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ABSTRACT 

In this paper, we present numerical approximation for oscillatory initial value problems (IVPs) using the 

homotopy analysis algorithm. The convergence of the method is discussed and numerical experiments are 

presented to illustrate the computational effectiveness of the algorithm. The results obtained are in good 

agreement with the exact solutions and Adomian decomposition method (ADM). These results show that the 

algorithm introduced here is easy to apply without linearization. 
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INTRODUCTION 

Oscillatory initial value problems arise in mathematical 

models for problems in mechanics, physics and engineering. 

These are more difficult to solve analytically, hence it seems 

more natural to provide direct numerical methods for solving 

such initial value problems. The purpose of this paper is to 

discuss the homotopy analysis algorithm for approximation of 

oscillatory initial value problems (IVPs) .Homotopy Analysis 

Algorithm is a semi-analytic technique used to solve non-

linear ordinary differential equations. The Homotopy 

Analysis Algorithm employs the concept of homotopy in 

topology to generate a convergent series solution of non-

linear systems. This is enabled using a Homotopy-Taylors 

series to deal with the non-linearity in the system. The 

Homotopy Analysis Method was proposed by Liao 1992 and 

the method provides a convenient way to control and adjust 

the convergence region and rate of series approximation. 

Goreishi etal (2011) applied HAA to solve a model for HIV 

infection of CD4+T cells .Fallahzadeh and Shakibi (2015) 

applied homotopy analysis algorithm to solve Convection-

Diffusion equation. Mkharrib and Salem (2021) studied the 

new algorithm of the optimal homotopy asymptotic method 

for solving Lane-Emden equation. Omar (2021a) carried out 

homotopy analysis-based hybrid genetic algorithm and secant 

method to solve IVPs and higher order BVP. This work will 

extend the homotopy analysis algorithm to approximate the 

Solution of oscillatory IVPs. 

 

Homotopy Analysis Algorithm  

Consider the non-linear differential equation 
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N  is a non-linear differential operator, X denotes the independent variable )(XU is an unknown function. According to 

Liao (1992) , the zero order deformation equation is given as 

);([)]();(]1[ qxqhNxUoqxLq −−                                (2) 

Where )1;0(q  is an embedding parameter, 0h , L  is an auxiliary linear operator 0U  is the initial guess of )(XU

and );( qx  is an unknown function.  In this work we assume 1−=h  when 1=q  in equation (2) and  );( qx =

)(0 xU  
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Since );( qx  depends on the parameter q, expanding );( qx  by Taylor’s series with respect to q   
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From equation (2) when 𝑞 = 1, 𝑤𝑒 𝑔𝑒𝑡 
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𝑢𝑛(𝑥)  can be deduced using the zero-order deformation 

equation (2). Differentiating (2) n times with respect to the embedding parameter 𝑞 and q=1, divide by n! And get the 𝑛𝑡ℎ 

order deformation equation 
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For example, consider the non-linear differential equation 02 2 =−



u

x

u
with initial condition𝑈𝑜(0) = 1.  

)()]([ 1 xxL  =                                          

21 )(2)()]([ XXXN  −=                       (6)                                                       

Let  𝑈𝑜(0) = 1,  𝑢0
1(𝑥) = 0 

From equation (3),we obtain 0=ou  and  𝑢𝑛(0) = 0𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1 Let
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from (1),we obtain 
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Differentiating (8) with respect to 𝑞 and get the first derivative, to obtain. 
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 Differentiating (9) with respect to q to get first derivative, and obtain 
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When  𝑞 = 0 in (10) to obtain 
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Since𝑢0(𝑥) = 1, it implies that 𝜑0(𝑥) = 1, then   ɸ0
1(𝑥)  = 0, and 
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  Integrating both sides, to obtain  

  ch +−= 21                                                                                                                (11) 

Since  𝑢𝑛(0) = 0, 𝑉𝑛 ≥ 1, thus 𝜑𝑛(1) = 0, 𝑉𝑛 ≥ 1, the 𝜑1(0) = 0, so 𝑐 = 0 

Thus hx21 −=   Which is the first derivative of HAA, to get the second derivative for (11) differentiate the first derivative 

one time to get
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    Let 𝑞 = 0 in (12), to get 
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This is the second derivative, to get the third derivative for (13) differentiate three times to differentiate the second derivative 

one time 
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Convergence Analysis 

Theorem: Whereas the series 
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Proof, 

Since by hypothesis, the series is convergent, it holds 
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Numerical Examples 

To demonstrate the effectiveness of the algorithm in this study, we consider the following two examples, the HAA computation 

results are as presented in the table. 

