
A BROADCAST RECEIVE MODEL FOR… Fatoba FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 3, June, 2023, pp 239 - 244 239

8

A BROADCAST RECEIVE MODEL FOR COMPUTATIONAL OFFLOADING IN MOBILE CLOUD

COMPUTING

Fatoba, Oluwaseun Jumoke

Applied Mathematics and Simulation Advanced Research Centre, Sheda Science and Technology Complex, Sheda-Kwali,

FCT, Nigeria

*Corresponding authors’ email: oluwaseunfatoba5@gmail.com

ABSTRACT

Computational offloading is a vital part of mobile cloud computing which has attracted so much attention in

recent times. It is a way of saving energy in mobile devices by sending an intensive task to a remote server for

execution. However, in existing offloading systems, the opportunistic moments to offload a task are often short-

lived. The social aware hybrid computational offloading framework involves outsourcing a task to any available

surrogate either remote cloud, cloudlet or device to device, this comes with a drawback of super peer having to

constantly supervise the network to discover peers. This takes a considerable amount of energy and time. This

research aims to develop an improved model for peer discovery in computational offloading which relieves the

use of the super peer and transfers the discovery process between network peers. We used a device profiler that

serves as an information collector in peers on the network. We evaluated our model by developing an

application for our client nodes in order to get information from our nodes. We evaluated our model by using

ten peers with different processing power and RAM. On an average, discovery time for all peers in the existing

model was 2040 milliseconds, while we have 1,213 milliseconds for our new model. Energy level for the

existing model was 72.5% while we have 82.3% for our new model, evaluating our model with the existing

one, it was discovered that we saved more energy and time.

Keywords: Offloading, Peer, Community, Broadcast and receive, Device Profiler

INTRODUCTION

Mobile cloud computing is the hybrid of cloud computing

technology, mobile cloud computing and wireless network

makes good computational resources available to mobile

users (Oladeji & Olubunmi, 2017). Computation offloading

combats the shortcomings of Smart Mobile Devices (SMDs)

such as limited battery lifetime, limited processing

capabilities, and limited storage capacity by offloading the

execution and workload to other capable systems with better

performance and resources. Mobile Cloud Computing allows

the SMDs to offload their workloads on the remote cloud

servers and benefit from the Mobile cloud computing

extensive resources (Amir, Mokhtar, Adil, Sarkhel H,

Mohammed, & Mohammed, 2021). User demands increases

quickly with a lot of resource-intensive and power-sapping

applications. (Quang-Huy & Falko, 2020) Nowadays, mobile

phones are used for more than making phone calls or sending

texts, due to the provision of different mobile applications

However, these devices’ mobility is hindered by battery life

and thus their usage is inhibited. (D. Ferreira et al, 2011)

 Due to the insubstantial computation resources, network,

storage, and energy, mobile devices are inadequate for

executing all computational tasks, especially tasks with big

volumes and complex data structures (Hoa & Dong-Seong,

2023). This is more critical when a user does not have access

to a source for recharging the battery (Ferreira et al, 2015). In

such situations, as the battery life approaches its lowest

energy levels, the user may experience frustration and

anxiety, among others (Hosio et al, 2016).

As the potential of mobile devices gains ground (in terms of

CPU power, network connectivity etc), people increasingly

use them for other tasks such as emailing, GPS routing,

Internet banking, gaming etc. Even though they advance in

technology, mobile devices will always be limited in

resources, as restrictions on weight; size, battery life, and so

on imposes limitations on computational resources and makes

mobile devices more resource constrained than their non-

mobile peers. Computational offloading systems can be

categorized into cloudlets, remote cloud and device-to-device

(D2D) (Shi et al, 2014).

A lot of research work has gone into finding a solution to this

problem with different researchers coming up with different

models. As a mobile device is always linked to at least one

source of network infrastructure throughout of the day, by

merging cloudlet, device-to-device and remote cloud

offloading, the availability of offloading support was

increased.

