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ABSTRACT 

MHD oscillatory blood flow in a channel as micropolar fluid in the presence of chemical reaction and a 

transverse magnetic field  are studied. The partial differential equations governing the flow  were formulated 

base on assumptions and already existing model. The partial differential  equations were transformed to 

dimensionless equations with  suitable variables. Analytical solution was obtained for the dimensionless 

equations. The pertinent parameters were investigated with graphs  plotted and  table  generated using Matlab 

software. The study reveals that the parameters has significant influences on the flow.  
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INTRODUCTION 

The process of using mathematical language to describes real 

life problems is known as mathematical modeling. The study 

of fluid dynamics plays significant role in fluid flowing inside 

human body and modeling of blood flow is important in 

cardiovascular system. Cardiovascular system is the blood 

distribution network that consists of blood, heart and blood 

vessels. There are three major types of blood vessels; arteries, 

capillaries and veins. Arteries are large blood vessels that 

carry blood away from the heart to all regions of the body 

(Ehrlich and  Schroed, 2004). Blood flows from arteries to 

capillaries then into veins. It is electrically conducting fluid 

which contains ions that can be influenced by the presence of 

magnetic field. It is approximately four times more viscous 

than water and contains a complex mixture of ions, proteins, 

lipoproteins and cells. MHD can be defined as the study of 

dynamics of electrically conducting fluid under the influence 

of magnetic field and blood flow in human system can be 

considered as a biofluid dynamics problem. Micropolar fluid 

represent a category of fluid that are containing 

microelements and possessing internal microstructure. It is a 

fluid that support couple stresses and exhibit microrotational 

as well as microinertial effects. The theory of micropolar fluid 

was introduced by( Erigen, 1966) and in the theory, rigid 

particles contained in a small volume element can rotate about 

the center of the volume element. The rotation is described by 

an independent micro-rotation vector. A chemical reaction is 

the rearrangement of atoms of the reactants to create different 

substance as product. The chemicals and pollutants we inhale 

can end up in our blood stream and cause chemical reaction 

which the blood can carry to the rest of the body. 

Many researchers has investigated work relating to modeling 

of MHD oscillatory blood flow in a channel as micropolar 

fluid in the presence of chemical reaction. (Abdullah and 

Norsarahaida, 2010)  considered a non-linear two dimensional 

micropolar fluid model for blood flow in a tapered artery and 

the governing equations involving unsteady non-linear partial 

differential equations were solved using a finite difference 

scheme. Ahmad et al.(2020) investigated the micropolar fluid 

model of blood flow under the effect of body acceleration. 

The governing  non-linear coupled partial differential 

equations were transformed and solved numerically by 

employing crank-Nicolson method with a suitable choice of 

initial and boundary conditions. (Sneha and Pramod, 2019) 

presented a two-phase model of blood flow through a porous 

layered artery in the presence of a uniform magnetic field and 

uses modified Bessel’s function to obtain close form solution 

for analysis. (Moses and  Funmilola, 2020) analyzed heat and 

mass transfer in micropolar fluid model for blood flow 

through a stenotic tapered artery using analytical solution. 

(Srinivsacharya and Srikanth, 2012) considered the flow of 

blood through catheterized artery with mild constriction at the 

outer wall and obtained close-form solution for the governing 

equations which was used to analyze the effects of various 

important parameter present in the flow. (Prasad and Yasa, 

2021)  studied micropolar fluid in tapering stenosed arteries 

having permeable walls using Homotopy perturbation method 

to obtain solution for analysis. Evangelos et al.(2020) 

investigated the effect of micropolar fluid properties on the 

blood flow in human carotid using 3D human carotid model 

that is computationally reconstructed.( Makinde and Mhone, 

2005) studied the combined effects of transverse magnetic 

field and radiative heat transfer to unsteady oscillatory flow 

of a conducting optically thin fluid through a channel filled 

with porous medium. Analytical solution was obtained for the 

resulted dimensionless governing equations which was used 

to analyze the effects of the important parameter in the flow.( 

Misra and Adhikary, 2016) investigated MHD oscillatory 

channel flow of physiological fluid in the presence of 

chemical reaction. Ratchagar et al.(2018) analyzed the impart 

of Hall current in the transport phenomenon of MHD 

oscillatory channel of blood flow in the presence of chemical 

reaction and external magnetic field. We extend the work of 

(Makinde and Mbone,2005) by incorporating microrotational 

equation, concentration equation and using values of 

parameters according to (Misra and Adhihary, 2016) and 

Rtchagar et al.(2018) to study modeling of MHD oscillatory 

blood flow in a channel as micropolar fluid in the presence of 

chemical reaction which has not be done to the best of our 

knowledge. 

