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ABSTRACT 

This paper proposes continuous linear multistep methods for the numerical solution of first-order ordinary 

differential equations (ODEs) with step number k = 1 and k = 2. These methods are used to integrate some 

first-order initial value problems and the block method developed from the continuous method using 

interpolation and collocation approach adopting power series approximation as the basis function for the 

derivation of these methods. These methods are found to be consistent, zero stable, convergent, and accurate. 

It is noteworthy that the results generated from these methods are significantly accurate and efficient when 

compared with existing methods, which will be effective in solving first-order Ordinary Differential 

Equations. 

  

Keywords: Linear multistep methods (LMMs), ordinary differential equations (ODEs), block method, collocation and 

interpolation, and efficiency.

 

INTRODUCTION 
We considered a First Order Ordinary Differential Equations 

with initial values as: 

   0 0, ,y f x y y x y     (1) 

f is a continuously differentiable function within an interval 

satisfying the existence and uniqueness of solution (1). 

Ordinary Differential Equations are important tools in solving 

real-life problems. Various natural phenomena are modelled 

using ODEs to solve many problems. Thus, researchers have 

shown more interest in Ordinary Differential Equations in 

recent years. Collocation is the evaluation of the differential 

system of the basis function at some selected grid point while 

interpolation is the evaluation of the approximate solution also 

at some selected grid point. Collocation methods are widely 

considered as numerical methods for obtaining solutions to the 

ordinary differential equation of the form (1), solving integral; 

and differential equations in which the approximate solution is 

determined from the condition that the equation must be 

stratified at any given point.  They involve the determination of 

an approximate solution in a set of functions called the basis 

function. 

 

The usual way of solving (1) is to use a one-step explicit 

method such as Runge-Kutta of the same order of accuracy 

until enough values have been generated for multistep method 

to take off. The limitation of the linear multistep method is that 

it requires help to get started, as encountered in single-step 

method Aboiyar et al., 2015). The help required in getting 

started is called a predictor, while the starting values are called 

predictors (which are explicit) for (1), and the equation (1) is 

called the corrector (it is implicit). Hence, the procedure is 

called the predictor-corrector method. 

  

James et al. (2013), proposed an order seven methods 

implemented in predictor-corrector mode. The method used the 

corrector to declare a continuous linear multistep method 

evaluated at some selected grid points to give a discrete linear 

multistep method of order seven for first ODEs. Dhaigude and 

Devkate (2017), developed a new sixth order method predictor-

corrector method using Newton’s forward interpolation 

formula to obtain the solution of first order initial value 

problem. 

Bolarinwa et al., (2013), proposed a Taylor series 

approximation method to strengthen the weakness usually 

faced with Predictor-Corrector and Block methods. Jator and 

Li (2009), developed a block approach method to address the 

limitation of the predictor-corrector method. 

Olanegan et al., (2015), developed a family of single-step 

continuous hybrid linear multistep methods (CHLMM) 

Taylor's series approximation as simultaneous numerical 

integrators over non-overlapping intervals values and for the 

implementation of the methods for first-order ordinary 

differential equations. This method takes care of the tedious 

process of writing subroutine and developing corrector as 

observed in the predictor-corrector. The approach provides the 

starting values, which makes it to be self-starting.  

Areo and Adeniyi (2013), proposed a hybrid block method of 

order six to yield five consistent finite difference schemes, as 

simultaneous numerical integrators to form block method used 

to solve problems. This method provides better global error 

estimate and simpler form for further analytical work when 

compared with discrete ones. 

Our interest in this research is to develop some continuous 

multistep hybrid and non-hybrid methods with 1k   and 

2k  collocated at all the grids and off-grids points. The 

continuous methods are applied in a block-by-block approach 

to form our methods. These block methods are applied to solve 
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first-order ordinary differential equations.  

