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ABSTRACT 
In this present study, we have employed the techniques of exact quantization rule and ansatz solution 

method to obtain closed form expressions for the rotational-vibrational eigensolutions of the D-

dimensional Schrödinger equation for the improved Wei potential, for cases of h′ ≠ 0 and h′ = 0. By using 

our derived energy equation and choosing arbitrary values of n and ℓ, we have computed the bound state 

rotational-vibrational energies of CO, H2 and LiH for various quantum states. The mean absolute 

percentage deviation (MAPD) and the Lippincott criterion ware used as a goodness-of-fit indices to 

compare our result with the Rydberg-Klein-Rees (RKR) and improved Tietz potential data in the literature. 

MAPD of 0.2862%, 0.2896% and 0.0662% relative to the RKR data for CO ware obtained. For the 

improved Wei and Morse potential, our computed energy eigenvalues for CO, H2 and LiH are in excellent 
agreement with existing results in the literature. 

Keywords: Improved Wei potential, Morse potential, exact quantization rule, ansatz solution, RKR data, 

D-dimensions  

 

 

INTRODUCTION 

Extensive literature review reveals that wave functions are of 

tremendous importance in both relativistic and nonrelativistic 

quantum mechanics because they completely define the 

quantum mechanical system under review (Yanar et al., 2020; 

Hamzavi et al., 2012), information such as energy of the 

system, momentum, frequency of vibration, speed and 

wavelength are readily obtainable if the wave function of the 

system is known (Eyube et al., 2019a). Obtaining the wave 

function of a quantum mechanical system requires solving the 

Schrödinger equation for a given potential energy function 

(Eyube et al., 2019b). The Coulomb and harmonic oscillator 

potentials are known to give exact solution with the 

Schrödinger equation for all quantum states nℓ (Qiang et al., 

2009) where n is the vibrational quantum number and ℓ is the 

rotational quantum number, similarly, few other potential 

energy functions such as Eckart, Hulthén and Morse 

potentials give exact solution only for the s-wave (ℓ = 0) state 

(Ikhdair, 2011; Serrano et al., 2010). Most of the other known 

potential energy models have no exact solution with the 

Schrödinger equation for all values of n and ℓ, with these class 

of potential energy functions only approximate numerical 

(Nasser et al., 2012; Lucha and Schöberl, 1999) or 

approximate analytical (Khodja et al., 2019; Eyube et al., 

2019c; Ferreira and Bezerra, 2017) solutions are possible. 

Solving the Schrödinger equation by approximate analytical 

method is quite a challenge, it involves applying an 

appropriate approximation scheme (Ferreira and Prudente, 

2017; Greene and Aldrich, 1976; Pekeris, 1934) to deal with 

the centrifugal term of the effective potential energy function, 

followed by a suitable solution technique. Different solution 

methods have been used by researchers to solve the 

Schrödinger equation, some of the solution techniques 

include: asymptotic iteration method (Falaye et al., 2013), 

generalized pseudospectral method (Roy, 2013), exact 

quantization rule (Falaye et al., 2015; Ikhdair and Sever, 

2009; Ma and Xu, 2005), proper quantization rule (Louis et 

al., 2019; Dong and Cruz-Irrison, 2012) path integral 

approach (Khodja et al., 2019), Laplace transform approach 

(Tsaur and Wang, 2014), Nikiforov-Uvarov method 

(Khordad and Mirhosseini, 2015; Ikot et al., 2013; Yazarloo 

et al., 2012) and ansatz solution method (Okorie et al., 2020; 

Tang et al., 2013). In the year 1990, Wei proposed a four 

parameter potential energy function which fits the 

experimental Rydberg-Klein-Rees (RKS) data more closely 

than the Morse potential, particularly when the potential 

domain extends to near the dissociation limit (Jia et al., 2012), 

the Wei potential has been used to investigate the rotational-

vibrating levels of diatomic molecules (Kunc and Gordillo-

Vazquez, 1997). However, it is pertinent to note that the 

expressions derived by these authors for the energy 

eigenvalues and eigenfunctions are only restricted to the case 

h′ ≠ 0 as these expressions become infinite when h′ = 0 which 

is not physically acceptable for a finite potential energy 

function. In the present study, we aimed at obtaining closed 

form expressions for the rotational-vibrational eigensolutions 

of the D-dimensional Schrödinger equation for the improved 

Wei potential via exact quantization rule (EQR) and ansatz 

solution method. As our specific objectives, we will consider 

cases of rotational-vibrational energies and radial wave 

functions for h′ ≠ 0 as well as h′ = 0, we will compare results 

with those in the literature where they exist.  

