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ABSTRACT  
In this work we have applied ansatz method to solve for the approximate ℓ-state solution of time independent 

Schrödinger wave equation with modified Möbius squared potential plus Hulthén potential to obtain closed 

form expressions for the energy eigenvalues and normalized radial wave-functions. In dealing with the spin-

orbit coupling potential of the effective potential energy function, we have employed the Pekeris type 

approximation scheme, using our expressions for the bound state energy eigenvalues, we have deduced 

closed form expressions for the bound states energy eigenvalues and normalized radial wave-functions for 

Hulthén potential, modified Möbius square potential and Deng-Fan potential. Using the value 

0.976865485225 for the parameter ω, we have computed bound state energy eigenvalues for various 

quantum states (in atomic units). We have also computed bound state energy eigenvalues for six diatomic 

molecules: HCl, LiH, TiH, NiC, TiC and ScF. The results we obtained are in near perfect agreement with 

numerical results in the literature and a clear demonstration of the superiority of the Pekeris-type 

approximation scheme over the Greene and Aldrich approximation scheme for the modified Möbius squares 

potential plus Hulthén potential. 

Keywords: Ansatz solution, Deng-Fan potential, energy eigenvalues, radial wavefunction, Pekeris 

approximation schemes 

 

 

INTRODUCTION 

The need for exact solution of Schrödinger wave equation in 

quantum mechanics cannot be over emphasized, this is due to 

the vital information derivable from them (Miranda et al., 

2010; Qiang, et al., 2009), information such as energy, 

momentum, wavelength and frequency of the system can only 

be obtained with the knowledge of the wave function (Eyube 

et al., 2019). Exact solution of the Schrödinger equation is 

restricted to only few potential models such as the Coulombic 

potential and harmonic oscillator potential (Hitler et al., 2017; 

Tsaur and Wang, 2014) for all quantum states nℓ where n is 

the principal quantum number and ℓ is the angular momentum 

quantum number. The Hulthén, Morse, and Eckart potentials 

are among the few potential energy functions which give 

exact solution for zero angular momentum quantum number 

(ℓ = 0), these solutions are often referred to as s-wave 

solutions (Hitler et al., 2017; Tsaur and Wang, 2014). Most 

of the known potential energy functions have no exact 

solutions with the Schrödinger equation for all values of n and 

ℓ, for such potentials, approximate solutions (numerical or 

analytical) can be used in place of exact solutions (Rahbar and 

Sadeghi,2016). In order to obtain approximate analytical 

solution, a very suitable approximation scheme (Wei and 

Dong, 2010; Chen et al., 2009; Jia et al, 2008) must be applied 

on the spin-orbit term of the effective potential, having 

applied the approximation model on the centrifugal term, a 

solution method must be adopted to solve the resulting 

equation. Researchers have developed and used various 

solution methods to solve the Schrödinger equation, amongst 

some of the methods include: ansatz method (Taskin and 

Kocal, 2010), Nikiforov-Uvarov method (Ikot et al., 2014; 