DERIVATION OF METHODS 

Consider the power series of the form: 

 
0

k
j

j

j

y x a x


        (2) 

the first derivative of (2) gives: 

  1

0

k
j

j

j

y x ja x 



          (3) 

Putting (3) into (1) we obtain the differential system 

 1

0

,
k

j

j

j

ja x f x y



         (4) 

 

Development of Method 1 

Interpolating (2) at , 0,n ux x u  and collocating (3) at   , 0,1,2nx x     gives a system of nonlinear equation of the form: 

AX U          (5) 

where,  0 1 2 3, , ,
T

A a a a a   1 2, , ,
T

n n n nU f f f y   
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 
 
 
 
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using Gaussian's elimination method for (5), we have a continuous method of the form:  

     
0

k

n k n ky t t y h t f 


  



 
   

 
      (6) 

where, 0,  θ = 0, 0,1, 2,   η = 0,1,2, 2,k  κ = 2,  n k nf f x kh    

Thus, using this transformation 

n kx x
t

h


          (7) 

We have a continuous method of the form:    

0 ( ) 1t   

 

 

2 3

0

2 3
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2 3

2
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24

2 3
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24

h
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h
t t t

h
t t t
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



     

    

     

 

Evaluating (7), at the end point and the non-interpolation point which mean 2nx x  and 1nx x   give a block method of the 

form: 

 2 2 14
3

n n n n n

h
y y f f f            (8) 

 1 2 18 5
12

n n n n n

h
y y f f f            (9) 
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Development of Method 2 

Interpolating (2) at , 0,n ux x u  and collocating (3) at 
1

, 0, ,1
2

nx x    gives a system of nonlinear equation of 

the form: 

AX U         (10) 

where,  0 1 2 3, , ,
T

A a a a a  
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using Gaussian’s elimination method for (11), we have a continuous method of the form: 

     
0

k

n k n ky t t y h t f 


  



 
   

 
      (11) 

where, 0, 
1

0, ,1,
2

  1,k   n k nf f x kh    

Thus, using the transformation 

n kx x
t

h


         (12) 

to produce a continuous method of the form: 
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at 2t   and 
1

2
t  in (11), which mean 1nx x   and 1

2
n

x x


 we have the block method to be the form: 

1 1 1

2

4
6

n n n n
n

h
y y f f f 



 
    

 
      (13) 

1 1 1

2 2

8 5
24

n n n
n n

h
y y f f f

 

 
     

 

      (14) 

 

ANALYSIS OF THE METHODS 

Zero Stability 

A block method of the form 

     0 0

1 1

i i

m m m mA Y A Y h B F B F

 
   
 

    (15) 

is said to be zero stable, if the roots of the first characteristic polynomial 

   0
det 0

i
A A  

 
       (16) 

Satisfying | | 1   for the roots with | | 1  not exceed the order of the differential equations [8]. For our methods, we have 
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1 0 0 0 0 0 0 0 0 1
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   4 1 0, 0,0,0,0
T

A z z z     

Thus, we conclude that the methods are zero stable. 

 

ORDER OF ACCURACY AND ERROR CONSTANT 
A Block Linear Multistep Method is said to be of order p, if p is the largest positive integer for which

0 1 2 , 0pC C C C     and 
1 0pC   is called the error constant and  1 1

1

p p

p nC h y x 

 is the principal Local 

Truncation Error (LTE) at the point .nx  Expanding our methods by Taylor series expansion, comparing coefficients equating to 

zero [6]. Hence, the two block methods is said to be of uniform order  5,5,5,5
T

p  with error constants of 

1

1 13
,

90 360

T

pC 

 
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 

and 
1

1 1
, .

2880 2304

T

pC 

 
  
 

 

 

Consistency  
According to Olanegan et al., the methods are consistent if: 

i. the order of the method is 1p   hence our 5 1p    

ii. 2 01, 1.    Thus, 

0

1 1 0j

j




    

iii. 0j  ,   0r   when 1r   

iv.    2!r r   when 1r   

Since our Methods satisfied the above condition. We conclude that the methods are consistent.  

 

Convergence 

According to Olanegan et al., for a method to be convergence, it must be consistent and zero stable. Since these conditions are 

satisfied, then the methods are said to be convergent. 