THEORETICAL APPROACH 

Overview of the concepts of exact quantization rule 

Here we present in outline form, the basic concepts of EQR, 

a detailed description of the concept is given by Ma and Xu 

(2005). The EQR has been proposed to solve the one-

dimensional Schrödinger equation given by: 

       02  xxkx nnn          (1) 

where 
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     xVExk effnn  
2

2
       (2) 

is the momentum of the system, μ as the mass, nE is the energy eigenvalue,  xVeff
is the effective potential energy 

function which is a piecewise continuous real function of x and  xn is the wave function. If we define the phase angle, 

 xn as: 

      xxx nnn           (3) 

Eq. (1) assumes the well-known Riccati differential equation given by: 

        0
2 2

2
 xxVEx neffnn 





      (4) 

As a result of Sturm-Liouville theorem,  xn decreases monotonically with respect to x between two turning points 

determined by the equation  xVE effn  . Particularly, x increases across a node of the wavefunction  ,xn where

 ,xVE effn   xn decreases to -∞ and jumps to +∞ and then decreases again. By carefully studying the one-

dimensional Schrödinger equation, Ma and Xu (2005) proposed an EQR given by: 
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where
Anx and

Bnx are two turning points determined by solving the equation  xVE effn  and
BnAn xx  . N is 

the number of nodes of  xn in the neighborhood of Enℓ ≥ Veff (x) and it is larger by one than the number of nodes n of 

the wavefunction  ,xn clearly, N = n + 1. The first term, Nπ, is the contribution from the nodes of the wave function, 

and the second term is referred to as the quantum correction. The quantum correction is independent of the number of nodes 

for the exactly solvable systems (Ma and Xu, 2005), therefore, it can be evaluated for the ground state (n = 0), the second term 

in Eq. (5) can thus be represented by: 

 
   

 
   








































B

A

Bn

An

x

x

x

x

nn

nc xd
xd

xd

xd

xkd
xxd

xd

xd

xd

xkd
xQ

0

0

1

00

0

1













  

           (6) 

where cQ is the quantum correction term. In three dimensional spherical coordinates, the EQR is given by: 

    
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In simplified form, Eq. (6) can be expressed as: 

 cQNI            (8) 

where the momentum integral is given by: 

  

Bn

An

r

r

n rdrkI          (9) 

and the quantum correction is: 
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The radial Schrödinger equation in D-dimensional space Falaye et al. (2015) is written as: 

 
 

     0
2

22

2

 rrVE
rd

rd
neffn

n









     (11) 

 rn is the radial wave function, r is the internuclear separation and  rVeff is the effective potential defined in terms 

of a spherically symmetric potential  rV and a parameter Λ by: 
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    
 

2

2
4

12

2 r
rVrVeff




        (12) 

with Λ given in terms of spatial dimensions, D ≥ 2 as: 

  2
2
1  D         (13) 

Rotational-vibrational energy of the improved Wei potential 

By choosing  rV to be the improved Wei potential (Jia et al., 2012): 

  
2

1 











He

a
DrV

rbe
       (14) 

where eD is the dissociation energy, er is the molecular bond length, r is the internuclear separation, erb
ehH  and 

  erb
eha  1 . The parameters h  (dimensionless) and b  (in m-1) are determined through 2f and 3f the second 

and third derivatives of the potential energy function (Eq. (14)) at err  respectively (Jia et al., 2012), therefore, by using 

the following relationship 

 
  222

22

2

4 ecf
rd

rVd
        (15) 

where e is the equilibrium vibrational harmonic frequency (in m-1), we find: 
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also, employing the relationship between the vibrational-rotational coupling constant, e and 3f (Jia et al., 2012), viz: 
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eB being the rotational constant given by (Jia et al., 2012): 
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using Eqs. (16) – (18) and obtaining 3f from (14), get: 
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Putting Eq. (14) in (12), we have the effective improved Wei potential given by: 
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Eq. (1) when used with the effective potential of Eq. (20) has exact solution only for the s-wave (ℓ = 0) case, to obtain analytical 

solution for all quantum states, we must use a suitable approximation scheme to deal with the centrifugal or spin-orbit term, 
21 r is approximated by a Pekeris-type approximation (Hamzavi et al., 2012) given as: 
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where ,0c 1c and 2c are adjustable parameters given by: 
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Substituting Eq. (21) in Eq. (20), this leads to: 
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the substitution: 