Yazarloo et al., 2012), factorization method (Pahlavani et al., 

2013), asymptotic iteration method (Awoga and Ikot 2012), 

Fröbenius series solution method (Nyengeri et al., 2018), 

exact quantization rule (Qiang et al 2008). Various forms of 

potential energy functions have been used to solve the radial 

Schrödinger equation.  Yazarloo et al. (2012) have obtained 

the oscillator strength for the modified Möbius square 

potential. The Schrödinger equation was studied by an 

improved approximation scheme for the Hulthén potential 

(Ikhdair,2009), Okorie et al. (2018) have studied the solution 

of the Schrödinger equation with modified Möbius square 

potential, they used their results to explore the 

thermodynamic properties of the potential. Researchers have 

also used combined potentials to the radial Schrödinger 

equation. Recently Ita et al. (2018) have solved the 

Schrödinger equation with the Woods-Saxon plus attractive 

inversely quadratic potential for the bound state solution 

Hitler et al. (2017) have applied the Nikiforov-Uvarov 

method to solve for the s-wave solution of Schrodinger 

equation with Kratzer plus modified Deng-Fan potential, in 

another event Edet and collaborators have used modified 

Kratzer potential plus screened coulomb potential to study the 

Schrödinger equation (Edet et al., 2019). The list of authors 

who have used combined potentials seems to endless in the 

literature. In this paper, we are encouraged to solve for the 

approximate ℓ-state solution of time independent Schrödinger 

wave equation with modified Möbius squared potential plus 

Hulthén potential, which, to the best of our knowledge has 

never been solved in the literature. Our specific task is to 

obtain (i) closed form expressions for the bound state energy 

eigenvalues and normalized radial wave functions of the 

modified Möbius square potential plus Hulthén potential, (ii) 

use our results to derive expressions for the bound state 

energy eigenvalues and radial wave functions of Hulthén 

potential, modified Möbius square potential and Deng-Fan 

potential, (iii) use our results to compute bound state  energy 

eigenvalues of Hulthén potential and Deng-fan potential for 

arbitrary values of quantum numbers, (iv) compare our results 

with existing results in the literature. 
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Theoretical Formalism 

 

The modified Möbius squared potential plus Hulthén 

potential 

The modified Mobius Squared Potential (Okorie et al., 2018) 

plus the Hulthén potential (MMSPHP) (Jia et al., 2008) is 

given by: 
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where V0, A, B and δ are the depth of the potential, the range of the potential, the length of the molecular bond and the adjustable 

screening parameter, Z is a constant which is related to the atomic number of an element. V(r) is the modified Mobius square 

potential plus the Hulthén potential. The effective potential is given by 
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L= ℓ (ℓ + 1), µ is the mass of the system, r is the internuclear separation and ħ is the reduced Planck’s constant.   

The radial Schrödinger equation 

The radial Schrödinger equation reads (Okorie et al.,2018) 
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where Enℓ is the energy spectrum of the potential,  rnl  is the radial wavefunction. Substituting Eq. (2) into Eq. (3) gives 
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Eq. (4) have exact solution for the special case of the s-wave (ℓ =0). However, if ℓ ≠ 0 only approximate solutions can be 

obtained due to the presence of the centrifugal term potential (spin-orbit coupling term). By employing a suitable 

approximation scheme to deal with the centrifugal term. In this article we will use Pekeris type approximation model proposed 

by Jia et al.  (Jia et al 2008) given below: 
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where ω is an adjustable dimensionless parameter. Inserting the approximation expression Eq. (5) into Eq. (4) now turns to:  
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with the approximation given by Eq. (5) substituted in Eq. (2) gives: 
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To express Eq. (6) in a more compact form, we have used the following coordinate transformation of the form  
rez           (8)  

Eq. (6) reduces to 
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Further reduction, results to, 
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where 
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The boundary condition on the wave function  znl  is as: r → 0, z → 1 and as r → ∞, z → 0. Under this condition, for 

bound state solutions we can choose a reasonable physical wavefunction as follows (Dong and Gu, 2007): 

      zfzzNz nl

ba

nlnl  1 .       (14) 

where a and b are constants to be satisfied by Eq. (9) and Nnℓ is the normalization constant to be determined by normalization 

condition. Substituting the wavefunction given by Eq. (14) into Eq. (9), we obtained  
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Eq. (15) is Gaussian hypergeometric (Dong and Gu, 2007) if and only if 
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which reduces Eq. (15) into the following form  
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Eq. (18) has solution given by (Dong and Wei, 2008):  

   zFzfnl ;,,12  .       (19) 

where  zfnl  as given by Eq. (19) is the hypergeometric function and:  

1eba  .        (20) 

   ba 1e         (21) 

12  a .         (22) 

For a polynomial solution, the quantum condition (Jia et al., 2008) must be satisfied, this requires that either α or β must be an 

integer, that is 

n          (23) 

using Eq. (11) in Eqs. (21) and (23) we obtained 

1321 eLeeebn   .      (24) 

and  

  
 

 LeeBVeZ
bn

bn

Lee
E ln 







 





 32

22
2

0

2

2

32

22

2222 






 
.  

