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ABSTRACT 

As network traffic continues to grow exponentially, efficient queue management algorithms are essential for 

ensuring optimal performance in next-generation routers.  Active Queue Management (AQM) scheme, has 

been advocated by the Internet research community for the next generation routers. Random Early Detection 

(RED) is the most well-known AQM scheme. However, RED lacks self-adaptation mechanism and it is 

susceptible to parametrization problem. Several variants of RED were developed, however all of them possess 

a static drop pattern; as such they are severely affected when a traffic load changes. To address the self-

adaptation shortcoming of the RED and its variant schemes, Self-Adaptive Random Early Detection (SARED) 

scheme was developed. However, to avoid congestion, SARED aggressively drops packets once the queue 

length reached a certain maximum threshold limit, subsequently, this will increase the average queuing delay 

for networks with high traffic load conditions, therefore, to eliminate the aggressiveness of SARED in such 

situations, an Exponential version of SARED was proposed in this paper. Results of the simulation experiments 

carried out have indicated that in high traffic load situations, Exponential-SARED (ESARED) has significantly 

reduced average queuing delay by 4% and maximized average throughput by 3%  compared to SARED and 

QERED.  
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INTRODUCTION 

With the rapid development of network traffic and the 

increasing need for high-speed data transmission, next-

generation routers face significant challenges in efficiently 

managing their queues to ensure smooth and reliable network 

performance (Karmanje, A. R. et al., 2023, Atzori, L. et al, 

2010 and Varghese, B. et al, 2017). Queue management 

algorithms play a significant function in maintaining optimal 

router performance by controlling the packet transmission 

and preventing network congestion (Floyd, S. and Jacobson, 

V., 1993 and Jain, R., 1990). Traditionally, routers used the 

tail-drop queue management strategy to avoid congestion. 

When a queue reaches capacity using a tail-drop technique, 

freshly arriving packets are dropped until there is adequate 

space in the queue for incoming traffic (Adamu, A., et al., 

2021). However, due to issues with overflow, global 

synchronization, lock out, and bias towards bursty traffic, tail-

drop does not completely control congestion (Karmeshu et 

al., 2017). For Internet routers to properly control queue 

lengths, offer lower queuing delay, and prevent global 

synchronization, the active queue management (AQM) 

strategy was presented to solve the difficulties of the tail-drop 

approach that were noticed (Karmeshu et al., 2017). By 

giving feedback to the sources to slow down their sending rate 

and the pace at which packets enter the queue when the queue 

is full, AQM attempts to utilise the queue more intelligently 

(Feng, C., et al., 2014). 

Random Early Detection (RED) is a well-known active queue 

management algorithm widely used in current routers (Floyd, 

S. and Jacobson, V., 1993). RED manages congestion by 

dropping all arriving packets probabilistically  before the 

router’s queue fills up . The basic parameters used by RED 

algorithm are minimum and maximum thresholds (minth and 

maxth), maximum packet-dropping probability (maxp), 

average queue length (avg) and weighted parameter (w). RED 

algorithm uses Exponentially Weighted Moving Average 

(EWMA) method applied to the current queue length to 

calculate the average queue length (avg) and drops packets 

probabilistically based on the calculated avg. Packets will be 

dropped with probability 0 when the calculated avg is below 

the minth threshold value, and all the arriving packets will be 

dropped with probability 1 when avg is above maxth threshold 

value. However, packets will be dropped linearly from 0 to 

maxp when the calculated avg is between minth and maxth 

(Floyd, S. and Jacobson, V., 1993; and Bonald et al, 2015).  

However, RED algorithm suffers from some performance 

related issues such as large delay, low throughput,  and 

insensitivity to traffic load because it drops at a very constant 

rate. The poor performance of the RED algorithm can be 

related with its linear drop function, that tends to be extremely 

aggressive when traffic load is low and not aggressive enough 

at high loads (Bonald, T., et al, 2015 and Korolkova, A., et 

al, 2019).  