 

Mathematical Formulation 

Consider optically thin oscillatory blood flow in a channel 

filled with porous medium in the presence of chemical 

reaction as micropolar fluid under the influence of transverse 

magnetic field. It is assumed that the fluid has small electrical 

conductivity and the electromagnetic force produce is very 

small. The x-axis is taken along the centre of the channel  and 

y- axis is taken to be normal to it  as demonstrated in figure 1. 
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Figure 1: Blood flow in a channel. 

 

Assuming Boussineq incompressible fluid model and 

extending the work of   Makinde and Mhone[10], the  linear 

momentum, angular momentum, energy and concentration 

equations governing the flow in the channel are                                                                     

 
𝜕𝑢′

𝜕𝑡′
= −

1

𝜌

𝜕𝜌′

𝜕𝑥′
+ (𝑣 + 𝑣𝑟)

𝜕2𝑢′

𝜕𝑦′2
− 

(𝑣+𝑣𝑟)

𝐾
𝑢′ + 2𝑣𝑟

𝜕𝑤′

𝜕𝑦′
−

 
𝜎𝐵0

2

𝜌
 𝑢′ +  𝑔𝐵𝑡′

(𝑇 − 𝑇0) + 𝑔𝐵𝐶 ′
(𝐶 − 𝐶0)              (1)   

𝜌𝑗
𝜕𝑤′

𝜕𝑡′
= 𝛾

𝜕2𝑤′

𝜕𝑦′2
                                                  (2) 

𝜕𝑇

𝜕𝑡′
=

𝑘

𝜌𝑐𝑝
 

𝜕2𝑇

𝜕𝑦′2
−

1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦′
 (3)                                                                     

(3) 
𝜕𝐶

𝜕𝑡′ = 𝐷
𝜕2𝐶′

𝜕𝑦′2 − 𝐾𝑐(𝐶 − 𝐶𝑜)                                    (4) 

With the boundary condition: 

 𝑢′ = 0, 𝑤′ = −𝑛1
𝜕𝑢′

𝜕𝑦′ 𝑇 = 𝑇0 + (𝑇𝑤 − 𝑇0)𝑒𝑖𝑛′𝑡′
, 𝐶 = 𝐶0 +

 (𝐶𝑤 − 𝐶0)𝑒𝑖𝑛′𝑡′
 𝑎𝑡 𝑦 = ℎ       (5) 

 𝑢′ = 0, 𝑤′ = 0, 𝑇 = 𝑇0, 𝐶 = 𝐶0, 𝑎𝑡 𝑦′ = 0           (6) 

Where  𝑢′ is the translational velocity, 𝑤′ is microrotational 

velocity, (𝑥′ 𝑦′)  is the space co-ordinates, 𝑡′   is time, 𝑛′  is 

frequency of oscillation, 𝑇  is the temperature of fluid, 𝐶 is 

the concentration of the fluid 𝜌 is the fluid density, 𝑝′ is the 

pressure, g  is gravitational force , 𝑣𝑟 is rotational viscosity, 

𝑣 is kinematic  viscosity, 𝐾 is the permeability of the porous 

medium, 𝜎 is the conductivity of the medium. 𝐵0 = (𝜇𝑒 , 𝐻𝑜) 