           (25) 

Eq. (25) transforms to: 
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Eq. (26) is the expression for the bound state energy eigenvalues of the modified Möbius square potential plus Hulthén 

potential. 

 

Normalization constant 
The normalization of the wave function (Saxena, 2012) requires that 
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  is the complex conjugate of  rn   

Eq. (27) can be expressed in terms of the variable z  by inserting Eqs. (8) and (14) in Eq. (27), giving rise to: 
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the hypergeometric function has the form,    zFzf nl ;,,12    from Eq. (19) upon inserting the values of α, β and 

γ from Eq. (20), Eq. (21) and Eq. (22) results to, 

   zabannFzfnl ;12;22,12        (29) 

Putting Eq. (29) into Eq. (28), we get, 
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Following (Miranda et al., 2010), we find: 
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RESULTS AND DISCUSSION 

Hulthén potential 

If we set A = B = 0 in Eq. (7), we have the expression for the effective Hulthén potential (Jia et al., 2008) 
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Therefore, by substituting the above values of A and B in Eq. (26), we have the energy eigenvalue for the Hulthén potential 

given by: 
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To confirm the validity of Eq. (35), we have computed the bound state energy eigenvalues as a function of screening parameter 

δ for arbitrary values of n and ℓ. The data in Table 1 shows the computed energy eigenvalues obtained by using Eq. (35), also 

shown in Table 1 are corresponding bound state energy eigenvalues of the Hulthén potential in the literature which were 

obtained numerically (Varshni, 1990) and by asymptotic iteration method (Bayrak et al., 2006). For small values of the 

screening parameters, our computed bound state energy eigenvalues values are almost indistinguishable from literature results. 

However, for larger values of the screening parameters such as δ = 0.035, for 2p state, our result differs significantly from 

numerically computed result but in total agreement with those obtained by Bayrak et al. (2006), this trend also applies for the 

other quantum states, therefore, confirming the applicability of our result for the bound state energy eigenvalues for the Hulthén 

potential. 

 

Table 1: Energy eigenvalues of the Hulthén potential as a function of screening parameter for 2p, 3p, 3d, 4p, 4d and 4f 

states in atomic units ( 1 e ) for Z = 1 and ω = 0.9912122120 

 

state δ PR (Varshi, 1990) (Bayrak et al., 2006) 

2p 0.025 0.1127603 0.1127605 0.1128125 

0.050 0.1011512 0.1010425 0.1012500 

0.075 0.0901725 0.0898478 0.0903125 

0.100 0.0798243 0.0791794 0.0800000 

0.150 0.0610195 0.0594415 0.0612500 

0.200 0.0447368 0.0418860 0.0450000 

0.250 0.0309760 0.0266111 0.0312500 

0.300 0.0197372 0.0137900 0.0200000 

0.350 0.0110205 0.0037931 0.0112500 

3p 0.025 0.0437370 0.0437069 0.0437590 

0.050 0.0333302 0.0331645 0.0333681 

0.075 0.0243352 0.0239397 0.0243837 

0.100 0.0167519 0.0160537 0.0168056 

0.150 0.0058206 0.0044663 0.0058681 

3d 0.025 0.0436937 0.0436030 0.0437587 

0.050 0.0332546 0.0327532 0.0333681 

0.075 0.0242384 0.0230307 0.0243837 

0.100 0.0166448 0.0144842 0.0168055 

0.150 0.0057261 0.0013966 0.0058681 

4p 0.025 0.0199890 0.0199625 0.0200000 

0.050 0.0112335 0.0110582 0.0112500 

0.075 0.0049835 0.0046219 0.0050000 

0.100 0.0012390 0.0007550 0.0012500 

4d 0.025 0.0199671 0.0198462 0.0200000 

0.050 0.0112006 0.0106674 0.0112500 

0.075 0.0049507 0.0038345 0.0050000 

4f 0.025 0.0199341 0.0196911 0.0200000 

0.050 0.0111514 0.0100620 0.0112500 

0.075 0.0049016 0.0025563 0.0050000 

 

 

