
COMPARATIVE ANALYSIS OF AGGREG… Otu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 2, April, 2023, pp 57 - 64
57

8

COMPARATIVE ANALYSIS OF AGGREGATION AND INHERITANCE STRATEGIES IN INCREMENTAL

PROGRAM DEVELOPMENT

*1Godwin A. Otu, 2Suleiman A. Usman, 3Raphael U. Ugbe, 1Stephen E. Iheagwara ,1Akudo C. Okafor, 4Fredrick I.

Okonkwo, 1Oyebanji M. Shukurah, 5Adeniyi U. Adedayo

1Department of Computer Science, Air Force Institute of Technology Kaduna, Nigeria.

2 Department of Cyber Security, Air Force Institute of Technology Kaduna, Nigeria
3Department of Physics, Nigerian Defence Academy Kaduna, Nigeria.

4Department of Information and Communication Technology, Air Force Institute of Technology Kaduna, Nigeria.
5Information and Communication Technology Centre, Air Force Institute of Technology Kaduna, Nigeria.

*Corresponding authors’ email: goddy2fine@gmail.com

ABSTRACT

Programming computers has been a herculean task for most programmers especially when codes grow into

complex and larger software systems with multiple subprograms. Object Oriented Programming (OOP) has

reduced the difficulty in the development of elegant and scalable software by presenting robust concepts such

as composition, inheritance and aggregation. All these concepts have enormous assistance to the software

developer in code reuse. Also these techniques can be used to build applications which can be delivered to

customers in a record time. In this research a critical study, review and implementation of software building

and enhancement using aggregation and inheritance. A module is built with attributes defining it properties

and methods its characteristics. Incrementally more modules were added to the previous modules using either

aggregation or inheritance technique. This incremental approach has proven tremendous success in software

development. This as buttressed by many software development theories have shown that: software is built

not manufactured; software is a collection of programs with functions and attributes based on its

enhancement, also incremental software development which involves building systems from sub-systems

gives a better understanding of software development process. Also the process of writing bug-free programs

can be achieved with lesser difficulty which can be achieved when programs are built using modular or

incremental software development approach, which employs mostly aggregation while moderately using

inheritance only if all the properties and methods of those modules are needed wholesomely in classes. The

result from the research will help programmers to enhance codes with much mastery.

Keywords: Aggregation, Composition, Incrementally, Inheritance, Module, Object

INTRODUCTION

The design and building of computer programs, subprograms

and elegant software has laid down techniques drawn from

software engineering and the choice of programming

language paradigm used for implementation. This

approaches when followed and implemented in sequence of

steps based on the designated algorithm and the construct of

the programming language will produced easy to use and

well documented software. Being able to identify the tools

and techniques to use and when to apply will assist the

software engineer or programmer to define project delivery

time, able to deliver software product and also the needed

tools for software development projects. Object oriented

programming (OOP) consists of a set of objects, which can

change dynamically, and which can execute by acting and

interacting with each other, in much identical way as a real-

world system operates strictly guided by it properties and

functionalities. It makes programs more intuitive to design,

faster to develop, less difficulty during modifications

processes, enhancing code reuse to save programming time

and most importantly easier to understand codes. In the

object-oriented view of programming, instead of programs

consisting of sets of data loosely coupled to many different

procedures, programs consist of software modules called

objects that encapsulate both data and methods while hiding

their inner complexities from software developers (Asagba

and Ogheneovo, 2010). The concept of incremental

programming, inheritance and aggregation and composition

is worth describing and knowing because mastering these

concepts strengthen the proficiency of a programmer. A

module is a subprogram that is used to solve a specific task

in a software. Many programs can be decomposed into a

series of identifiable subtasks. It is a good programming

practice to implement each of these subtasks as a separate

program module. Hutabarat et al. (2009) described the idea

of modular programming is to sub-divide a program into

smaller units that are independently testable and that can be

integrated to accomplish the overall programming objective.

The use of modular programming structure enhances the

accuracy and clarity of a program, and it facilitates future

program alterations. Inheritance is the ability of an existing

class to create new classes. Thus existing class is referred to

as a base class and the newly created classes are called

derived class. The derived class inherits all the properties

inherent in the base class. Afolorunso and Vincent (2020)

opined that inheritance is perhaps one of the most powerful

features of object-oriented programming paradigm and also

buttressed that inheritance can support program (or software)

reuse, reliability, and modification of the base class.