To address the weakness of RED, several improved variants 

of RED were developed, such as Gentle RED (Floyd S., 

2000), Adaptive RED (Floyd, S., et al, 2001), Double Slope 

RED (Zheng, B., 2006), Nonlinear RED (Zhou, K., et al, 

2006) Autonomous RED (Ho, H. J., & Lin, W. M., 2008), 

Cautious Adaptive (Tahiliani, M. P., et al, 2011), Improved 

Nonlinear RED (Zhang et al., 2012), Three Section RED 

(Feng, C., et al, 2014),  Adaptive queue management with 

random dropping (Karmeshu et al, 2017), Change Trend 

Queue Management (Tang, L. & Tan, Y., 2019), Quadratic 

RED (Kumhar, D., et al, 2021), Quadratic Exponential RED 

(Hassan, S., et al, 2023), etc. Despite all of these 

improvements, whenever there is changes in the traffic load, 

the impact of congestion control will be significantly 

impacted.  

Self-Adaptive Random Early Detection (SARED), a novel 

RED variant, was proposed in (Adamu, A., et al., 2021) to 

solve the self-adaptive problem of RED and its variant 

schemes. Different drop patterns are included in the proposed 

SARED in (Adamu, A., et al, 2021) for various load 

conditions. As opposed to previous RED-enhanced 

variations, SARED takes into account the load condition at 

hand and intelligently modifies an appropriate drop pattern 
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and the maximum dropping probability to deliver the best 

performance possible. Results from (Adamu, A., et al, 2021) 

have demonstrated that SARED performs well no matter the 

load scenario. Even while SARED performs well under low, 

moderate, and high load situations, networks with persistent 

high load conditions will have an increase in average queuing 

delay with SARED. 

This study proposes an Exponential-Self-Adaptive Random 

Early Detection (ESARED) algorithm, a unique method that 

uses exponential-based processes to improve the flexibility 

and effectiveness of queue management in next-generation 

routers, in order to solve these limitations. The ESARED 

algorithm offers a reliable solution for effective queue 

management in contemporary network infrastructures by 

combining the advantages of RED and exponential 

adaptation. 

The rest of the paper has been organized as follows. In Section 

2, the related works are described, while Section 3 introduces 

the suggested Exponential Self-Adaptive RED (ESARED). In 

Section 4, the findings of the experiments carried out for the 

study of the suggested method are reported. Finally, the 

conclusion of the paper is described in Section 5. 

 

Related works  

The Internet Engineering Task Force (IETF) recommends the 

Random Early Detection (RED) algorithm for next-

generation routers since it is currently the most well-known 

AQM method for reducing network congestion (Floyd, S. and 

Jacobson, V., 1993). By calculating the average queue length 

(avg), the RED algorithm drops packets with a predetermined 

probability in order to alert sources to the earliest signs of 

network congestion. Using a basic exponentially weighted 

moving average (EWMA), the average queue length (avg), or 

average number of packets in the router's queue, is 

determined as shown in Equ. (1).     

 𝑎𝑣𝑔 = ((1 − 𝑤𝑞) × 𝑎𝑣𝑔′) + (𝑤𝑞 × 𝑞)      (1) 

Where q represents the instantaneous queue length; avg 

represents the calculated average queue length, and wq is the 

pre-defined weight factor to calculate avg (where 0 < wq <1).  

The computed avg  is compared with the minimum and 

maximum threshold values (minth and maxth). All incoming 

packets are dropped with probability 0 (permitted into the 

queue) if avg < minth. In the event that (minth ≤ avg < maxth ), 

packets are dropped with a probability proportional to the 

average queue length, which rises linearly from 0 to maxp. 

However, all arriving packets are dropped with probability 1 

when maxth ≤ avg. Equ. (2) can be used to represent the drop 

function of RED, pd (avg ) (Floyd, S. and Jacobson, V., 1993):  

0, min

min
( ) max , min max

max min

1, max

th

th
pd th th

th th

th

p

avg

avg
avg avg

avg





•






−
=  

−



 

     (2)  

Despite the fact that it has been demonstrated that the RED 

algorithm significantly outperforms the Tail Drop algorithm, 

research has shown that RED has some drawbacks, including 

parameterization issues (i.e., constant tuning of RED 

parameters is necessary to achieve an improved  

performance), low throughput, significant delays, and lack of 

a self-adaptation approach (Patel, S., 2013; Misra, V., et al, 

2000; Plasser, E., et al, 2010 and Floyd, S., 2000).  