Example 1: Consider the fourth order oscillatory initial value problem 

yyivy 45 −= 
 

with the initial conditions 

1)0(,0)0(,0)0(,1)0( ====  yyyy
 

Exact solution:
x2sin

6

1
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Source: Bataineh (2009)   

To solve the equation by Homotopy Analysis Algorithm with the initial approximation
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.. Then the series solution expression can be written in the form 
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 Hence the series solution is 
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This converges to the ADM solution 

 

Approximation of Homotopy Analysis Algorithm  

X, 0  

1 + (0)30.1666 = 1 

X, 0.1 

1 + (0.1)30.1666=1. 

X, 0.2 

1 + (0.2) 30.1666 = 1.0013 

X.(0.3) 

1 + (0.3)30.1666 = 1.0045 

X,(0.4)  

1 + (0.4)30.1666 = 1.0107 

X, (0.5) 

1 + (0.5)30.1666 = 1.0208 

X, (0.6)  

1 + (0.6)30.1666 = 1.0360 

X, (0.7) 

1 + (0.7)30.1666 = 1.0571 

X, (0.8) 

1 + (0.8)30.1666 = 1.0571 

X, (0.9)  

1 + (0.9)30.1666 = 1.1215 

X, (1) 

1 + (1)30.1666 = 1.1666  

 

 

Approximation of Adomian Decomposition Method 

 X,(0)  

1 + (0)
5.2

0.1666 = 1 

 X,(0.1)  

1 + (0.1)
5.2

 0.1666 = 1.0005 

 X,(0.2) 

 1 + (0.2)
5.2

0.1666 = 1.0030 

 X,(0.3) 

1 + (0.3)
5.2

0.166 = 1.0082 

    X,(0.4) 

 1 + (0.4)
5.2

0.1666 = 1.0169 

 X,(0.5)  

1 + (0.5)
5.2

0.1666 = 1.0295 

 X,(0.6) 

 1 + (0.6)
5.2

0.1666 = 1.0464 

 X,(0.7)  

1 + (0.7)
5.2

0.1666 = 1.0683 

 X, (0.8) 

 1 + (0.8)
5.2

 0.1666 = 1.0953 

 X, (0.9)  

 1 + (0.9)
5.2

0.1666 = 1.1280 

 X, (1) 

1 + (1)20.1666 = 1.1666 

Table 1: Numerical results for example 1 

(x) HAA ADM EXACT HAA ERROR ADM ERROR 

0 1 1 1 0.0E 0.0E 

0.1 1.0002 1.0005 1.0331 0.0311 0.0326 

0.2 1.0013 1.0030 1.1501 0.1488 0.1471 

0.3 1.0045 1.0082 1.0941 0.1018 0.0859 

0.4 1.0107 1.0169 1.1125 0.0998 0.0956 

0.5 1.0205 1.0295 1.1402 0.1197 0.1187 

0.6 1.0360 1.0465 1.1553 0.1193 0.1198 

0.7 1.0571 1.0683 1.1642 0.1071 0.1288 

0.8 1.0853 1.0953 1.1666 0.0813 0.9130 

0.9 1.1213 1.1280 1.1673 0.0460 0.7393 

1 1.1666 1.1666 1.1728 0.0062 0.0062 

 

The HAA  compares favourably with the ADM and exact solution. 