Inheritance is a powerful programming tool and it supports

reusable component. Inheritance establishes a parent-child

relationship (Asagba and Ogheneovo, 2010). Composition

on the other hand is a relationship between two classes that

is based on the aggregation relationship. Composition takes

the relationship one step further by ensuring that the

containing object is responsible for the lifetime of the object

it holds. If Object B is contained within Object A, then

Object A is responsible for the creation and destruction of

Object B. Unlike aggregation, Object B cannot exist without

Object A (Afolorunso and Vincent, 2020).

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 7 No. 2, April, 2023, pp 57 - 64

DOI: https://doi.org/10.33003/fjs-2023-0702-1710

mailto:goddy2fine@gmail.com
https://doi.org/10.33003/fjs-2023-0702-

COMPARATIVE ANALYSIS OF AGGREG… Otu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 2, April, 2023, pp 57 - 64
58

Modularity is a key concern in programming. However,

programming languages remain limited in terms of

modularity and extensibility. Small canonical problems, such

as the Expression Problem (EP), identify some of the basic

issues: the confusion between choosing one extensibility

over another one in most programming languages. Other

problems, such as how to express dependencies in a modular

way, add up to the fundamental issues and remain a

significant challenge (Weixin et al., 2021).

In this research program modules has been built using

classes which will comprise instance variables and methods

which will change the state of those variables. Then the

concept of aggregation of objects will be used to

incrementally build larger programs from already built

classes, also generalization will be used to identify when to

use inheritance between classes.

The act of building, coupling and testing program modules

has been simplified with the introduction of object-oriented

programming approach. Applying concepts like

encapsulation, data abstraction, data hiding, inheritance and

aggregation or composition have remove a lot of difficulty

software building, testing, debugging, maintenance,

documentation and most important of all understanding of

software and usage by users or customers (Prehofer, 2001).

Many researchers have work on various methods of code

building using object-oriented approach.

A comprehensive introduction to inheritance, starting from

its history and conceptual background, studying its target

and actual usage, and also analyzing its importance in light

of the current knowledge. More so the different types of

inheritance were analyzed, and a simple taxonomy of

inheritance mechanisms was presented in the study

(Taivalsaari, 1996). Klump (2001) provided a concise

preliminary to the concepts and advantages of the

objectoriented approach and describes why power

engineering students may benefit very much from a more

formal introduction to OOP. Instead of a rigid class design, a

method which involves writing features which are composed

appropriately when creating objects was proposed. The new

model for flexible composition of objects from a set of

features which are services of an object and are similar to

classes in object-oriented languages. In many instances,

features have to be adapted in the presence of other features,

which is also called the feature interaction problem. Noble

and potter (1997) described a program monitoring method

which takes account of aggregation and aliasing, and which

can be used to detect changes automatically. Automatic

change detection can simplify programming and design, so

producing more reliable systems with less energy. Zeynab

(2015) researched and published a comprehensive literature

review over relationships among objects and also identified

three basic types of relationships, including generalization or

specialization, aggregation and association. (Weixin et al.,

2021) presented a new statically typed modular

programming approach called Compositional Programming.

It is very easy to get extensibility in different dimensions.

Compositional Programming gives an alternative way to

model data structures that differs from both algebraic data

types in functional programming and conventional OOP

class hierarchies as modules of systems and a programming

environment designed to support interactive program

development in Scheme. The module system extends lexical

scoping while maintaining its flavor and benefits and

supports mutually recursive modules. The programming

environment supports dynamic linking, separate

compilation, production code compilation, and a window-

based user interface with multiple read-print contexts

(Hutabarat et al., 2009). Tung, (1992) proposed a theoretical

foundation of module and modular programming: formal,

proven, and easy to understand definition of module;

modular programming, and module-based encapsulation.

The theory is tested using source-code of many

programming-languages. A concept module-based

encapsulation and programming language named Nusa that

eases the comprehension of module, program, modular-

programming, and module-based encapsulation was

developed. Otu et al. (2022) showed that an algorithm can be

modified and applied to solve varied problems even in

different problem domains.