Floyd proposed Gentle RED (GRED) in (Floyd, S., 2000) to 

increase the throughput of RED. After the maxth queue 

threshold in GRED, 2maxth was added. As in traditional RED, 

all incoming packets are dropped linearly with a probability 

that changes from 0 to maxp  when the calculated avg is 

between minth and maxth. Similarly, If the calculated average 

is between a maximum threshold (maxth) and twice maximum 

threshold (2maxth) then the probability changes from 

maximum dropping probability (maxp) to 1, making it more 

gentle than RED.    

In order to improve RED's stability and robustness, Floyd et 

al. (Floyd, S., et al., 2001) presented a dynamic variant of 

RED named Adaptive RED (ARED). Adaptive RED 

dynamically adjusts maxp to maintain avg within the range of 

minimum threshold (minth) and maximum threshold (maxth). 

In Adaptive RED, maximum dropping probability (maxp) is 

likewise restricted to stay between 0.01 and 0.5 range of 

threshold values. Adaptive RED implementation in routers 

will result in significant computing overhead, particularly in 

complex network environments with erratic traffic loads.  

Double-Slope RED (DS-RED) was proposed by Zheng and 

Atiquzzaman so as to improve the queuing latency and 

throughput of Random Early Detection (RED) algorithm 

(Zheng, B., 2006). Two distinct drop functions are used by 

DS-RED to enhance RED's performance. However, the two 

distinct slopes produced by the linear dropping functions of 

DS-RED were found to behave remarkably similar to GRED 

(Floyd, S., 2000). Given that it relied on two linear dropping 

functions and sensitivity to parameters is still an issue in 

Double-Slope RED. Hence, RED's aggressiveness is carried 

over into DS-RED.  

In (Ho, H. J., & Lin, W. M., 2008), Ho and Lin suggested 

Autonomous RED (AURED), an improved form of Adaptive 

RED (ARED). In contrast to ARED, AURED addresses the 

connection underutilization and overflows seen in ARED by 

using a transient distribution to instantaneous queue length as 

a congestion indicator. ARED can be thought of as an 

improved variant of AURED.   

Additionally, to enhance the network's overall performance, 

Mohit et al. in (Tahiliani, M. P. et al, 2011) proposed the 

Cautious Adaptive Random Early Detection (CARED) 

algorithm, which constantly changes the maximum dropping 

probability (maxp) in accordance with the volume of traffic. 

The CARED algorithm's sensitivity to parameters is, 

however, identical to that of the ARED algorithm.  

In (Zhou, K., et al., 2006), Zhou et al. presented Nonlinear 

RED (NRED), a modified version of RED. NRED used a 

non-linear quadratic drop function in place of RED's linear 

drop function to increase throughput. All other characteristics 

of RED are kept in NRED, with the exception of this change. 

They have held that NLRED is better than RED under low 

traffic loads, however, its aggressiveness increases when the 

traffic load is higher because of the nonlinear packet drop 

function used in NLRED. However, NLRED may cause 

forced packet drops and congestion in situations with 

extremely high loads. 

An enhanced nonlinear RED (MRED) was suggested by 

Zhang et al. in (Zhang et al., 2012). While Nonlinear RED 

(NRED) employs a linear dropping function if the average 

queue length (avg) falls within the range of minimum 

threshold (minth) and maximum threshold (maxth ), however, 

if the average value of the queue length (avg) falls within the 

range of maxth and 2maxth, then then the nonlinear dropping 

function is used in MRED (Floyd, 2000). In essence, NRED 

and GRED are believed to be upgraded by INRED.   

Furthermore, Feng et al. Developed a Three-Section RED 

(TRED) in order to solve the issues of connection 

underutilization and forced packet drops of Random Early 

Detection algorithm as well as its improved variants (Feng, 

C., et al., 2014). TRED divides the queue length (i.e. minth to 

maxth) of RED into three equal portions, in order to 

distinguish between various network loads. The traffic load is 
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considered to be low, if the average value of the queue length 

(avg) is in the initial portion; it is assumed to be moderate, if 

it is in the middle portion;  and when it falls in the last area, it 

is assumed to be high. However, parameterization is still a 

challenge for TRED.  