Modified Möbius square potential  

If we let Z = 0 in Eqs. (7) and (26), we have for the modified Möbius square potential: 
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Further, by letting δ = 2α and ω =0, Eqs. (36) and (37) reduces to the effective potential and bound state energy eigenvalues 

derived by Okorie et al. (2018) 

 

Deng-Fan potential 

The Deng-Fan potential has been proposed in an attempt to finding a more suitable diatomic potential to describe the 

vibrational spectrum, qualitatively, it is similar to the Morse potential but has the correct asymptotic behaviour as the 

internuclear distance approaches zero (Oyewumi et al., 2013). If we choose 1A , 
ereB


 , eDV 0 and 0Z

, where re is the equilibrium bond length and De is the dissociation energy. Eqs. (7) and (26) give respectively for the Deng-

Fan potential.  
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To test the accuracy of our approximations scheme we have employed equation (39) to compute the energy eigenvalues of 

various quantum states viz: 2p, 3p, 3d, 4p, 4d, 5p, 5d, 5f, 6p, 6d, 6f and 6g states for the parameter ω = 0.97685485225.  Tables 

2 and 3, shows the computed energy eigenvalues (eV) in the present (PR) study, also shown in the tables are energy eigenvalues 

extracted in the literature which were obtained by numerical (NUM) method, Nikiforov-Uvarov(NU) method, Supersymmetric 

quantum mechanics(SUSY) approach and functional analysis method (FUN). From the results shown in Tables 2 and 3, it is 

obvious that the energy eigenvalues obtained in the present study is in near perfect agreement with values obtained numerically, 

thus, confirming the accuracy of the Pekeris-type approximation over the Greene and Aldrich approximation models. 
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Table 2: Energy eigenvalues (eV) Enℓ of the Deng-Fan potential in atomic units (ħ = µ =1) with De =15 and re = 0.40. 