   1
 Hex rb

.        (26) 

transforms Eq. (25) transforms to: 
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Eq. (27) can be expressed in polynomial form as: 
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by defining the following parameters: 
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in compact form, Eq. (28) can be expressed in the form: 

     xxxVeff

2
       (35) 

To enable determine the Riccati equation (Gu and Dong, 2011), first, we need to obtain two turning points 
Anx and 

Bnx

by solving the equation: 

   neff ExV           (36) 

Inserting Eq. (35) in Eq. (36), we have that: 

 02  nExx         (37) 

Anx and 
Bnx ( > 

Anx ) being the roots Eq. (37) are given by: 
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and 
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 
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E
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
       (39) 

using Eqs. (38) and (39), the sum and products of 
Anx and 

Bnx which may be required later are given respectively by: 

 



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for the ground ( 0n ) state, Eq. (40) and (41) gives respectively: 
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substituting Eq. (35) in the momentum relation given by Eq. (2), this gives: 
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an important result for the momentum is one which involves the turning points, thus, if we write Eq. (44) as in the following 

form:  
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inserting Eq. (32), (40) and (41), this gives: 
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differentiating Eq. (46) with respect to x as this will be required in evaluating the quantum correction for the ground state, 

this gives: 
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The Riccati equation given by Eq. (4), in three dimensional spherical coordinates is written as (Ikhdair and Sever, 2009): 
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using Eq. (26) followed by Eq. (35) in Eq. (48), the Riccati equation in terms of variable x is therefore given by: 
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which for the ground state ( 0n ) gives; 
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since  x0 has one zero and no pole, we choose a linear polynomial as a trial solution, assume: 
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where m and c are constants, substituting Eq. (51) in Eq. (50), get: 
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which simplifies to; 
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if we equate corresponding coefficients of ,2x x and 
0x respectively on both sides of Eq. (53), we have the following set 

of equations: 
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2 2
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from Eq. (54) we find: 

 Hbm           (57) 

where the parameter λ is given by: 
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it is obvious that Eq. (58) leads to; 

 2

1
2

1   Hrb e         (59) 

With m given by Eq. (57), Eq. (55) can be used to find the constant c, thus, our trial solution is well defined. The quantum 

correction can be evaluated using Eq. (10), which, when we use Eq. (26) to transform to variable x leads to: 
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substituting Eq. (51) and Eq. (47) with 0n in Eq. (60), get: 
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Eq. (61) can be expressed in partial fractions as: 
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the following standard integral (Dong and Gu, 2011) given by: 
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applied to Eq. (62) gives: 
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where 

 


 0

00

2

1

E
xxI BA




.       (65) 

Thus, by putting Eqs. (56) and (54) in Eq. (65), we find: 
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similarly; we find: 

   BABA xxHxxHI 00
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on substituting Eq. (42) and (43) in Eq. (67), this gives: 
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by inserting Eqs. (54), (55) and (56) in (68) and simplifying, get: 
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substituting Eqs. (66) and (69) in (64) and employing (57) to eliminate ,m we find: 
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The momentum integral on the left hand side of Eq. (7) is given in terms of variable x  as: 
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using Eq. (46) to eliminate  xkn in Eq. (71), we have: 
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In order to evaluate the integral in Eq. (72) we use the following standard integral obtained from Falaye et al. (2015) 
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this give: 
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where 
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To find the rotational-vibrational energy eigenvalues of the effective improved Wei potential by EQR, we substitute Eq. (70) 

and (74) in Eq. (8) and replacing N by ,1n this results to: 
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Thus, by solving Eq. (41) and (76), the rotational-vibrational energy is given by: 
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where Enℓ_IWP designates the rotational-vibrational energy of the improved Wei potential. Upon substituting Eqs. (29), (31) 

and (58) in (77) and replacing H by ,erb
eh this give: 
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           (78) 

Evidently, Eq. (78) is only valid for ,0h however, in the event that ,0h IWPnE _ which is not physically 

acceptable for a finite potential energy function. In order to deduce the rotational-vibrational energy eigenvalues of the 
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improved Wei potential for the case ,0h first we observe that by letting 0h in Eq. (14), the improved Wei potential 

reduces to: 