A community is formed by a set of people that are always

together during particular hours, in the weekdays users tend

to work in the same workplace or study in the same

department. Generally, they encounter the same people during

a specific period of time. Thus, this leads to the idea of a short-

term community among the peers which are regularly present

at a specific time period in specific locations. Every node in

the system is called a peer, cloudlets and remote servers are

naturally super peers that sustain the system.

Computation offloading is the process of sending computation

intensive application components to a remote server.

Recently, a number of computation offloading frameworks

have been proposed with several approaches for applications

on mobile devices. These applications are partitioned at

different granularity levels and the components are sent to

remote servers for remote execution in order to enhance the

potential of Smart Mobile Devices.

Computational offloading systems include cloud, cloudlets

and device to device.

CLOUD: The cloud infrastructure is equipped for open use

whereby the users can offload one or more tasks to the cloud,

e.g Amazon, Microsoft Azure and so on.

CLOUDLETS: By relying on these cloud infrastructures

computationally intensive tasks can be offloaded to the cloud.

Cloudlets was a way to bring it closer since they are far from

the mobile users, it serves as a middleware between the cloud

and user. It can be said to be group of computers designed to

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 7 No. 3, June, 2023, pp 239 - 244

DOI: https://doi.org/10.33003/fjs-2023-0703-1770

mailto:oluwaseunfatoba5@gmail.com
https://doi.org/10.33003/fjs-2023-0703-

A BROADCAST RECEIVE MODEL FOR… Fatoba FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 3, June, 2023, pp 239 - 244 240

quickly provide cloud computing services to mobile devices,

such as smartphones, tablets and wearable devices within

close geographical range-

DEVICE-TO-DEVICE: Offloading to remote clouds and

cloudlets were faced with offloading decisions such as

mobility, latency, state of the device and so on, making it

difficult to know exactly to offload. In order to address this

issue, very recent works has relied on other devices that are

carried around by other users which produces a low latency

environment to offload. Study has shown that social relations

tends to provide support for offloading in device-to-device

(Cuervo et al, 2010) focused on using MAUI (Mobile

assistant using infrastructure) for the reduction of energy

consumption of mobile applications using fine-grained code

offload, it decides at runtime which methods should be

remotely implemented, driven by an optimization engine that

attains the best energy savings possible under the mobile

device’s current connectivity limitation. There was a need for

further enhancement on MAUI for future execution of more

than one method /thread at a time.

(Gordon et al, 2012) introduced COMET (Code Offload by

Migrating Execution Transparently) a runtime system to

allow plain multi-threaded applications to use multiple

machines which was a drawback of MAUI, the system allows

threads to move freely between machines depending on the

workload. COMET uses the underlying memory model of the

runtime to implement distributed shared memory (DSM) with

as few connections between machines as possible.

(Verbelen et al, 2012) provided middleware architecture

between the cloud and the mobile device by introducing

Cloudlets, offloading to the cloud is not always a solution,

because of the high WAN latencies, especially for

applications with real-time limitations such as augmented

reality. Therefore the cloud has to be moved closer to the

mobile user in the form of cloudlets. Instead of moving a

complete virtual machine from the cloud to the cloudlet, they

proposed a finer grained cloudlet concept that controls

applications on a component level.

(Habak et al, 2015) designed the Femtocloud system which

provides a strong, self-configuring and multi-device mobile

cloud out of a cluster of mobile devices. The architecture was

developed to enable multiple mobile devices to be configured

into a coordinated cloud computing service. It was said that

there was a need to design a suitable user motivation system

in the future due to the fact that Femtocloud relies on social

awareness like students in a classroom, or a coffee shop, there

was a need to sustain the system from collapsing.