is the electromagnetic induction where 𝜇𝑒   is the magnetic  

permeability and 𝐻𝑜 is the intensity of magnetic field,  𝐵𝑡 is 

the coefficient of volumetric thermal expansion,  𝐵𝑐  is the 

coefficient of volumetric thermo expansion, 𝑗  is the 

microinertia per unit mass,𝛾 is the spin gradient viscosity, 𝑘 

is the thermal conductivity, 𝐶𝑝 is the specific heat at constant 

pressure, 𝐾𝑐  is the rate of chemical reaction,  𝐷  is the 

molecular diffusivity , 𝑞𝑟  is the radiative heat flux, 𝑇𝑤 , 

𝑇0, 𝐶𝑤, 𝐶0 𝑎𝑛𝑑 ℎ  are temperature at wall, temperature far 

from wall, concentration at wall, concentration far from wall 

and distant between the walls respectively. 𝑛1  is the 

parameter that relates microgyration vector to shear stress, it 

is  0 ≤ 𝑛1 ≤ 1 . When 𝑛1 = 0 , it represent the case of 

microelement unable to rotate. As 𝑛1 = 0.5  and 𝑛1 = 1, the 

microrotation gets augmented and induces flow enhancement. 

Following Cogley et al [13], for optically thin fluid with low 

density, radiative heat flux is given by  

 
𝜕𝑞𝑟

𝜕𝑦′
=  4𝛼2(𝑇0 − 𝑇)                                              (7) 

where 𝛼  is the mean radiation absorption coefficient                                                 

Then equation (3) becomes 

  
𝜕𝑇

𝜕𝑡′ =
𝑘

𝜌𝑐𝑝
 

𝜕2𝑇

𝜕𝑦′2 −
1

𝜌𝑐𝑝
4𝛼2(𝑇0 − 𝑇)                     (8) 

Let us introduce the following non-dimensional variables for 

transformation; 

 𝑦 =
𝑦′

ℎ
, 𝑥 =

𝑥′

ℎ
, 𝑢 =

𝑢′

𝑈
, 𝑤 =

𝑤′ℎ

𝑈
, 𝑡 =

𝑡′𝑈

ℎ
, 𝑝 =

ℎ𝑝′

𝜌𝑣𝑈
, 𝜃 =

𝑇−𝑇0

𝑇𝑤−𝑇0
, ∅ =

𝐶−𝐶0

𝐶𝑤−𝐶0
, 𝑛 =

𝑛′ℎ

𝑈
,         (9) 

Applying equation (8) for transformation, we now have the 

following dimensionless equation. 

𝑅𝑒
𝜕𝑢

𝜕𝑡
=

−𝜕𝑝

𝜕𝑥
+ (1 + r)

𝜕2𝑢

𝜕𝑦2
− {(1 + 𝑟)𝑆2 + 𝐻2}𝑢 + 2𝑟

𝜕𝑤

𝜕𝑦
+

𝐺𝑟𝜃 + 𝐺𝑐∅                           (10) 

  𝑚𝑎
𝜕𝑤

𝜕𝑡
=  

𝜕2𝑤

𝜕𝑦2
                                                    (11) 

 𝑃𝑒
𝜕𝜃

𝜕𝑡
=

𝜕2𝜃

𝜕𝑦2
+ 𝑅2𝜃                                            (12) 

𝑆𝑐
𝜕∅

𝜕𝑡
=

𝜕2∅

𝜕𝑦2
− Cr∅                                                 (13) 

With the dimensionless boundary conditions: 

 𝑢 = 0, 𝑤 = −𝑛1
𝜕𝑢

𝜕𝑦
, 𝜃 = 𝑒𝑖𝑛𝑡 , ∅ = 𝑒𝑖𝑛𝑡  𝑎𝑡 𝑦 = 1  (14) 

 𝑢 = 0 , 𝜃 = 0, ∅ = 0, 𝑤 = 0 𝑎𝑡 𝑦 = 0           (15) 