state δ PR NUM NU SUSY FUN 

2p 0.05 7.86203 7.8628 7.86080 7.86080 7.86060 

0.10 7.95542 7.95537 7.95330 7.95330 7.95247 

0.15 8.04778 8.04724 8.04510 8.04510 8.04322 

0.20 8.13910 8.13842 8.13620 8.13620 8.13287 

0.25 8.22942 8.22892 8.22663 8.22663 8.22142 

0.30 8.31874 8.31874 8.31639 8.31639 8.30889 

3p 0.05 10.99840 10.9998 10.99776 10.99780 10.99760 

0.10 11.16349 11.1647 11.16256 11.16260 11.16170 

0.15 11.32513 11.32647 11.32425 11.32420 11.32240 

0.20 11.48333 11.48513 11.48284 11.48280 11.47950 

0.25 11.63811 11.64068 11.63834 11.63830 11.63310 

0.30 11.78946 9.67565 11.79076 11.79080 11.78330 

3d 0.05 10.21832 10.21651 10.21598 10.21598 10.21540 

0.10 10.35722 10.35409 10.35354 10.35354 10.35100 

0.15 10.49337 10.48992 10.48935 10.48935 10.48370 

0.20 10.62682 10.62403 10.62346 10.62346 10.61350 

0.25 10.75760 10.75645 10.75591 10.75591 10.74030 

0.30 10.88575 10.88719 10.88672 10.88672 10.86420 

4p 0.05 12.49795 12.4992 12.49760 12.49760 12.49740 

0.10 12.69715 12.69851 12.69680 12.69680 12.69600 

0.15 12.88836 12.8901 12.88835 12.88835 12.88650 

0.20 13.07157 13.074 13.07224 13.07224 13.06890 

0.25 13.24677 13.2501 13.24847 13.24847 13.24330 

4d 0.05 12.09957 12.0989 12.09829 12.09829 12.09770 

0.10 12.28654 12.2857 12.28501 12.28501 12.28250 

0.15 12.46717 12.46715 12.46642 12.46642 12.46080 

0.20 12.64152 12.64324 12.64257 12.64257 12.63260 

4f 0.05 11.82365 11.8209 11.82079 11.82079 11.81950 

0.10 12.00166 11.9981 11.99796 11.99796 11.99300 

0.15 12.17420 12.1718 12.17170 12.17170 12.16040 

0.20 12.34134 12.3421 12.34207 12.34207 12.32210 

5p 0.10 13.54218 13.5434 13.54214 13.54214 13.54130 

0.20 13.92767 13.9301 13.92899 13.92899 13.92570 

5d 0.10 13.30717 13.3075 13.30680 13.30680 13.30430 

0.20 13.68927 13.6931 13.69266 13.69266 13.68270 

5f 0.10 13.14872 13.1478 13.14760 13.14760 13.14260 

0.20 13.52741 13.5333 13.53344 13.53344 13.51340 

5g 0.10 13.04026 13.0379 13.03798 13.03798 13.02960 

0.10 13.41795 13.42667 13.42711 13.42711 13.39380 

6p 0.10 14.05193 14.053 14.05209 14.05209 14.05130 

6d 0.10 13.90674 13.9075 13.90705 13.90705 13.90450 

6f 0.10 13.81080 13.8113 13.81119 13.81119 13.80620 

6g 0.10 13.74622 13.7466 13.74661 13.74661 13.73830 
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Table 3: Energy eigenvalues (eV) Enℓ of the Deng-Fan potential in atomic units (ħ = µ =1) with De =15 and re = 0.80 

state δ PR NUM NU SUSY FUN 

2p 0.05 4.14177 4.14208                  4.14089 4.14089 4.14068 

0.10 4.22060 4.2204 4.21918 4.21918 4.21835 

0.15 4.29902 4.2987 4.29739 4.29739 4.29552 

0.20 4.37703 4.3769 4.37555 4.37555 4.37221 

0.25 4.45466 4.4551 4.45366 4.45366 4.44845 

0.30 4.53193 4.5332 4.53175 4.53175 4.52425 

3p 0.05 7.53336 7.535 7.53279 7.53279 7.53258 

0.10 7.72556 7.7271 7.72476 7.72476 7.72393 

0.15 7.91587 7.9177 7.91518 7.91518 7.91330 

0.20 8.10428 8.1066 8.10404 8.10404 8.10071 

0.25 8.29081 8.2841 8.29135 8.29135 8.28615 

0.30 8.47546 8.4799 8.47712 8.47712 8.46962 

3d 0.05 5.74196 5.7404 5.73975 5.73975 5.73913 

0.10 5.84917 5.8465 5.84577 5.84577 5.84327 

0.15 5.95427 5.9515 5.95068 5.95068 5.94505 

0.20 6.05732 6.0553 6.05453 6.05453 6.04453 

0.25 6.15836 6.1582 6.15740 6.15740 6.14177 

0.30 6.25748 6.2601 6.25932 6.25932 6.23682 

4p 0.05 9.61339 9.6156 9.61301 9.61301 9.61280 

0.10 9.88394 9.8862 9.88352 9.88352 9.88269 

0.15 10.14866 10.1514 10.14856 10.14856 10.14670 

0.20 10.40752 10.4111 10.40806 10.40806 10.40470 

0.25 10.66046 10.665 10.66197 10.66197 10.65680 

4d 0.05 8.49478 8.4948 8.49334 8.49334 8.49272 

0.10 8.70898 8.7087 8.70711 8.70711 8.70461 

0.15 8.91910 8.9194 8.91781 8.91781 8.91218 

0.20 9.12521 9.1272 9.12551 9.12551 9.11551 

4f 0.05 7.43817 7.4351 7.43471 7.43471 7.43346 

0.10 7.59136 7.5868 7.58642 7.58642 7.58142 

0.15 7.74016 7.7361 7.73573 7.73573 7.72448 

0.20 7.88468 7.8831 7.88276 7.88276 7.86276 

5p 0.10 11.30223 11.3047 11.30207 11.30207 11.30120 

0.20 11.91217 11.9161 11.91322 11.91322 11.90990 

5d 0.10 10.52098 10.5219 10.52009 10.52009 10.51760 

0.20 11.06710 11.0713 11.06937 11.06937 11.05940 

5f 0.10 9.79922 9.7975 9.79666 9.79666 9.79166 

0.20 10.27014 10.2738 10.27304 10.27304 10.25300 

5g 0.10 9.15766 9.1524 9.15222 9.15222 9.14389 

0.10 9.55051 9.5528 9.55287 9.55287 9.51954 

6p 0.10 12.27978 12.2822 12.27980 12.27980 12.27900 

6d 0.10 11.73667 11.7383 11.73644 11.73644 11.73390 

6f 0.10 11.24582 11.2459 11.24481 11.24481 11.23980 

6g 0.10 10.81778 10.8158 10.81533 10.81533 10.80700 

 