(Flores et al, 2017) tackled the limitation of Femtocloud by

introducing a reputation and credit based mechanism scheme

to the offloading system. A social-aware hybrid offloading

system (HyMobi), which increases the range of offloading

means, was designed. As a mobile device is always linked to

at least one source of network infrastructure throughout the

day, by merging cloudlet, device-to-device and remote cloud

offloading, there was an increase the availability of offloading

support. HyMobi was designed with an incentive mechanism

based on credit and reputation, represented by points. A peer

gathers points when it is sharing its computational resources

to other peers’ requests, e.g., by contributing resources,

remaining in a particular place for a long time, a peer loses

points when consuming resources of the community pool.

MATERIALS AND METHOD

The proposed model composes of three main parts, namely:

i. The device peer,

ii. The request handler, and

iii. The code-offload processor.

The Device Peer

Every node in the system by default is called peer. This

includes Cloudlets, any remote server providing system

services or any mobile device. The peer is composed of three

main sub-components which are:

i. The network peer status table

ii. The broadcast and receive module, and

iii. The device profiler

The network peer status table represents a small space in

memory where the status of individual peer in the network is

stored every specified interval which is managed by the

broadcast and receive module.

The broadcast and receive module is responsible for the

management of the network peer status table. The broadcast

and receive module can assume different states at different

times. The states that the broadcast and receive module can

assume are four (4), which are:

i. On,

ii. Off,

iii. Idle, and

iv. Discovery.

The device profiler is responsible for the profiling of devices

on the network. The device profiler is trigered when a new

device enters the network or when a specified time interval

that has been set before hand is expired. Another scenario

when the device profiler could be trigered is when a device is

about to leave the network.

The Request Handler

The request handler is the gateway where a request is

processed based on its type, where the type of the request

depends on the role of the peer. When a discovery request is

received, the request handler responds to a request either from

a peer or a set of peers who are interested in an offloading

transaction. If the server is not maxed up already, it accepts

the request and the offloading process handled by the code

offloading processor is executed, but if it is maxed up already,

then the requesting peer or peers will have to wait for the next

opportuned time to perform a code offload process

The code offload processor component captures the

execution details of a computational task during runtime at the

method level, e.g., name of the method, parameters, type of

the method, etc. this module is responsible for handling the

code offloading task of the network

https://ieeexplore.ieee.org/author/38243615900

A BROADCAST RECEIVE MODEL FOR… Fatoba FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 3, June, 2023, pp 239 - 244 241

Figure 1: Broadcast and Receive Model

Procedure Broadcast_Receive()

Default_State = OFF_STATE;

Network_State = OFF;

If Network_State == ON then

Change Default_State to DISCOVERY_STATE

If network dectected == true then

Discover devices on the network , Triger Device_Profiler and change Default_State to

ON_STATE;

If Default_State == ON_STATE then

Broadcast device status and receive device status information from

Network_Device_Status_Table;

Else if Default_State == IDLE_STATE then

Go into sleep mode and wait for STATE_TRIGER_TIMER;

End if

End if

End Procedure

Procedure deviceProf()

Set Device_Profiler == SLEEP;

If New_Device_Detection == TRUE then

Set Device_Profiler == AWAKE;

Call getDeviceStatus();

Set Device_Profiler == SLEEP;

Else If TIME_INT == EXPIRED then

Set Device_Profiler == AWAKE;

Call getDeviceStatus();

Set Device_Profiler == SLEEP;

Else If DEVICE_EXIT == TRUE then

Set Device_Profiler == AWAKE;

Call getDeviceStatus();

Set Device_Profiler == SLEEP;

Else

Set Device_Profiler ==SLEEP;

GGO

REQUEST HANDLER

NETWORK PEER

STATUS TABLE

CODE OFFLOAD PROCESSOR

DEVICE PROFILER

PEER 1 PEER 2 PEER 3 PEER 4 PEER N

DEVICE

RESOURCE

RANKER(getdevic

estatus)

BROADCAST AND

RECIEVE

ON

OFF

IDLE

DISCOVERY

A BROADCAST RECEIVE MODEL FOR… Fatoba FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 3, June, 2023, pp 239 - 244 242

End if

End Procedure

The getDeviceStatus() module serves as the module for performing device status rating. This calculations help reduce the

work of selecting the network device peer server. The calculations is based on three (3) parameters, which are:

1. The computing resource of the device,

2. The number of nodes connected to the device, and

3. The energy level of the device.

The equation (1) below shows the the equation used for the device ranking.