Wher 𝑅𝑒 =
𝑈ℎ

𝑣
, 𝑟 =

𝑣𝑟

𝑣
, 𝑆2 =

1

𝐷𝑎
, 𝐷𝑎 =

𝐾

ℎ2
 𝐻2 =

𝜎𝐵0
2ℎ2

𝜌𝑣
, 𝐺𝑟 =

𝑔𝐵𝑡(𝑇𝑤−𝑇0)ℎ2

𝑣𝑈
, 𝐺𝑐 =

𝑔𝐵𝑐(𝐶𝑤−𝐶0)ℎ2

𝑣𝑈
  ,  𝑚𝑎 =

𝑎𝜌𝑗

𝛾
, Pe =

𝑈ℎ𝜌𝐶𝑝

𝑘
,   

𝑅2 =
4𝛼2ℎ2

𝑘
, 𝑆𝑐 =

𝑈ℎ

𝐷
 𝑎𝑛𝑑 𝐶𝑟 =

ℎ2𝐾𝑐

𝐷
  are Renolds 

number(𝑅𝑒), viscosity ratio parameter(𝑟), porous medium 

shape parameter (𝑆) , Darcy number (𝐷𝑎) , Hartmann 

number (𝐻) , Grashof number (𝐺𝑟) , modified Grashof 

number(𝐺𝑐), material parameter (𝑚𝑎), peclet number(𝑃𝑒), 

radiation parameter(𝑅), Schmidt number(𝑆𝑐) and chemical 

reaction parameter (𝐶𝑟) respectively.  

 

METHOD OF SOLUTION 

In order to solve the dimensionless governing equations for 

purely oscillatory flow, let  
𝜕𝑃

𝜕𝑥
=X𝑒𝑖𝑛𝑡  (where X is a constant, Ratchagar et al. (12))   (16) 

 𝑢(𝑦, 𝑡) = 𝑢0(𝑦)𝑒𝑖𝑛𝑡                       (17) 

 𝑤(𝑦, 𝑡) = 𝑤0(𝑦)𝑒𝑖𝑛𝑡                         (18)                                                                                                   

 𝜃(𝑦, 𝑡) = 𝜃0(𝑦)𝑒𝑖𝑛𝑡                           (19) 

∅(𝑦, 𝑡) = ∅0(𝑦)𝑒𝑖𝑛𝑡                        (20) 

Substituting equation (16) – (20) into (10)-(15), yields 

𝑃𝑢0 
" (𝑦) − 𝑄𝑢0(𝑦) = −𝑋 − 2𝑟𝑤′0(𝑦) − 𝐺𝑟𝜃0(𝑦) −

𝐺𝑐∅0(𝑦)                                                    (21) 

𝑤0 
" (𝑦) − 𝑖𝑛𝑚𝑎𝑤0(𝑦)                          (22) 

 𝜃0 
" (𝑦) + 𝑉𝜃0(𝑦) = 0                                           (23) 

∅0 
" (𝑦) − 𝑊∅0(𝑦) = 0                                       (24) 

With the boundary conditions; 

 𝑢0(𝑦) = 0, 𝑤0 
′ (𝑦) = −𝑛1𝑢0 

′ , 𝜃0(𝑦) = 1,  ∅0(𝑦) = 1 𝑎𝑡 𝑦 =
1                                                   (25) 

𝑢0(𝑦) = 0, 𝜃0(𝑦) = 0, 𝑤0(𝑦) = 0,  ∅0(𝑦) = 0  𝑎𝑡 𝑦 = 0    

                 (26) 

Where 𝑃 = (1 + 𝑟), 𝑄 = 𝑖𝑛𝑅𝑒 + {(1 + 𝑟)𝑆2 − 𝐻2},  𝑉 =
𝑅2 − 𝑖𝑛𝑃𝑒  and 𝑊 = 𝐶𝑟 + 𝑖𝑛𝑆𝑐  

Solving (17)-(24) with (25) and (26), we have:  

𝑢(𝑦, 𝑡) = (𝐶1𝑒𝑚5𝑦 + 𝐶2𝑒𝑚6𝑦 + 𝐶3 + 𝐶4𝑒𝑚1𝑦 + 𝐶5𝑒𝑚2𝑦 +

𝐶6 sin(√𝑉𝑦) + 𝐶7𝑒𝑚3𝑦 + 𝐶8𝑒𝑚4𝑦)𝑒𝑖𝑛𝑡                        (27)  

𝑤(𝑦, 𝑡) = (𝐴1𝑒𝑚1𝑦 + 𝐴2𝑒𝑚2𝑦)𝑒𝑖𝑛𝑡                                  (28) 

 𝜃(𝑦, 𝑡) =
sin (√𝑉𝑦)

sin (𝑉)
 𝑒𝑖𝑛𝑡                                 (29) 

∅(𝑦, 𝑡) = (𝐵1𝑒𝑚3𝑦 + 𝐵2𝑒𝑚4𝑦)𝑒𝑖𝑛𝑡                                  (30) 