 

NUMERICAL EXAMPLES 

Problem 1 

0,y y     0 1,y   0.1h   

Exact Solution:   xy x e  

Problem 2 

0,y xy     0 1,y   0.1h   

Exact Solution:  
2xy x e  

Problem 3 

y x y     0 1,y   0.1h   0 1x   

Exact Solution:    1 2 xy x x e     
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NUMERICAL RESULTS 

Table 1: Numerical Result for Method 1 to solve Problem 1 and Comparison 

x Exact Solution Numerical Solution Error Time Error in [1] 

0.1 0.90483741803596 0.90483800989126 5.9185E – 09 0.0050 8.1964E − 008 

0.2 0.81873075307798 0.81873182414398 1.0710E – 08 0.0096 1.4832E − 007 

0.3 0.74081822068172 0.74081967439308 1.4537E – 08 0.0144 3.8269E − 008 

0.4 0.67032004603564 0.67032179986613 1.7538E – 08 0.0171 3.5630E − 008 

0.5 0.60653065971263 0.60653264337760 1.9836E – 08 0.0194 2.7287E − 007 

0.6 0.54881163609403 0.54881378996787 2.1538E – 08 0.0218 2.9613E − 007 

0.7 0.49658530379141 0.49658757751541 2.2737E – 08 0.0242 5.5945E − 007 

0.8 0.44932896411722 0.44933131537576 2.3512E – 08 0.0266 5.7732E − 007 

0.9 0.40656965974060 0.40657205318643 2.3934E – 08 0.0290 8.4926E − 007 

1.0 0.36787944117144 0.36788184748261 2.4063E – 08 0.0315 8.4391E − 007 

Table 2: Numerical Result for Method 2 to solve Problem 1 and Comparison 

x Exact Solution Numerical Solution Error Time Error in [1] 

0.1 0.90483741803596 0.90483756565329 1.4761E − 10 0.0045 8.1964E − 008 

0.2 0.81873075307798 0.81873102021737 2.6713E − 10 0.0092 1.4832E − 007 

0.3 0.74081822068172 0.74081858325831 3.6257E − 09 0.0140 3.8269E − 008 

0.4 0.67032004603564 0.67032048346617 3.6257E − 09 0.0177 3.5630E − 008 

0.5 0.60653065971263 0.60653115446706 3.6257E − 09 0.0213 2.7287E − 007 

0.6 0.54881163609403 0.54881217330085 3.6257E − 09 0.0248 2.9613E − 007 

0.7 0.49658530379141 0.49658587089043 3.6257E − 09 0.0290 5.5945E − 007 

0.8 0.44932896411722 0.44932955055432 3.6257E − 09 0.0322 5.7732E − 007 

0.9 0.40656965974060 0.40657025669965 3.6257E − 09 0.0367 8.4926E − 007 

1.0 0.36787944117144 0.36788004133915 5.9695E − 08 0.0402 8.4391E − 007 

Table 3: Numerical Result for Method 1 to solve Problem 2 and Comparison 

x Exact Solution Numerical Solution Error Time Error in [3] 

0.1 1.01005016708417 1.01005003025771 1.368E − 09 0.0055 0.000000000 

0.2 1.04081077419239 1.04081020290595 5.712E − 09 0.0072 0.000000000 

0.3 1.09417428370521 1.09417287622282 1.407E − 09 0.0113 0.000000000 

0.4 1.17351087099181 1.17350802531083 2.845E − 08 0.0129 2.00E-08 

0.5 1.28402541668774 1.28402018730910 5.229E − 08 0.0147 6.80E-08 

0.6 1.43332941456034 1.43332028673732 9.127E − 08 0.0163 1.09E-07 

0.7 1.63231621995538 1.63230074357230 1.547E − 07 0.0183 1.63E-07 

0.8 1.89648087930495 1.89645506523525 2.581E − 07 0.0201 2.37E-07 

0.9 2.24790798667646 2.24786529966716 4.268E − 07 0.0218 3.40E-07 

1.0 2.71828182845903 2.71821148946015 7.033E − 07 0.0235 5.58E-07 

Table 4: Numerical Result for Method 2 to solve Problem 2 and Comparison 

x Exact Solution Numerical Solution Error Time Error in [3] 