Score(Nc,Cc,Bc) = (Nc/N) * (Cc/100) * (Bc/100)

Where:

Nc = the number active connections to the device,

Cc = the computing resource processing frequency,

Bc = the battery level of the device.

Procedure request_handler()

Set request_handler == OFF;

If New_Device_Detection == TRUE then

Set request_handler == AWAKE;

Call device_prof();

Update the Network_Device_Status_Table;

Set request_handler == SLEEP;

Else If DEVICE_EXIT == TRUE then

Set request_handler == AWAKE;

Call device_prof ();

Update the Network_Device_Status_Table;

Set request_handler == SLEEP;

Else

Set request_handler ==SLEEP;

End if

End Procedure

RESULTS AND DISCUSSION

We evaluate and analyze two different aspects of the

framework,

i. peer discovery performance and

ii. energy consumption ,

Huber Flores et al used ten mobile devices to carry out their

experiment. We replicated that by also using ten devices, the

result of the experiment is presented in table below.

Table 1: Results of replication of Huber Flores et al. experiment

PEER CPU (Hz) RAM (GB) DISCOVERY TIME

(Milliseconds)

BATTERY LIFE

(Percentage)

P0 Quad-core1.4 1 1800 82

P1 Quad-core2.7 3 500 69

P2 Dual-core1.2 1 1870 76

P3 Dual-core1.2 1 500 72

P4 Quad-core2.5 3 1490 85

P5 Quad-core1.5 4 550 58

P6 Quad-core1.4 2 1820 80

P7 Quad-core1.2 1 1880 76

P8 Quad-core1.8 2 1700 70

P9 Dual-core1.5 4 1770 79

The simulator uses a network peer status log file which

represents a small space in memory where thestatus of

individual peer in the network is stored every specified

interval of time. We developed an application that was

installed on our mobile clients used by the simulator to handle

updates and statistics of nodes on the network. We analysed

peer discovery performance and energy consumption of the

model, the average discovery time for all peers in the exisiting

model was 2040 milliseconds, average discovery time was

1,213 milliseconds while for the new model, the average

energy level for the existing model was 72.5% while the

average energy level for the new model was 82.3%.

A BROADCAST RECEIVE MODEL FOR… Fatoba FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 3, June, 2023, pp 239 - 244 243

Figure 2: The mobile client interface

The figure above shows the broadcast and receive interface,

the request handler handles a request by any peer to discover

the server or leave the current network. When such a request

is received, it checks to see if the peer has any on going code

offloading process, and therefore triggers the device profiler

which in turn collects necessary device status information at

that particular time as seen in the figure above and updates the

network device status table accordingly.

Figure 3: Average discovery time comparison graph for all peers

We used ten devices just as in the existing model done by

Flores et al, the devices has different rams and processors for

easy comparison, the result above shows the average time it

took to discover the peers used in our model, the found the

average of 10 peers and compared it with the average

discovery time of the existing model.

0

500

1,000

1,500

2,000

2,500

New Existing

D
is

co
ve

ry
 t

im
e

 in
 m

ill
is

e
co

n
d

s

AVERAGE DISCOVERY TIME

A BROADCAST RECEIVE MODEL FOR… Fatoba FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 3, June, 2023, pp 239 - 244 244

 ©2023 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

Figure 4: Average energy level comparison graph for all peers

The figure above showed the average energy level of our

peers in percentage, we found the average energy level of 10

devices and compared it with the result of the already existing

model done by Flores et al.