Where   𝑚1 = √𝑖𝑛𝑚𝑎 

             𝑚2 = −√𝑖𝑛𝑚𝑎        

             𝑚3 = √𝐶𝑟 + 𝑖𝑛𝑆𝑐  

            𝑚4 = −√𝐶𝑟 + 𝑖𝑛𝑆𝑐  

           𝑚5 = √𝑄
𝑃⁄  

             𝑚6 = −√𝑄
𝑃⁄    

              𝐶3 =
𝑋

𝑄
 

              𝐶6 =
𝐺𝑟

(𝑃𝑉+𝑄)sin (√𝑉)
 

              𝐵1 =
1

(𝑒𝑚3−𝑒𝑚4)
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              𝐵2 = −𝐵1  

              𝐶7 =
−𝐺𝑐𝐵1

𝑃𝑚3
2−𝑄

 

               𝐶8 =
−𝐺𝑐𝐵2

𝑃𝑚4
2−𝑄

  

𝐴 = {(𝑃𝑚1
2 − 𝑄)(𝑒𝑚1 − 𝑒𝑚2) − 2𝑟𝑚1

2𝑛1𝑒𝑚1}(𝑒𝑚5 −
𝑒𝑚6) − 2𝑟𝑚1𝑛1{𝑚5𝑒𝑚5𝑒𝑚6 − 𝑚5𝑒𝑚5𝑒𝑚1 − 𝑚6𝑒𝑚6𝑒𝑚6 +
𝑚6𝑒𝑚6𝑒𝑚1 − 𝑚6𝑒𝑚6(𝑒𝑚5 − 𝑒𝑚6)}  

 

 𝐵 = −2𝑟𝑚1𝑛1{𝑚2𝑒𝑚2(𝑒𝑚5 − 𝑒𝑚6) + 𝑚5𝑒𝑚5𝑒𝑚6 −
𝑚5𝑒𝑚5𝑒𝑚2 − 𝑚6𝑒𝑚6𝑒𝑚6 + 𝑚6𝑒𝑚6𝑒𝑚2 − 𝑚6𝑒𝑚6(𝑒𝑚5 −
𝑒𝑚6)} 

 

𝐷 = {(𝑃𝑚2
2 − 𝑄)(𝑒𝑚1 − 𝑒𝑚2) + 2𝑟𝑚2

2𝑛1𝑒𝑚2}(𝑒𝑚5 −
𝑒𝑚6) + 2𝑟𝑚2𝑛1{𝑚5𝑒𝑚5𝑒𝑚6 − 𝑚5𝑒𝑚5𝑒𝑚2 − 𝑚6𝑒𝑚6𝑒𝑚6 +
𝑚6𝑒𝑚6𝑒𝑚2 − 𝑚6𝑒𝑚6(𝑒𝑚5 − 𝑒𝑚6)}  

 

 𝐸 = 2𝑟𝑚2𝑛1{𝑚1𝑒𝑚1(𝑒𝑚5 − 𝑒𝑚6) + 𝑚5𝑒𝑚5𝑒𝑚6 −
𝑚5𝑒𝑚5𝑒𝑚1 − 𝑚6𝑒𝑚6𝑒𝑚6 + 𝑚6𝑒𝑚6𝑒𝑚1 − 𝑚6𝑒𝑚6(𝑒𝑚5 −
𝑒𝑚6)} 

 

 𝑍1 = 2𝑟𝑚1𝑛1{𝑚5𝑒𝑚5[(𝑒𝑚6(𝐶3 + 𝐶7 + 𝐶8) − 𝐶3 −

(𝐶6 sin(√𝑉) + 𝐶7𝑒𝑚3 + 𝐶8𝑒𝑚4)] − 𝑚6𝑒𝑚6[(𝑒𝑚6(𝐶3 +

𝐶7 + 𝐶8) − 𝐶3 − (𝐶6 sin(√𝑉) + 𝐶7𝑒𝑚3 + 𝐶8𝑒𝑚4)] +

𝐶3(𝑒𝑚5 − 𝑒𝑚6) + 𝐶7(𝑒𝑚5 − 𝑒𝑚6) + 𝐶8(𝑒𝑚5 − 𝑒𝑚6)} +

(𝑒𝑚5 − 𝑒𝑚6)√𝑉𝐶6 cos(√𝑉) + 𝑚3𝑒𝑚3𝐶7 + 𝑚4𝐶8𝑒𝑚4}  

 