The concepts of aggregation, composition, generalization

and specialization will be harnessed in this research to

enable programmers to understand when to use these

concepts, the advantages and demerits and why some of

these concepts should be used with caution and moderation,

and also why some should be encourage and others

discouraged except in the absence of an alternative. We shall

see how aggregation/composition can easily be used to

incrementally add to code in terms of enhancing the code

and increasing complexities by adding the classes or

modules with less difficulty. The research addresses when to

either use aggregation or inheritance in software

development.

METHODOLOGY

The research adopts similarity, disparity and whole-part

techniques for the identification, formulation and modeling

of objects. The objects are modeled using UML (Universal

Modeling Language) scheme, which clearly describes both

the state and behavior of the objects. The next step is the

implementation (coding) of the design, testing and

deployment. Given a programming task to solve using

object-oriented programming approach the objects states and

behaviors are studied, if the objects have similarities and

disparities in terms of their instance variables (properties)

and functionalities, then inheritance is applied to group the

objects. The classes formed with similarities to the other

classes are called generic, super or parent classes, while the

classes with disparities that also have the properties and

behaviors of the parent classes are called either derived or

subclasses. The similarity and disparity technique is very

useful in identifying inheritance among classes. The whole-

part approach defines a class or object consisting of other

aggregate of objects loosely coupled in aggregation and

tightly coupled in composition. So, when an object can

contain other objects used as its instance variables then we

apply aggregation a loose form of composition.

The research also states the reasons why aggregation should

be mostly applied in software development, and also states

why inheritance should be moderately used in any software

development process. Subprograms will be built, debugged,

tested and the aggregated to a class to form a whole. This

incremental approach will reduce complexity as the software

grows and makes bugs identification and removal easy. Also

shown in the complexity that grows with multiple

inheritance. The methodology clearly analyzes how to group

objects for inheritance in terms of specialization and

generalization, and also how to enhance programs into

complex software using a less complicated and easy to use

method called aggregation. Also describes elaborately the

significance of aggregation over inheritance. Also present

scenarios when inheritance becomes unavoidable. The

methodology diagrammatically depicts the various steps

using well labeled flowcharts to analyze the processes of

software processes.

COMPARATIVE ANALYSIS OF AGGREG… Otu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 2, April, 2023, pp 57 - 64
59

 Flowchart to Schematically Depict the Classification of Objects

Start

Analyze the problem

Similarity and disparity Whole-part
Use other techniques

Feasible Aggregation

design

Inheritance design

N

N

N

Y

Implementation (coding)

Testing & debugging

Error free

cEode E

stop

COMPARATIVE ANALYSIS OF AGGREG… Otu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 2, April, 2023, pp 57 - 64
60

Flowchart Showing Incremental Program Development using Inheritance and Aggregation

APPLICATION OF THE METHODOLOGY

A person object has first name, second name and third name,

a civil servant is a person with a job designation and a salary

and consist of a car object which has model, type and name,

and also an address object which has a house number, street

name and state of residence. A student is a person but with a

faculty, department and matric number. If both objects

consists of a birthdate object having year, month and day.

The scenario can be modeled using the similarity, disparity

and whole-part methodology used in this research thus:

Start

Error free code

 incremental design

implemented with

aggregation &

inheritance

 Enhance code by aggregation

 Y

Y

N

 Y

Y

 implemented with

aggregation

 Enhance code by aggregation

and inheritance

Enhance code by other

techniques

Coding

Testing and debugging

Deployment

Stop

COMPARATIVE ANALYSIS OF AGGREG… Otu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 2, April, 2023, pp 57 - 64
61

Figure 1: Design of the problem based on the methodology.

RESULT AND DISCUSSION

IMPLEMENTATION

package tutorials;

public class Person {

 protected String FirstName;

 protected String SecondName;

 protected String ThirdName;

 protected BirthDate dateOfBirth;

 public Person (String FirstName, String SecondName, String ThirdName, BirthDate dateOfBirth)

 {

 this.FirstName = FirstName;

 this.SecondName = SecondName;

 this.ThirdName = ThirdName;

Person

#FirstName: String

#SecondName: String

#ThirdName: String

dateOfBirth: BirthDate

+Person (String, string, string)

+displayPersonDetails()

BirthDate

-year: int

-month: int

-day: int

+BirthDate (int, int, int)

+toString(): String

CivilServant

+Civilservant (String. String, String, +BirthDate,

String, double, Car, Address)

+displayCivilServantInfo()