     2

1 eM rrb

eM eDrV


        (79) 

which is the well-known Morse potential (Roy, 2013; Hamzavi et al., 2012), the subscript M in VM (r) and in bM designates 

“Morse”. In subsequent notations, whenever the subscript M appears, it represents the Morse counterpart of the subject of 

discussion. Inputting 0h in Eq. (16) gives: 
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Next we will re-evaluate the quantum correction
McQ and the momentum integral MI and apply the EQR given by Eq. (8), 

with 0h Eq. (61) gives: 
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Eq. (81) can be evaluated by means of the following standard integrals (Ikhdair and Sever, 2009) 
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by applying the integrals given by Eqs. (82)- (84) on Eq. (81), we obtained: 
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using Eqs. (54), (55) and (56) with 0h while c and m are replaced with Mc and Mm respectively, get: 
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similarly, the momentum integral of Eq. (72) with 0h gives: 
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the standard integral of Eq. (85) applied to Eq. (88) gives, 
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with Eq. (89) and (87), the EQR of  Eq. (8) gives: 
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which upon substituting Eq. (29) and (30) in Eq. (90) gives the rotational-vibrational energies of Morse potential viz. 
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           (91) 

The radial eigenfunctions of the improved Wei potential 

To obtain the radial wave function corresponding to the rotational-vibrational energies of the improved Wei potential, we need 

to solve the Riccati equation given by Eq. (49), using the definition of the phase angle and the following transformation 

equation: 

 xHz 1          (92) 

Eq. (49) transforms to: 
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in order to solve Eq. (96) we assume the following ansatz: 
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where nN is the normalization constant, τ and υ are constants and 12F is the hypergeometric function. Inserting Eq. (97) 

in (93), the resulting equation is Gaussian-hypergeometric if the following constraints are imposed: 
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If ,0h the constants ε5 and ε6 becomes infinite, thus, making the wave function infinite which is not physically acceptable 

for a finite potential energy function. To obtain a physically acceptable wave function corresponding to ,0h Riccati Eq. 

(49) give for :0h  
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where we have used the definition of the phase angle  xn to recover the wave function  xn . Following Eyube et 

al. (2019a), Eq. (101) has solution of the form: 
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where the constants ζ and ξ are respectively given by: 
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RESULTS AND DISCUSSION 

Table 1 shows model parameters of three diatomic molecules studied in the present work, viz: CO, LiH and H2. The data for 

αe for all the three molecules were adopted from NIST data base. Data for μ, De, re and ωe for CO were obtained from Yanar 

et al. (2020) and that of LiH and H2 were extracted from Ikhdair (2009) 

 

Table 1: model parameters of diatomic molecules in the present study 

parameter molecule 

LiH CO H2 

μ (amu) 0.8801221 6.85620871 0.50391 

De (cm-1) 20287 90670 38266 

re (Å) 1.5956 1.12832320 0.7416 

ωe (cm-1) 1405.5 2169.8129 4401.2 

αe (cm-1) 0.2163911 0.01750513 3.0622 

 

Firstly, using Eqs. (16), (19) and (80), we have computed the values of the parameters h′, b and bM respectively for each of the 

diatomic molecule as indicated in Table 2. Also shown in Table 1 are the literature values of bM corresponding to h′ = 0. For 

all the three diatomic molecules, our present result (PR) of bM is almost indistinguishable from those of Ikhdair (2009) and 

differ significantly from the values used by Roy (2013) owing to the fact that some of the molecular parameters (μ and De) 

used by Roy (2013) are not in accord with Eq. (15). CO molecule has a relatively smaller h′ (0.04) and b ≈ bM, therefore, the 

molecular properties of CO can approximately be described by Morse potential (see Figure 1), there is no need for a larger 

parameter potential such as the improved Wei or improved Tietz potential, LiH almost has the same trend as CO. However, 

for H2, the trend is different (see Figure 2) 

 

Table 2: computed values of parameters h′, b and bM and corresponding literature values 

molecule 

h′ ≠ 0 bM (Å-1), h′ = 0 

b (Å-1) h′ PR (Ikhdair, 2009) (Roy, 2013) 

CO 2.207914 0.040096 2.300141 2.2994 2.59441 

LiH 1.066724 0.053791 1.127367 1.1280 1.7998368 

H2 1.722896 0.114178 1.944969 1.9426 1.440558 

 

