414213551 1.414201317 1.00E-09  1.10E-08 1.22E-05
0.40434  1.661774299 1.661774299 1.661774280 1.661754895 0.00E-09  1.90E-08 1.94E-05
0.46210 1.914881053 1.914881054 1.914881024 1.914852149 1.00E-09  2.90E-08 2.89E-05
0.51986  2.174378545 2.174378547 2.174378503 2.174337478 2.00E-09  4.20E-08 4.11E-05
0.57762  2.441132823 2.441132824 2.441132764 2.441076607 1.00E-09  5.90E-08 5.62E-05
0.63538  2.716034155 2.716034153 2.716034074 2.715959489 2.00E-09  8.10E-08 7.47E-05
0.69315  2.999999998 2.999999992 2.999999891 2.999903268 6.00E-09  1.07E-07 9.67E-05

Table 11: Maximum Absolute Error (MaxE) of the Derived method with different quadrature rule for Problem 4
with varying partition N

Quadrature Formula MaxE N=24 MaxE N=36 MaxE N=48
E6LMBL 6.6800E-08 1.4000E-07 4.3600E-07
E6LMSP 9.0000E-09 1.3700E-07 2.8000E-08
E6LMTR 2.4248E-05 1.0757E-05 6.8090E-06
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Figure 2: A plot of Exact, 6LMBL, 6LMSP and 6LMTR Solutions for Problem 1
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Figure 4: A plot of Exact, 6LMBL, 6LMSP and 6LMTR Solutions for Problem 3
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RESULT AND DISCUSSION

The tables and figures above represent the numerical
experiment of the 6-step linear multistep method in
combination with some Newton cote quadrature family that
can solve  third order Fredholm Integro-differential
equation.The method is employed together with Booles
(6LMBM).Simpson 3/8 (6LMSP) and Tarpezoidal(6LMTR)
to solve some Initial VValue Problems of third order LFIDEs.
The method was derived using Vieta-Pell-lucas polynomial as
an approximate solution of the ordinary derivative part of the
third order LFIDEs.The behavioural properties of the method
have been analysed and depicted in diagrams as well .The
analysis revealed that the method is of uniform order (error of
order seven) .It was also found that the method is
consistent,stable and convergent. Four numerical examples
were solved using the methods in order to confirm the
theorical claims of consistence,stability and accuracy.

The result of Problem 1 to 4 is presented in tabular form.The
results have been compared with Exact solutions of the
Integro-differential equations. Table 1,3,7 and 10 show the
numerical solutions alongside the exact solutions and absolute
errors and the various step sizes h.

From table 1,it can be observed from the absolute error that
6LMTR performs slightly better when compared with
6LMBL and 6LMSP. Furthemore, Tables 2,48 and 11
displayed the performance of each of the schemes with
different various number of partitions ( N=24,N=36 and
N=48) and the resulting maximum errors.

The results of the problems are also displayed graphically in
Figure 2,Figure 3, Figure 4 and Figure 5 respectively. It’s
obvious fron the figures that the methods perform favourably
with the exact solutions.

Figure 6 and Figure7 represent the graphical presentation of
the maximum errors in each of the problems 1 and 2 with
varying number of partition N=24,N=36 and N=48.

Table 5 and 9 displayed the comparison between the derived
methods and some earlier methods such as : Darania and Ali
(2007) ,Gegele et al. (2014). The comaparative analysis of the
derived method with some earlier methods also shows that the
method perform better than that of Darania and Ali (2007)
and Gegele et al. (2014) even when lesser number of partition
(N=6) has being used. The use of lesser number of partition
also confirm that lesser number of computions are used to get
a better result than these earlier methods.

The following notations have been used as short form of :
6LMBL= 6-step linear multistep method with Boole
quadrature formula

6LMSP = 6-step linear multistep method with Simpson 3/8
quadrature formula

6LMTR = 6-step linear multistep method with Trapezoidal
quadrature formula

MaxE = Maximum Error

CONCLUSION

It’s a known fact that some of Integro —diiferential Equation
are difficult to solve analytically if not impossible to solve,
hence the need to approximate their solutions numerically. In
this research,we present a 6-step linear multistep mehod
which are implemented with the family of newton-cote
quadrature formulae. The results show that the new method
perform slightly better when implemented with Trapezoidal
rule on problems that have linear and Non tracendental form
in Problem1.The results further revealed superiority of the
method when implemented with both Boole and Simpson 3/8
on Problems involving tracendental functions of the form in
Problems 2 to 4.The comaparative analysis of the derived
method with some earlier methods also shows that the

Ogunrinde et al.,

FJS

method perform better than that of Darania and Ali (2007)
and Gegele et al. (2014) even when lesser number of partition
(N=6) has being used. The use of lesser number of partition
also confirm that lesser number of computions are used to get
a better result than these earlier methods.
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