 

Having established the superiority of the Pekeris-type approximation scheme over the Greene and Aldrich model on the 

modified Möbius squared potential plus Hulthén potential, we have applied our derived energy eigenvalue equation to a more 

idealized system, here, we have considered six diatomic molecules: HCl, LiH, TiH, NiC, TiC and ScF, the choice of these 

diatomic molecules is to enable compare our results with those obtained by other authors. The data shown in Table 4 

(Oyewumi, Oluwadare, Sen and Babalola, 2012) shows model parameters of the diatomic molecules used in our computation 

of the bound state energy 

 

Table 4: Spectroscopic parameters of selected molecules, used in the present study. 

molecules  De (eV)  re (Å)  δ (Å-1)  µ ( amu) 

HCl 4.619061175 1.2746 1.8677 0.9801045 

LiH 2.515283695 1.5956 1.1280 0.8801221 

TiH 2.05 1.781 1.32408 0.9873710 

NiC 2.76 1.621 2.25297 9.974265 

TiC 2.66 1.790 1.52550 9.606790 

ScF 5.85 1.794 1.46102 13.358942 

The results shown in Tables 5 and 6 are the computed bound state energy eigenvalues for HCl, LiH, TiH, NiC, TiC and ScF. 

We have included columns for bound state energy eigenvalues of the Deng-Fan potential computed within the frameworks of 
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Nikiforov-Uvarov (NU) method, comparison of the present results (PR) and that obtained by NU method shows good 

agreement for the state between our computed energy eigenvalues and those obtained by NU method, however, there is no 

available data on results obtained by numerical methods to enable further comparison. The plots in Figures 1 and 2 are the 

radial wave functions for 2p, 5f for HCl and 1s, 4f for LiH. 

 

Table 5: The bound state energies Enl (in eV) for HCl, LiH and TiH 

state HCl LiH TiH 

  PR NU PR NU PR NU 

0 0 0.202058236 0.201984174 0.103333625 0.103334650 0.095194192 0.095195135 

1 0.204074322 0.204854248 0.104898886 0.105236729 0.096217575 0.096647888 

1 0 0.590952203 0.590747827 0.302003040 0.302005955 0.277946427 0.277949104 

1 0.592885903 0.593537612 0.303497609 0.303838653 0.278925122 0.279358078 

2 0 0.960325653 0.960011044 0.490681252 0.490685861 0.450920200 0.450924416 

1 0.962178048 0.962721591 0.492106738 0.492450759 0.451854842 0.452290234 

2 0.965881747 0.968141645 0.494956099 0.495978997 0.453723485 0.455021255 

3 0 1.310433982 1.310027865 0.669594907 0.669601019 0.614253922 0.614259487 

1 1.312206130 1.312660203 0.670952866 0.671299648 0.615145130 0.615582758 

2 1.315749352 1.317923855 0.673667213 0.674695388 0.616926918 0.618228694 

3 1.321061502 1.325816775 0.677734812 0.679785205 0.619598028 0.622196086 

4 0 1.641527447 1.641047243 0.838963132 0.838970564 0.768082994 0.768089723 

1 1.643220385 1.643602379 0.840255067 0.840604402 0.768931376 0.769371041 

2 1.646605204 1.648711644 0.842837407 0.843870601 0.770627521 0.771933083 

3 1.651679792 1.656373023 0.846707095 0.848766203 0.773170195 0.775774658 

4 1.658440980 1.666583499 0.851859551 0.855286782 0.776557543 0.780893985 

5 0 1.953851289 1.953313156 0.998997828 0.999006401 0.912539887 0.912547598 

1 1.955466034 1.955792078 1.000225194 1.000576880 0.913346036 0.913787546 

2 1.958694483 1.960748932 1.002678435 1.003716397 0.914957727 0.916266858 

3 1.963534556 1.968181734 1.006354573 1.008422072 0.917373744 0.919984364 

4 1.969983136 1.978087513 1.011249142 1.014689589 0.920592266 0.924938312 

5 1.978036066 1.990462308 1.017356201 1.022513206 0.924610865 0.931126367 

 