Another AQM algorithm Adaptive-Queue-Management with 

Random-Dropping (AQMRD), was suggested by Karmeshu 

et al. in (Karmeshu et al, 2017). The average value of the 

queue length (avg) as well as its rate of change are two factors 

that the AQMRD algorithm seeks to take into account. The 

maximum threshold maxth, the middle threshold midth, and the 

minimum threshold minth are the next three thresholds 

established in AQMRD. However, the aggressive dropping 

method used in AQMRD results in low link utilization, 

lengthy delays, and a high loss rate.  

Change Trend Queue-Management (CT-AQM) is a novel 

AQM algorithm that Tang and Tan designed so as to increase 

the reaction time of RED scheme  (Tang, L. & Tan, Y., 2019). 

In order to determine packet drop probabilities, CT-AQM 

forecasts the change trend of queue size based on the change 

rate of the traffic load and average queue length (avg). 

According to the analysis's findings (Tang, L. & Tan, Y., 

2019), CT-AQM was effective at reducing packet loss as well 

as improving network throughput at various scenarios with 

varying levels of traffic load. However, CT-AQM adds a lot 

of delay and permits more packets to enter the queue, which 

could cause packets overflow. 

Kumhar et al. developed Quadratic RED (QRED) in order to 

enhance the RED algorithm's network performance in 

(Kumhar, D., et al, 2021). A nonlinear drop function similar 

to NRED in  (Zhou et al., 2006) replaces the RED’s linear 

dropping function in QRED. QRED employs the extra 

parameter Qmax to enhance RED's drop functionality. All 

other characteristics of NRED in (Zhou et al, 2006) are kept 

in QRED, with the exception of this modification. They have 

held that NLRED is kinder than RED under low traffic loads 

but more aggressive under big loads because of the nonlinear 

packet dropping function used in NLRED. However, QRED's 

aggression under heavy demand may cause congestion and 

overflow.  

The Quadratic Exponential RED (QERED) algorithm was 

designed by (Hassan, S., et al., 2023) as an improved version 

of RED. QERED algorithm replaces RED’s drop function 

with the combination of a nonlinear and exponential packet 

dropping function in the QERED algorithm. The issues with 

QRED and NRED algorithms, however, were carried over 

into QERED.  

An enhanced RED scheme that addresses the self-adaptation 

issue with RED-based AQM schemes was proposed in 

(Adamu, A., et al., 2021). In order to attain the desired 

performance level, the self-adaptive method in (Adamu, A., 

et al, 2021) takes into account the present traffic load as well 

as the average queue length and adapts a suitable drop pattern 

and maximum dropping probability. This paper suggests an 

exponential variant of the SARED technique to significantly 

improve its performance under heavy loads.   

  

Exponential Self Adaptive Random Early Detection 

Algorithm (ESARED)  

An enhanced AQM algorithm is needed to deliver the 

intended network quality irrespective of the variations of 

network load while also preventing force drop and link 

underutilization. Numerous studies have shown that RED and 

its several enhancements failed to deliver optimized 

performance whenever load changes from one state to another 

in networks, so as to behave appropriately. Some networks 

perform well if the traffic load is light and perform poorly 

when traffic load is heavy, while some networks perform well 

at high load and perform poorly at low load. Nevertheless, 

load does fluctuate naturally in networks. The load of the 

network that has a direct impact on the observed average 

queue length, is typically ignored by several AQM algorithms 

in their definition of packet dropping probability. 

An Exponential Self Adaptive RED (ESARED) algorithm 

has been proposed in this paper, that defines information 

packet dropping probability based on computed average 

queue length and current traffic load. ESARED takes into 

account all packets that arrive from the source nodes at a 

given time t (𝜆𝑖(𝑡) ), 𝑖 = 1, . . . ,𝑀, and M is the total number 

of active sources as depicted in Fig. 1. Equation (3) represents 

the overall number of arriving packets at the router per unit 

time t.  

𝜆(𝑡) = ∑ 𝜆𝑖
𝑀
𝑖=1 (𝑡)     (3) 

The traffic load ρ ( t ) at a given time t is described in Equ. (4) 

and the bandwidth of the bottleneck link is denoted by  µ.   

𝜌(𝑡) =
𝜆(𝑡)

𝜇
     (4)  

 

 
Figure 1: ESARED Queue Model  

 

The system can be in any of the three (3) traffic load states 

(i.e., low, moderate and high). The underutilization of the link 

will happen when the system stays in the first-state (𝜌(𝑡) <
1) for an extended period of time because the traffic in the 

network is low and packets do not build up in the queue. 