-JobDescription : String

Student

-faculty : String

-Department: String

-matricNumber: String

+Student (String, String, String, BirthDate, String,

String, String)

+ displayStudentInfo()

Address

 -houseNumber: int

-streetName : String

-stateOfResidence: String

+toString() : String

 Car

+car(int, string, string)

+toString() : String

-Model: int

-Type: int

-Name: String

COMPARATIVE ANALYSIS OF AGGREG… Otu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 2, April, 2023, pp 57 - 64
62

 this.dateOfBirth= dateOfBirth;

 }

 public void displayPersonalDetails(){

System.out.println("first name : " + FirstName + "\n" + "Second name : " + SecondName +

"\n" + "Third name : " + ThirdName);

 }

}

package tutorials;

public class BirthDate

{

 private int year;

 private int month;

 private int day;

 public BirthDate (int year, int month, int day){

 this.year = year;

 this.month = month;

 this.day = day;

 }

 public int getYear(){

 return year;

 }

 public int getMonth(){

 return month;

 }

 public int getDay(){

 return day;

 }

 public String toString()

 {

 return "year of birth: " + year + '\n' + " Month : " + month + '\n' + " Day:" + day;

 }

}

}

package tutorials;

public class CivilServant extends Person

{

 private String Jobdescription;

 private double salaryAmount;

 private Car MyCar;

 private Address Residence;

public CivilServant (String FirstName, String SecondName, String ThirdName, BirthDate dateOfBirth, String

Jobdescription, double salaryAmount, Car MyCar, Address Residence){

 super (FirstName, SecondName, ThirdName, dateOfBirth);

 this.Jobdescription = Jobdescription;

 this.salaryAmount = salaryAmount;

 this.MyCar = MyCar;

 this.Residence = Residence;

}

 public void displayCivilServantInfo(){

 System.out.print("Designation : " + Jobdescription + '\n' + "salary Amount: " + salaryAmount + '\n');

 }

 }

package tutorials;

public class Car {

 private String model;

 private String CarName;

 private int YearMade;

 public Car(String model, String CarName, int YearMade) {

 this.model = model;

 this.CarName = CarName;

 this.YearMade = YearMade;

 }

 public String getModel(){

 return model;

 }

COMPARATIVE ANALYSIS OF AGGREG… Otu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 2, April, 2023, pp 57 - 64
63

 public String getCarName(){

 return CarName;

 }

 public int getYearMade(){

 return YearMade;

 }

 public String toString(){

 return " model : " + model + '\n' + "Car Name : " + CarName + '\n' + "Year made :" + YearMade;

 }

 }

package tutorials;

public class Student extends Person {

 private String Faculty;

 private String department;

 private String MatricNumber;

public Student (String FirstName, String SecondName, String ThirdName, BirthDate dateOfBirth,

String Faculty, String department, String MatricNumber){

 super (FirstName, SecondName, ThirdName, dateOfBirth);

 this.Faculty = Faculty;

 this.department = department;

 this.MatricNumber = MatricNumber;

 }

 public void displayStudentInfo(){

System.out.print("Faculty: " + Faculty + '\n' + "Department: " + department + '\n' + "Matric

Number : " + MatricNumber);

 }

 }

package tutorials;

public class TestDriver {

public static void main(String[] args) {

Address address = new Address (2, "Pos-tgraduate School Way", "Kaduna");

Car car = new Car ("Toyota ", "Camry", 2020);

BirthDate worker = new BirthDate(1985,06, 28);

BirthDate student = new BirthDate(2005,11, 30);

Student s = new Student ("Godwin", "Akong", "Otu", student, "Science", "Physics", "U19200153");

CivilServant c = new CivilServant("Raphael", "Ushiekpan", "Ugbe", worker,"Lecturer", 200000, car,address);

System.out.println("PROGRAM OUTPUT");

System.out.println(" CIVIL SERVANT INFORMATION");

c.displayPersonalDetails();

c.displayCivilServantInfo();

System.out.println(worker);

System.out.println(address);

System.out.print(car);

System.out.println();

System.out.println("STUDENT INFORMATION");

s.displayPersonalDetails();

s.displayStudentInfo();

System.out.println();

System.out.println(student);