 
Figure 1 plot of pure vibrational energy of improved Wei potential for h′ ≠ 0 and for h′ = 0 as a function of n for CO molecule 

 



ROTATIONAL-VIBRATIONAL…  Eyube, Yabwa and Wadata FJS 

FUDMA Journal of Sciences (FJS) Vol. 4 No. 2, June, 2020, pp 269  - 283 
279 

 
Figure 2 plot of d-state rotational-vibrational energy of improved Wei potential for h′ ≠ 0 and for h′ = 0 as a function of n for 

H2 molecule 

 

In their work, Tang et al. (2014) have demonstrated how the improved Tietz potential fits the experimental Rydberg-Klein-

Rees (RKR) data for two species of the Na2 diatomic molecules. Since the improved Wei potential is known to be an equivalent 

of the of the improved Tietz potential (Jia et al., 2012), it is quite logical to infer that the improved Wei potential can equally 

fits the RKR data, therefore, using Eqs. (78) and (91), we have computed pure vibrational state energies (ℓ = 0) of the CO 

molecule for h′ ≠ 0 represented by
IWPnE _0

and for h′ = 0 represented by
MnE _0

respectively, to enable comparison, we 

have carried out our computation in three dimensions (D = 3), the computed results are shown in Table 3. Also reported in the 

table are corresponding energies of the CO molecule adopted in the literature for the RKR data herein, represented by RKRE

and that computed by Yanar et al. (2020) for the improved Tietz potential represented by
ITPnE _0

. To confirm the accuracy 

of our result we have calculated the mean absolute percentage deviation deviations ( mean ) defined as (Yanar et al., 2020; 

Tang et al., 2014): 

 
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
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N

n RKR

nRKR

p

mean
E

EE

N 0

0100
        (107) 

where
pN is the number of experimental data points. Eq. (107) applied to the data of Table 3 give: 0.2862%, 0.2896% and 

0.0662% for improved Wei potential, improved Tietz potential and Morse potential respectively, the calculated mean absolute 

percentage deviations are each less than 1% as required by Lippincott criterion (Tang et al., 2014), these results show that the 

Morse potential can best fit the RKR CO data followed by improved Wei potential, then the improved Tietz potential, this is 

further evident from the result of our calculated value of h′ (≈ 0.04) which is relatively small, thus reducing the improved Wei 

potential to Morse potential. To further affirm the validity of our results, we have used Eqs. (78) and (91) to compute bound 

state energy of H2 and LiH for arbitrary values of n and ℓ, to enable comparison with literature data, we have computed the 

differences 
en DE   both for h′ ≠ 0 and h′ = 0, the results, along with corresponding literature results are presented in Table 

4. For both H2 and LiH, energies for improved Wei potential is in good agreement with those of Morse potential (obtained 

from Wei potential with h′ = 0) and with literature results, however, this agreement is more emphasized in LiH which has 

relatively smaller h′ (0.054) than H2 with relatively larger h′ (0.114). 
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Table 3: pure vibrational energies (in cm-1) of CO molecule of improved Wei (for h′ ≠ 0 and for h′ = 0) potential, 

improved Tietz potential and Rydberg-Klein-Rees data 

n 
RKRE  IWPnE _0

 
ITPnE _0

 
MnE _0

 