Table 6: The bound state energies Enl (in eV) for NiC, TiC and ScF 

state NiC TiC ScF 

  PR NU PR NU PR NU 

0 0 0.055343810 0.055344362 0.039112902 0.039113293 0.047569741 0.047570217 

1 0.055451873 0.055579192 0.039212882 0.039272617 0.047642645 0.047682126 

1 0 0.164292441 0.164294062 0.116392271 0.116393424 0.142067832 0.142069247 

1 0.164399275 0.164527691 0.116491037 0.116551564 0.142140230 0.142180660 

2 0 0.270944879 0.270947523 0.192438048 0.192439939 0.235730886 0.235733223 

1 0.271050486 0.271179952 0.192535604 0.192596892 0.235802779 0.235844142 

2 0.271261700 0.271644807 0.192730711 0.192910789 0.235946566 0.236065981 

3 0 0.375304805 0.375308427 0.267253990 0.267256594 0.328560483 0.328563726 

1 0.375409188 0.375539658 0.267350339 0.267412364 0.328631873 0.328674152 

2 0.375617952 0.376002118 0.267543033 0.267723901 0.328774651 0.328895002 

3 0.375931094 0.376695804 0.267832066 0.268191197 0.328988816 0.329226276 

4 0 0.477375891 0.477380444 0.340843838 0.340847133 0.420558199 0.420562331 

1 0.477479052 0.477610482 0.340938984 0.341001723 0.420629086 0.420672264 

2 0.477685371 0.478070549 0.341129272 0.341310904 0.420770858 0.420892131 

3 0.477994846 0.478760649 0.341414695 0.341774668 0.420983514 0.421221926 

4 0.478407469 0.479680772 0.341795242 0.342393002 0.421267051 0.421661649 

5 0 0.577161800 0.577167239 0.413211313 0.413215272 0.511725603 0.511730608 

1 0.577263740 0.577396081 0.413305260 0.413368688 0.511795988 0.511840049 

2 0.577467619 0.577853763 0.413493149 0.413675522 0.511936756 0.512058932 

3 0.577773432 0.578540282 0.413774975 0.414135763 0.512147906 0.512387253 

4 0.578181173 0.579455631 0.414150724 0.414749401 0.512429435 0.512825013 

5 0.578690835 1.022513206 0.414620383 0.931126367 0.512781339 1.022513206 
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Figure 1: Plot of unnormalised radial wave functions of HCl and LiH for 2p and 1s states 

 
Figure 2: Plot of unnormalised radial wave functions of HCl and LiH for 5f and 4f states 

 

CONCLUSION 
We have solved for the approximate ℓ-state solution of time 

independent Schrödinger wave equation with modified 

Möbius squared potential plus Hulthén potential, the Pekeris-

type approximation scheme was used to simplify the spin-

orbit centrifugal term. we have obtained closed form 

expressions for the bound state energy eigenvalues and 

normalized radial wave functions of the modified Möbius 

squared potential plus Hulthén potential, using our results we 

have derived expressions for the bound state energy 

eigenvalues and radial wave functions of Hulthén potential, 

modified Möbius squared potential and Deng-Fan potential, 

by appropriately selecting the parameter ω, we have 

computed bound state energy eigenvalues for Hulthén 

potential and Deng-fan potential for arbitrary values of 

quantum numbers, we have also obtained the bound state 

energy eigenvalues for the Deng-fan potential for six diatomic 

molecules: HCl, LiH, TiH, NiC, TiC and ScF, our computed 

results compared favorably with existing results in the 

literature. The results obtained in this research work can find 

useful applications in the area of solid state physics, atomic 

physics, molecular physics and chemical physics 
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