CONCLUSION

Computational offloading has been proposed as a solution for

saving the battery life of the mobile devices therefore, in order

to maximize computational offloading process overall, we

improved the discovery process of these peers, developed a

broadcast and receive model that can effectively gather

devices information and update requesting peer. We improved

the discovery time it takes to see a peer on the network and

also reduced the energy it takes to search for a peer. A peer

can offload a task to a more capable device on the network if

it doesn’t have enough resource to process its task.

REFERENCES

Amir, M. R., Mokhtar, M., Adil, H. M., Sarkhel H, T. K.,

Mohammed, K. M., & Mohammed, M. (2021). Towards Data

and Computation Offloading in Mobile Cloud Computing:

Taxonomy, Overview, and Future Directions. Wireless

Personal Communications.

Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A.,

Saroiu, S., Chandra, R., & Bahl, P. (2010). MAUI: Making

Smartphones Last Longer with Code Offload. MobiSys’10,

17, 49–62. DOI: 10.1145/1814433.1814441

Ferreira. D, A.K. Dey, V. Kostakos, (2011) Understanding

human-smartphone concerns: a study of battery life, in:

International Conference on Pervasive Computing, Pervasive,

Berlin, Heidelberg,. DOI:10.1007/978-3-642-21726-5_2

Ferreira P, M.McGregor, A.Lampinen, (2015) Caring for

batteries:Maintaining infrastructures and mobile social

contexts in:17th InternationalConference on Human-

Computer Interaction with Mobile Devices and Services,

ACM, MobileHCI’15,.

Flores, H., Sharma, R., Ferreira, D., Kostakos, V., Manner, J.,

Tarkoma, S., Li, Y. (2017). Social-aware hybrid mobile

offloading. Pervasive and Mobile Computing, 36, 25–40

https://doi.org/10.1016/j.pmcj.2016.09.014

Gordon, M., Jamshidi, D., Mahlke, S. & Morley Mao.

Z(2012). COMET: code offload by migrating execution

transparently. Proceedings of the 10th …, 93–106.

Hosio. S, D. Ferreira, J. Goncalves, N. van Berkel, C. Luo, M.

Ahmed, H. Flores, V. Kostakos, (2016) Monetary assessment

of battery life on smartphones, in:Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI,

Habak, K., Ammar, M., Harras, K. A., & Zegura, E. (2015).

FemtoClouds : Leveraging Mobile Devices to Provide Cloud

Service at the Edge. DOI: 10.1109/CLOUD.2015.12

Hoa, T.-D., & Dong-Seong, K. (2023). DISCO: Distributed

Computation Offloading Framework for Fog Computing

Networks. JOURNAL OF COMMUNICATIONS AND

NETWORKS.

Oladeji, Akomolafe Patrick & Olubunmi, Ajayi (2017). Data

Offloading Security Framework in MCLOUD. Journal of

Computer Sciences and Applications, 2017, Vol. 5, No. 1, 25-

28 DOI: 10.12691/jcsa-5-1-4

Quang-Huy, N., & Falko, D. (2020). A smartphone

perspective on computation offloading—A survey. Computer

Communications, 133-154.

Shi. C, K. Habak, P. Pandurangan, M. Ammar, M. Naik, E.

Zegura,(2014) Cosmos: Computational offloading as a

service for mobile devices, MobiHo,14. Pages 287–296

https://doi.org/10.1145/2632951.2632958

Verbelen, T., Simoens, P., Turck, F. De, & Dhoedt, B. (2012).

Cloudlets : Bringing the Cloud to the Mobile User, 29–35.

DOI: 10.1145/2307849.2307858

66.00%

68.00%

70.00%

72.00%

74.00%

76.00%

78.00%

80.00%

82.00%

84.00%

New Existing

En
e

rg
y

le
ve

l i
n

 P
e

rc
e

n
ta

ge

AVERAGE ENEGRY LEVEL

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.pmcj.2016.09.014