 

Example 2: Consider the non-linear oscillatory initial value problem  

24 yyyy +=   

Subject to the initial conditions 

1)0(
3

),0(
2

,1)0(
1

.0)0( === yyyy  

Source: Liao (2012) 
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The exact solution is 1−xe  , According to the Homotopy Analysis Algorithm, the initial approximation is
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The zero order deformation equation with initial conditions  
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 The solution of the mth order deformation equation for m≥1 is 
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The series solution expression can be written in the form .....)()()()( +++= xyxyxyxy 
and so forth,
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1
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1
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1
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24

1

6

1

2

1
1)( xxxxxxxxxy ++++++++=  

This converges to the Adomian Decomposition Method solution 

 

Approximation of Homotopy Analysis Algorithm 

 X,(0) 

 0 + (0) 2 = 0 

 X (0.1)  

 0.1 + 0.5(0.1) 2 = 0.1050  

 X (0.2)  

 0.2 + 0.5(0.2) 2 = 0.2100 

 X ,(0.3) 

 0.3 + 0.5(0.3)2 = 0.3450 

 X,(0.4) 

 0.4 + 0.5(0.4)2  = 0.4850 

 X,(0.5) 

 0.5 + 0.5(0.5)2 = 0.6250 

 X,(0.6) 

 0.6 + 0.5(0.6) 2 = 0.7800  

X,(0.7)  

0.7 + 0.5(0.7) 2 = 0.9450 

 X,(0. 8)  

0.8 + 0.5(0.8) 2 = 1.1200 

X,(0.9)  

0.9 + 0.5(0.9) 2 = 1.3050  

X, 1  

1 + 0.5(1) 2=1.5000 

Approximation of Adomian Decomposition Method 

X,(0) 

 0 + 0.5(0)3 = 0 

 X,(0.1) 

 0.1 + 0.5(0.13) = 0.1005 

 0.2 + 0.5(0.2)3 = 0.2040 

 X,(0.3) 

 0.3 + 0.5(0.3) 3= 0.3135 

X,(0.4) 

 0.4 + 0.5(0.4)3 = 0.4320 

 X,(0.5)  

0.5 + 0.5(0.5)3 = 0.5625 

X,(0.6) 

 0.6 + 0.5(0.6)3 = 0.7080 

X,(0.7) 

 0.7 + 0.5(0.7)3 = 0.8715 

 X,(0.8) 

 0.8 + 0.5(0.8)3 = 1.0560 

 X,(0.9) 

 0.9 + 0.5(0.9)3 = 1.2645 

 X,(1)  

1+0.5(1)=1.5000 

 

Table 2: Numerical results for example 2 

X HAA ADM EXACT HAA ERROR ADM ERROR 

0 0.0000 0.0000 0 0.0000 0.0000 

0.1 0.0050 0.1005 0.1051 0.1001 0.0046 

0.2 0.2100 0.2040 0.2214 0.0114 0.0174 

0.3 0.3450 0.3135 0.3499 0.0049 0.0364 

0.4 0.4850 0.4320 0.4918 0.0068 0.0598 

0.5 0.6250 0.5625 0.6487 0.0237 0.0862 

0.6 0.7800 0.7080 0.8221 0.0421 0.1141 

0.7 0.9450 0.8715 1.0137 0.0687 0.1422 

0.8 1.1200 1.0560 1.2256 0.1056 0.1696 

0.9 1.3050 1.2645 1.4596 0.1546 0.1951 

1 1.5000 1.5000 1.7183 0.2183 0.2183 

The HAA compares favourably with the ADM 

 

CONCLUSION 

The proposed algorithm HAA have been successfully applied 

for the approximation of oscillatory initial value problems. 

The result obtained is compared with the Adomian 

Decomposition Method and the exact solution, it was 

observed that all the problems considered shows that the HAA 

results compared favourably with the ADM and exact 

solutions, It is clearly seen that the Homotopy Analysis 

Algorithm is a cogent and effective algorithm for 

approximating the numerical (analytic) solution of oscillatory 

initial value problems, also It could be observed  that HAA  

converges faster and was implemented without any need for 

discretization of the problem, Therefore for easy of solution to 

oscillatory IVPs, without tedious algebraic computations, this 
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 study recommends HAA for approximating oscillatory IVPs. 
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