0.1 1.01005016708417 1.01005013337654 3.370E − 10 0.0009  0.00000 

0.2 1.04081077419239 1.04081063230877 1.418E − 09 0.0064 0.00000 

0.3 1.09417428370521 1.09417393306249 3.506E − 09 0.0019 0.00000 

0.4 1.17351087099181 1.17351016077859 7.102E − 09 0.0117 2.00E-08 

0.5 1.28402541668774 1.28402410991864 1.306E − 08 0.0135 6.80E-08 

0.6 1.43332941456034 1.43332713138770 2.283E − 08 0.0099 1.09E-07 

0.7 1.63231621995538 1.63231234569132 3.874E − 08 0.0168 1.63E-07 

0.8 1.89648087930496 1.89647441271315 6.466E − 08 0.0147 2.37E-07 

0.9 2.24790798667649 2.24789728676892 1.069E − 07 0.0188 3.40E-07 

1.0 2.71828182845908 2.71826418752465 1.764E − 07 0.0944 5.58E-07 
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Table 5: Numerical Result for Method 1 to solve Problem 3 and Comparison 

x Exact Solution Numerical Solution Error Error in [3] 

0.1 1.03388166734330 1.03388166738420 4.090E-11 1.69E-07 

0.2 1.06675678777170 1.06675678785246 8.076E-11 3.74E-07 

0.3 1.09859628024550 1.09859628036501 1.195E-10 6.210E-07 

0.4 1.12937207493916 1.12937207509627 1.571E-10 9.140E07 

0.5 1.15905714062147 1.15905714081491 1.934E-10 2.300E-07 

0.6 1.18762551102154 1.18762551125002 2.284E-10 3.92E-07 

0.7 1.21505231015499 1.21505231041716 2.621E-10 6.310E-07 

0.8 1.2413137765854 1.24131377687988 2.944E-10 9.170E-07 

0.9 1.26638728659754 1.26638728692280 3.252E-10 1.213E-07 

1.0 1.29025137625933 1.29025137661388 3.545E-10 5.890E-07 

Table 6: Numerical Result for Method 2 to solve Problem 3 and Comparison 

x Exact Solution Numerical Solution Error Error in [3] 

0.1 1.01604386798991 1. 01604478773994 4.41E-12 1.69E-07 

0.2 1.02616151045788 1.02614140035864 8.75E-12 3.74E-07 

0.3 1.05816454641475 1.05916354401623 1.303E-11 6.210E-07 

0.4 1.07671640027179 1.07561640125166 1.722E-11 9.140E07 

0.5 1.09493758192488 1.09473758190361 2.133E-11 2.300E-07 

0.6 1.11252084314177 1.11252074311742 2.536E-11 3.92E-07 

0.7 1.12975911074687 1.10973911062756 2.931E-11 6.310E-07 

0.8 1.14654548988987 1.14554547995660 3.317E-11 9.170E-07 

0.9 1.16687326621384 1.16257326617700 3.694E-11 1.213E-07 

1.0 1.18871590863630 1.15871590859568 4.062E-11 5.890E-07 

 

 
Figure 1: Comparison of Errors with Problem 1 
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Figure 2: Comparison of Errors with Problem 2 

 

 
Figure 3: Comparison of Errors with Problem 3 

Note: 

ERMD1: Error from the Numerical Result of Method 1 

ERMD2: Error from Numerical Result of Method 2 

DISCUSSION OF RESULTS 

Table (1 – 6) and Figure (1 – 3) display the results generated 

from methods 1 and 2, using it to solve problems (1 – 3). From 

the results and the figures as presented, it shows that method 2 

with a single step and one off-step point performs better than 

method 1 in terms of accuracy and computational time. Also, 

the results from our methods show better performance when 

compared with [1] and [3], when used it to solve the same 

problem as presented in Tables (1 – 6).  

CONCLUSION 

This research has presented a class of continuous methods for 

the numerical integration of first-order initial value problems. 

It is noteworthy that the results generated from the methods are 

significantly accurate and efficient in terms of performance 

when compared with existing works. This methods is effective 
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in solving first-order differential equations. 
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