When the system is in the second-state (𝜌(𝑡) ≈ 1), the traffic 

in the network is moderate and performance is at its best. 

Although packets will build up in the queue and wait to be 

dispatched when the system is in the third-state (𝜌(𝑡) > 1,), 
if this state is sustained for an extended period of time, 

overflow and congestion are likely to occur.  

The computed avg  is compared with the minimum and 

maximum threshold values (minth and maxth).  Equ. (2) can be 

used to represent the drop function of RED, pd (avg ) (Floyd, 

S. and Jacobson, V., 1993):  

In contrast to SARED, ESARED substitutes the values of 

minth , avg , and maxth  with 𝑒𝑚𝑖𝑛𝑡ℎ ,   𝑒𝑎𝑣𝑔 𝑎𝑛𝑑 𝑒𝑚𝑎𝑥𝑡ℎ  

respectively, in order to enhance SARED's performance 

under heavy load situation. The Exponential Weighted 

Moving Average (EWMA) Equation (1) is used in ESARED 

to calculate the average queue length (avg). All incoming 

packets are dropped with probability 0 (permitted into the 

queue) if avg < minth. In the event that (minth ≤ avg < maxth ), 

packets are dropped with a probability proportional to the 

average queue length, which rises either linearly or 

nonlinearly from 0 to maxp . However, all arriving packets are 
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dropped with probability 1 when maxth ≤ avg. Equation (5) 

presents the ESARED drop function.  

𝑝𝐸𝑆𝐴𝑅𝐸𝐷 = {

0, 𝑎𝑣𝑔 < 𝑚𝑖𝑛𝑡ℎ

(
𝑒𝑎𝑣𝑔−𝑒𝑚𝑖𝑛𝑡ℎ

𝑒𝑚𝑎𝑥𝑡ℎ−𝑒𝑚𝑖𝑛𝑡ℎ
)
𝑛

𝑚𝑎𝑥𝑝, 𝑚𝑖𝑛𝑡ℎ ≤ 𝑎𝑣𝑔 < 𝑚𝑎𝑥𝑡ℎ

1, 𝑎𝑣𝑔 ≥ 𝑚𝑎𝑥𝑡ℎ

 

 (5) 

The current maximum drop probability (maxp) and exponent 

of the nonlinear drop function (n)  are computed using 

equation (6) and equation (7) respectively.  

𝑚𝑎𝑥𝑝 = 1 − 𝑒−𝜌(𝑡)         (6)  

𝑛 = 𝑐
1

𝜌(𝑡), 𝑐 ≥ 2                          (7) 

ESARED’s drop function is presented in Figure 2.  

 
Figure 2: ESARED Drop Function  

 

As shown in Figure 2, ESARED basically modifies its maxp 

dependent on the current load. In ESARED, a drop function 

whose exponent is likewise a function of load is created and 

grows linearly or nonlinearly from 0 to the present maxp when 

the average value falls between the minth and maxth. These 

characteristics of ESARED allow it to function well under 

various load situations. Figure 3 presents the proposed 

ESARED algorithm's pseudocode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Pseudocode of ESARED Algorithm 

Definitions of the saved, fixed and other parameters used in the proposed ESARED algorithm are presented in Table 1.   

Pseudocode of ESARED 

Input: minth, maxth, w, ρ(t), n, c, µ 

Output: count  

Initialization: 

avg ← 0 

count ← -1 

for all source nodes do 

     Return λ(t) [Mbps] (equation 3) 

     ρ ← λ(t)/µ (equation 4) 

     n ← c1/ρ(t) (equation 6) 

     maxp ← 1- e-ρ(t) (equation 7) 

end for 

for each packet arrival do 

      Calculate the average queue size: avg 

             if the queue is nonempty then 

                       avg ← (1 – w) ×avg' + w × q(t) 

             else  

                      m ← f (t – tqueue_idle_time)  

                      avg ← ((1 – w)m × avg') 

             end if  

      Determine packet discard 

         if avg < minth then 

                   No packet drop 

             Set count   ← -1 

         else if minth ≤ avg < maxth then 

              Set count ← count + 1 

              Calculate the packet drop probability Pb 

                      Pb ← ((𝑒𝑎𝑣𝑔 - 𝑒𝑚𝑖𝑛𝑡ℎ ) / (𝑒𝑚𝑎𝑥𝑡ℎ - 𝑒𝑚𝑖𝑛𝑡ℎ ))n × maxp 

                      Pa ← Pb / (1 – count . Pb) 