𝑍2 = −2𝑟𝑚2𝑛1{𝑚5𝑒𝑚5[(𝑒𝑚6(𝐶3 + 𝐶7 + 𝐶8) − 𝐶3 −

(𝐶6 sin(√𝑉) + 𝐶7𝑒𝑚3 + 𝐶8𝑒𝑚4)] − 𝑚6𝑒𝑚6[(𝑒𝑚6(𝐶3 +

𝐶7 + 𝐶8) − 𝐶3 − (𝐶6 sin(√𝑉) + 𝐶7𝑒𝑚3 + 𝐶8𝑒𝑚4)] +

𝐶3(𝑒𝑚5 − 𝑒𝑚6) + 𝐶7(𝑒𝑚5 − 𝑒𝑚6) + 𝐶8(𝑒𝑚5 − 𝑒𝑚6)} +

(𝑒𝑚5 − 𝑒𝑚6)√𝑉𝐶6 cos(√𝑉) + 𝑚3𝑒𝑚3𝐶7 + 𝑚4𝐶8𝑒𝑚4}  

              𝐶4 =
𝑍2𝐵−𝑍1𝐷

𝐵𝐸−𝐷𝐴
 

                𝐶5 =
𝑍1−𝐴𝐶4

𝐵
  

𝐶1 =
  (𝐶3+𝐶4+𝐶5+𝐶7+𝐶8)𝑒𝑚6−𝐶3−(𝐶4𝑒𝑚1+𝐶5𝑒𝑚2+𝐶6 sin(√𝑉)+𝐶7𝑒𝑚3+𝐶8𝑒𝑚4)

𝑒𝑚5−𝑒𝑚6
 

𝐶2 = −(𝐶1 + 𝐶3 + 𝐶4 + 𝐶5 + 𝐶7 + 𝐶8) 

              𝐴1 =
 n1( 𝑚5𝐶1𝑒𝑚5+𝑚6𝐶2𝑒𝑚6+𝑚1𝐶4𝑒𝑚1+𝑚2𝐶5𝑒𝑚2+√VC6cos(√𝑉)+𝑚3𝐶8𝑒𝑚3+𝑚4𝐶8𝑒𝑚4)

𝑒𝑚1−𝑒𝑚2  

              𝐴2 = −𝐴1 

Couple stress coefficient represent the stress the fluid 

undergoes as a result of coupling. 

The couple stress coefficient across the channel at upper and 

lower walls are: 

𝐶𝑤 =
𝜕𝑊

𝜕𝑦
  = (𝑚1𝐴1𝑒𝑚1 + 𝑚2𝐴2𝑒𝑚2) 𝑒𝑖𝑛𝑡     (𝑎𝑡 𝑦 = 1)    

 𝐶𝑤 =
𝜕𝑊

𝜕𝑦
  = (𝑚1𝐴1 + 𝑚2𝐴2) 𝑒𝑖𝑛𝑡     (𝑎𝑡 𝑦 = 0 

The rate of heat  transfer across the channel  at the upper and 

lower walls are: 

 𝑁𝑢 = −
𝜕𝜃

𝜕𝑦
  = −

√Vcos (√𝑉)

sin (√𝑉)
 𝑒𝑖𝑛𝑡     (𝑎𝑡 𝑦 = 1)     

𝑁𝑢 = −
𝜕𝜃

𝜕𝑦
  = −

√V

sin (√𝑉)
 𝑒𝑖𝑛𝑡    (𝑎𝑡 𝑦 = 0)     

The rate of mass transfer across the channel at upper and 

lower walls are: 

𝑆ℎ = −
𝜕∅

𝜕𝑦
  = −(𝑚3𝐵1𝑒𝑚3 + 𝑚4𝐵2𝑒𝑚4) 𝑒𝑖𝑛𝑡     (𝑎𝑡 𝑦 = 1)    

 𝑆ℎ = −
𝜕∅

𝜕𝑦
  = (𝑚3𝐵1 + 𝑚4𝐵2) 𝑒𝑖𝑛𝑡     (𝑎𝑡 𝑦 = 0 

 

RESULTS AND DISCUSSION  

We have formulated and provided analytical solution to 

modeling of MHD oscillatory blood flow in a channel as 

micropolar fluid in the presence of chemical reaction.  