}

}

PROGRAM OUTPUT

CIVIL SERVANT INFORMATION

first name: Raphael

Second name: Ushiekpan

Third name: Ugbe

Designation: Lecturer

salary Amount: 200000.0

year of birth: 1985

Month: 6

 Day: 28

House Number: 2

Street Name: Postgraduate School Way

State: Kaduna

COMPARATIVE ANALYSIS OF AGGREG… Otu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 2, April, 2023, pp 57 - 64
64

 ©2023 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

model: Toyota

Car Name: Camry

Year made: 2020

STUDENT INFORMATION

first name: Godwin

Second name: Akong

Third name: Otu

Faculty: Science

Department: Physics

Matric Number: U19200153

year of birth: 2005

Month: 11

Day: 30

The results clearly illustrate how software is elegantly

enhanced using aggregation and inheritance. Considering

many researches in the field of software development using

object-oriented approach, this research presents a

comprehensive and concise procedure on program

development process. The research did not delve into

explaining the details of these two pillars of programming

using objects, but describes in detail together with the

implementation on when and how to apply the concept of

inheritance and aggregation. Incremental program

development has been discussed in some researches but

application of this residual knowledge is what this research

dwell on (Noble and Potter, 1997).

The result of the research also shows that software can easily

be reused and adapted to solve other problems in similar or

varied domains. For example, the address and personal detail

classes can be used in other programs just like we have used

for the student and lecturer class in the research.

The program output is also presented in a simple order, so

that the working of the implementation can be understood

from the implementation, likewise adjustment can be made

in the implementation to give a different formatted output.

CONCLUSION

The research clearly describes explicitly the concept of

aggregation and inheritance, by applying the similarity,

disparity and whole-part methodology. Together with the

design and implementation these concepts has now been

elaborately discussed so that they can be applied

appropriately during problem solving. From the

methodology it is identified that it is easier to enhance a

code with aggregation than inheritance. But these important

concepts complement each other, so, both are mutually

exclusive but, in all inheritance, should only be used when it

will not be efficient to used aggregation.

REFERENCES

Asagba, P., Ogheneovo, E. (2010). A Comparative Analysis

of Structured and Object-Oriented Programming Methods.

Journal of Applied Sciences and Environmental

Management (ISSN: 1119-8362) Vol 12 Num 4. 11.

10.4314/jasem.v11i4.55190.

Hutabarat, B. I., Purnama, K, E., Hariadi M. (2009). The 5th

International Conference on Information & Communication

Technology and Systems

Klump, R.P. (2001). Understanding object-oriented

programming concepts. 2001 Power Engineering Society

Summer Meeting. Conference Proceedings (Cat.

No.01CH37262), 2, 1070-1074 vol.2.

Noble, J., Potter, J. (1997). Change Detection for Aggregate

Objects with Aliasing. Conference Paper · January 1997

DOI: 10.1109/ASWEC.1997.623759 · Source: IEEE Xplore

Otu, G. A., Achimugu, P., Owolabi, A., Raphael, U. U.,

Abdullahi, M. J., Shukurah, O. M., Blamah, N. V., &

Usman, S. L. (2022). TRANSPORT SERVICE SYSTEM

DESIGN USING MODIFIED APRIORI

ALGORITHM. FUDMA JOURNAL OF SCIENCES, 6(4),

25 - 36. https://doi.org/10.33003/fjs-2022-0604-845

Prehofer, C. (2001) Feature-oriented programming: A new

way of object composition. Concurrency and Computation:

Practice and Experience Concurrency; 13:465–501 (DOI:

10.1002/cpe.583).

Taivalsaari, A. (1996) On the Notion of Inheritance Nokia

Research Center. ACM Computing Surveys, Vol. 28, No. 3.

Tung, S.S. (1992). Interactive modular programming in

Scheme. LFP '92

Vincent O. R., Afolorunso A. A. (2020) CIT383

Introduction to Object-Oriented Programming. National

Open University of Nigeria

Weixin Z, Sun Y., Oliveira-Bruno, C. d. S. (2021).

Compositional Programming. ACM Trans. Program. Lang.

Syst. 43, 3, Article 9, 61 pages.

https://doi.org/10.1145/3460228

Zeynab, R. (2015). Properties of Relationships Among

Objects in Object-Oriented Software Design. International

Journal of Programming Languages and Applications. 5.

10.5121/ijpla.2015.5401

https://creativecommons.org/licenses/by/4.0/