              Mark the arriving packet with probability Pa 

              Set count ← 0 

              Drop the packet 

         else if maxth ≤ avg then 

              Drop the arriving packet 

              Set count ← 0 

         else count ← -1 

       When the router’s queue becomes empty 

             Set tqueue_idle_time ← t 

       end if 

end for 
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Table 1: ESARED Algorithm Parameters  

Saved Parameters  Fixed Variables   Other  

avg: present average queue length   maxth: maximum threshold for the 

queue  

q(t): instantaneous queue length  

 avg': previous average queue length minth: minimum threshold for the 

queue  

λ(t): total number of arriving packets 

(Mbps)  

tqueue_idle_time: queue idle time  w: weighted queue  

 

ρ(t): traffic load  

 

 count: packets since last marked 

packets 

k: nonlinear index  

 

pa: probability used for marking 

packets  

i: exponent of the nonlinear drop 

function  

µ: bottleneck link capacity  

(Mbps)  

maxp: maximum drop probability  

 

Simulation Experiments   

The experiments were run on the NS2 simulator to measure 

how well the proposed ESARED algorithm performed. N 

TCP flows were created by N FTP sources sending packets 

to N destinations through a network of two routers (A and B) 

and a bottleneck link as shown in Figure 4. The bottleneck 

link has a 10 Mbps capacity and a 20 ms propagation delay. 

The hosts' propagation delays range between 5 and 10 ms and 

the routers are connected using a combined bandwidth of 10 

Mbps.  

 

 
Figure 4: Simulation topology  

 

Low, moderate, and high load states were used in the 

simulation experiments. N = 10 flows were employed when 

the traffic load is low, N = 50 flows were used if the traffic 

load is moderate, and N = 120 flows were deployed when the 

traffic load is high. The AQM scheme was installed at Router 

A with queue capacity of 140 packets. There was a new Reno 

TCP implementation. After 200 seconds, the simulation 

result was received. The traffic load ρ(t) was calculated using 

the present value of λ ( t ) acquired from the queue monitoring 

object. The simulation parameters used in the experiments 

were k = 2, w = 0.002, minth = 25 and maxth = 120 (Table 1).   

The performance of the proposed ESARED was compared 

with SARED and one of the most currently enhanced RED 

variants, i.e. QERED in (Hassan, S., et al., 2023). Since it has 

been established that QERED offers superior performance to 

RED, RED is not taken into account in this paper. maxp = 0.1 

was employed for the analysis of QERED. 

 
 Figure 5: Throughput vs. Number of flows 
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The results shown in Figure 5 showed that ESARED 

maximizes throughput even at low load; however, in their 

respective high-load stages, QERED, SARED, and 

ESARED's average throughputs were getting close to their 

maximum limits. 

  

 
Figure 6: Delay vs. Number of flows  

 

Furthermore, ESARED experienced longer delays than 

QERED and SARED at moderate and low load states as 

depicted in Fig. 6. This is due to the fact that, under these load 

conditions, ESARED had a lesser packet drop rate than 

SARED and QERED, allowing accumulation of many 

arriving packets in the queue. Because of this, packets using 

ESARED will experience more queuing delay than those 

using SARED and QERED, which will ultimately affect the 

total delay the packets experience. The delay seen with 

ESARED, however, was less than that of SARED and 

QERED at a high load. This is due to the fact that in that 

scenario, ESARED had a greater drop rate, which led to 

lower accumulation of packets in the queue. Moreover, the 

arriving packets then encountered a decreased delay with 

ESARED at high loads compared to SARED and QERED. 

 

CONCLUSION  

An Exponential Self-Adaptive RED (ESARED) scheme was 

developed in this paper as a way to enhance the performance 

of networks that are constantly under heavy load. According 

to the results of the simulation experiments, the proposed 

ESARED has reduced the average queuing delay by  4% and 

increased average throughput by 3% under high-load 

scenarios. Additionally, the results revealed that ESARED 

and SARED performed similarly in low- to moderate-load 

circumstances, with differences only being apparent when the 

traffic load reached an extremely high level. 
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