Numerical evaluation of the analytical solution for the 

translational velocity, microrotational velocity, temperature 

and concentration across the channel for varied parameters 

including couple stress coefficient, Nuselt number and 

Sherwood number was carried out and the results are 

presented in graphical and tabular form. We have chosen 𝑡 =
0, 𝐺𝑟 = 𝐺𝑐 = 2, 𝑚𝑎 = 1 𝑎𝑛𝑑 𝑛 = 1 while other parameters 

are varied in accordance with reference[11] and reference[12] 

 
Figure 2: Velocity profiles for different values of Hartmann number. 
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Figure 3: Velocity profiles for different values of Reynolds  number. 

 
Figure 4: Velocity profiles for different values of peclet number 

 

 
Figure 5: Velocity profiles for different values of parameter that relates microgyration vector to shear stress. 
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Figure 6: Velocity profiles for different values of Schmidt number 

 
Figure 7: Velocity profiles for different values of chemical reaction parameter 

 
Figure 8:Velocity profiles for different values of viscosity ratio parameter 
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Figure 9: Velocity profiles for different values of radiation parameter 

 
Figure 10: Velocity profiles for different values of porous medium shape parameter. 

 
Figure 11: Microrotational velocity profiles for different values of Hartmann number 
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Figure 12: Microrotational velocity profiles for different values of Reynolds number. 

 
Figure 13: Microrotational velocity profiles for different values of Peclet number 

 
Figure 14: Microrotational velocity for different values of parameter that relates microgyration vector to shear 

sress 
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Figure 15: Microrotational velocity profiles for different values of chemical reaction parameter 

 

 
Figure 16: Microrotational velocity profiles for different value of viscosity ratio parameter. 

 

 
Figure 17: Microrotational velocity for different value of radiation parameter 
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Figure 18: Microrotational velocity profiles for different value of porous medium shape parameter. 

 
Figure 19: Temperature profiles for different value of peclet number 
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Figure 20: Temperature profiles for different value of radiation parameter 

 
Figure 21: Concentration profiles for different value of Schidmt number 

 
Figure 22: Concentration profiles for different value of chemical reaction parameter 
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Table: Effects of varied parameters on couple stress coefficient, Nuselt number and Sherwood number. 

  H  Re  Pe R r Cr Sc  𝑾′(𝟏) W’(𝟎) 

1.0 

2.0 

3.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2.0 

2.0 

2.0 

0.5 

1.0 

1.5 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

0.5 

1.0 

1.5 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.0 

2.0 

3.0 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1.0 

1.5 

2.0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

1.0 

2.0 

3.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

1.0 

2.0 

3.0 

0.2925 

0.2605 

0.2236 

0.2915 

0.2922 

0.2925 

0.2530 

0.2620 

0.2754 

0.2964 

0.2575 

0.1434 

0.2290 

0.1881 

0.1591 

0.2966 

0.2925 

0.2888 

0.2926 

0.2925 

0.2918 

0.2591 

0.2331 

0.2023 

0.2664 

0.2642 

0.2618 

0.2270 

0.2327 

0.2434 

0.2344 

0.2471 

0.2568 

0.1948 

0.1607 

0.1368 

0.2505 

0.2471 

0.2442 

0.2489 

0.2471 

0.2449 

  Pe R    −𝜃′(1) −𝜃′(1) 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

0.5 

1.0 

1.5 

2.0 

2.0 

2.0 

1.5 

1.5 

1.5 

1.0 

2.0 

3.0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

-0.1180 

-0.1522 

-0.2074 

-0.7570 

0.5566 

1.9425 

-1.4930 

-1.4612 

-1.4101 

-1.0854 

-1.8558 

-2.1785 

     Cr Sc -∅′(1) -∅′(1) 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1.0 

2.0 

3.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

1.0 

2.0 

3.0 

-1.3788 

-1.6438 

-1.8858 

-1.6051 

-1.6438 

-1.7051 

-0.7954 

-0.6886 

-0.5999 

-0.7200 

-0.6886 

-0.6393 

 