0 1081.7791 1081.6494 1081.6555 1081.6547 

1 3225.0522 3224.4172 3224.4230 3225.4922 

2 5341.8437 5340.1933 5340.1864 5343.3673 

3 7432.2200 7429.0182 7428.9867 7435.2799 

4 9496.2494 9490.9324 9490.8649 9501.2301 

5 11534.0013 11525.9762 11525.8618 11541.2178 

6 13545.5470 13534.1898 13534.0180 13555.2431 

7 15530.9592 15515.6133 15515.3743 15543.3059 

8 17490.3124 17470.2868 17469.9711 17505.4062 

9 19423.6825 19398.2502 19397.8488 19441.5441 

10 21331.1469 21299.5433 21299.0477 21351.7195 

11 23212.7846 23174.2059 23173.6081 23235.9325 

12 25068.6758 25022.2776 25021.5700 25094.1830 

13 26898.9019 26843.7980 26842.9736 26926.4711 

14 28703.5456 28638.8066 28637.8587 28732.7967 

15 30482.6901 30407.3427 30406.2651 30513.1598 

16 32236.4197 32149.4455 32148.2326 32267.5605 

17 33964.8189 33865.1543 33863.8009 33995.9987 

18 35667.9725 35554.5081 35553.0094 35698.4745 

19 37345.9652 37217.5459 37215.8976 37374.9878 

20 38998.8817 38854.3066 38852.5049 39025.5386 

21 40626.8057 40464.8291 40462.8704 40650.1270 

22 42229.8199 42049.1520 42047.0335 42248.7529 

23 43808.0060 43607.3139 43605.0331 43821.4164 

24 45361.4437 45139.3534 45136.9082 45368.1174 

25 46890.2106 46645.3088 46642.6976 46888.8560 

26 48394.3817 48125.2187 48122.4403 48383.6321 

27 49874.0291 49579.1211 49576.1747 49852.4458 

28 51329.2212 51007.0542 51003.9397 51295.2970 

29 52760.0226 52409.0562 52405.7736 52712.1857 

30 54166.4932 53785.1650 53781.7148 54103.1120 
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Table 4: Bound state energy eigenvalues (eV) for H2 and LiH of the improved Wei potential for h′ ≠ 0 represented by
IWPnE _ and for h′ = 0 represented by

MnE _ along with 

literature values, for arbitrary quantum states 

state H2 LiH 

n ℓ eIWPn DE _  
eMn DE _  

Roy (2013) Ikhdair (2009) eIWPn DE _  
eMn DE _  

Roy (2013) Ikhdair (2009) 

0 

0 4.47551366 4.47546399 4.47601313 4.47601 2.42889514 2.42889300 2.42886321 2.42886 

1 4.41692266 4.42130175 4.46122852 … 2.42204173 2.42225366 2.42702210 … 

2 4.30109884 4.31416214 4.43179975 … 2.40835920 2.40899771 2.42334244 … 

5 3.64054831 3.70142462 … 4.25880 2.32693340 2.33008763 … 2.40133 

7 2.98090728 3.08685599 … … 2.23997887 2.24577709 … … 

2 

0 3.48838786 3.47824783 3.47991882 … 2.09941796 2.09848258 2.26054805 … 

1 3.43433615 3.42757966 3.46633875 … 2.09283548 2.09208249 2.25875559 … 

2 3.32742668 3.32732139 3.43932836 … 2.07969341 2.07930391 2.25517324 … 

5 2.71618313 2.75311471 … … 2.00147156 2.00322761 … … 

7 2.10309849 2.17565220 … … 1.91791494 1.92192947 … … 

3 

0 3.04548267 3.02671113 … … 1.94412680 1.94233203 … … 

1 2.99358880 2.97778999 … … 1.93767791 1.93605155 … … 

2 2.89091795 2.88097239 … … 1.92480234 1.92351165 … … 

5 2.30314419 2.32603114 … … 1.84816046 1.84885224 … … 

7 1.71226020 1.76712168 … … 1.76627961 1.76906032 … … 

5 

0 2.25750611 2.21778048 … 2.22052 1.65225713 1.64814021 … 1.64771 

1 2.20972534 2.17235341 … … 1.64607183 1.64209897 … … 

2 2.11513579 2.08241714 … … 1.63372209 1.63003645 … … 

5 1.57215718 1.56600675 … 2.04355 1.56019781 1.55821082 … 1.62377 

7 1.02372251 1.04420339 … … 1.48162401 1.48143131 … … 

7 

0 1.59558520 1.53437350 … 1.53744 1.38509861 1.37809413 … 1.37756 

1 1.55167317 1.49244051 … … 1.37917229 1.37229212 … … 

2 1.46468732 1.40938557 … … 1.36733920 1.36070697 … … 

5 0.96391735 0.93150602 … 1.37658 1.29687836 1.29171512 … 1.35505 

7 0.45557842 0.44680878 … … 1.22155462 1.21794802 … … 
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CONCLUSION 

In this research work, we have applied the ideas of exact 

quantization rule and ansatz solution method to obtain closed 

form expressions for the bound state rotational-vibrational 

eigensolutions of the D-dimensional Schrödinger equation for 

the improved Wei potential, cases of h′ ≠ 0 as well as h′ = 0 

were considered. We have computed rotational-vibrational 

energies for three diatomic molecules viz: CO, LiH and H2 

and compared our result with existing results in the literature. 

The results obtained in this work might be useful in areas of 

molecular physics, chemical physics, atomic physics and 
solid state physics. 
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