Figure 2 – figure 10 which are parabolic in nature with zero 

at walls and satisfied the boundary conditions, illustrates 

translational velocity profiles with varied parameters; 

increase in Hartmann parameter led to decrease in 

translational velocity which is expected since transverse 

magnetic field gives rise to a resistive type of force called 

Lorentz force that has the tendency to slow down fluid 

motion, translational velocity profile decreases as Reynolds 

number increases, the effect of increasing Peclet number is to 

increase the translational velocity profile, increase in 

parameter that relates microgyration vector to shear stress 

resulted to increase in translational velocity, translational 

velocity profile decreases as (Schmidt number/chemical 

reaction parameter/viscosity ratio parameter) increases, 

increase in radiation parameter led to increase in translational 

velocity and the effect of increasing porous medium shape 

parameter is to decrease the translational velocity which is not 

surprising because porous medium shape parameter is the  

square root of Darcy number inverse 

Figure 11 – figure 18 which are with zero at walls and 

satisfied prescribed boundary conditions, depicts 

microrotational velocity profiles with varied parameters; 

increase in Hartmann number led to decrease in 

microrotational velocity, microrotational velocity profile 

decreases as Reynolds number increases, the effect of 

increasing peclet number is to increase microrotational 

velocity of the flow, microrotational velocity increases as 

parameter that relates microgyration vector to shear stress 

increases which is not unexpected since 𝑛1 = 0.5  is for 

laminar flow while 𝑛1 = 1.0 is for turbulent flow, chemical 

reaction parameter decreases  microrotational velocity of the 

flow, increase in viscosity ratio led to decrease in 

microrotational velocity and microrotational velocity of the 

flow decreases as (radiation parameter/porous medium shape 

parameter) increases 

Figure 19 and figure 20 which are with zero at walls and 

satisfied boundary conditions, displays the temperature 

profiles with varied parameters; increase in peclet number 

decreases the temperature of the flow while the effect of 

increasing radiation parameter is to increase the temperature 

of the flow 

Figure 20 and figure 21 are with zero at walls and satisfied 

boundary conditions, shows the concentration profiles with 

varied parameters; increase in Schmidt number and chemical 

reaction parameter both decreases the concentration of the 

flow. 

The table demonstrated the effects of varied parameters on 

couple stress coefficient, Nuselt number and Sherwood 

number at upper and lower walls respectively; increase in 

Hartmann number decreases the couple stress coefficient at 

both upper and lower walls, increase in reynolds number 

increases the couple stress coefficient at the upper wall but 

decreases it at lower wall, couple stress coefficient at both 

lower and upper walls increases as peclet number increases, 

increase in radiation parameter decreases stress coefficient at 

the upper wall while it increases it at the lower wall, the effect 
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of increasing viscosity ratio parameter is to decrease couple 

stress coefficient at both lower and upper wall, the couple 

stress coefficient at both upper/lower wall decreases as 

chemical reaction parameter increases, the effect of increasing 

Schmidt number is to decrease couple stress coefficient at 

upper/lower wall, increase in peclet number resulted to 

decrease in Nuselt number at the upper wall while it increases 

it at the lower wall, the effect of increasing radiation 

parameter is to increase the Nuselt number at the upper wall 

but decreases it at the lower wall, increase in chemical 

reaction parameter led to decrease in Sherwood number at the 

upper wall while it increases it at the lower wall and the effect 

of increasing Schmidt number is to decrease the Sherwood 

number at the upper wall but increases it at the lower wall. 

 

CONCLUSION 

Analytical study of MHD oscillatory blood flow in a channel 

as micropolar fluid in the presence of chemical reaction was 

conducted. The results are presented and discuss through 

graphs and a table for pertinent parameters involved. The 

following conclusion can be drawn from the result obtained. 

i. Chemical reaction decreases translational and 

microrotational velocity of the blood flow 

ii. Increase in radiation led to increase in translational 

velocity.  

iii. Increase in viscosity ratio led to decrease in 

translational and microrotational velocity of the flow 

iv. The couple stress coefficient decreases as the rate of 

chemical reaction increases  

v. Increase in chemical reaction decreases the rate of mass 

transfer at the upper wall. 
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