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ABSTRACT 

In this study, we modified continuous mathematical model for the dynamics of shigella outbreak at constant 

recruitment rate 𝜋formulated by (Ojaswita et al., 2014). In their model, they partitioned the population into 

Susceptible (S), Infected (I) and recovered (R) individuals. We incorporated a vaccinated class (V), educated 

class (G), exposed class (E), asymptomatic (A) hospitalized class (H) and Bacteria class (B) with their 

corresponding parameters. We analyzed a SVGEAIHRB compartmental nonlinear deterministic mathematical 

model of shigella epidemic in a community with constant population. Analytical studies were carried out on 

the model using the method of linearized stability. The basic reproductive number 𝑅0 that governs the disease 

transmission is obtained from the largest eigenvalue of the next-generation matrix. The endemic equilibrium 

is computed and proved to be locally and globally asymptotically stable if 𝑅0 ≤ 1 and unstable if 𝑅0 > 1 . 

Finally, we simulate the model system in MATLAB and obtained the graphical behavior of the infected 

compartments. From the simulation, we observed that the shigella infection was eradicated when 𝑅0 ≤ 1while 

it persist in the environment when 𝑅0 > 1.  

 

Keywords: SVGEIAHRB Model, Basic reproduction number, endemic equilibrium, Local stability, global  

stability, numerical simulation, transmission 

 

INTRODUCTION 

Shigellosis is an infection of the intestines caused 

by Shigella bacteria. (CDC, 2017) Symptoms generally start 

one to two days after exposure and 

include diarrhea, fever, abdominal pain, and feeling the need 

to pass stools even when the bowels are empty. (CDC, 

2017) The diarrhea may be bloody. (CDC, 2017) Symptoms 

typically last five to seven days and it may take several 

months before bowel habits return entirely to normal. (CDC, 

2017) Complications can include reactive arthritis, sepsis, 

seizures, and hemolytic uremic syndrome. (CDC, 2017)  

Shigellosis is caused by four specific types of Shigella. 

(WHO, 2005).These are typically spread by exposure to 

infected feces. (CDC, 2017) This can occur via contaminated 

food, water, or hands or sexual contact. (CDC, 2017) (CDC, 

2019) Contamination may be spread by flies or when 

changing diapers (nappies). (CDC, 2017)  Diagnosis is by 

stool culture. (CDC, 2017)  

The risk of infection can be reduced by properly washing the 

hands. (CDC, 2017) Currently, no licensed vaccine targeting 

Shigella exists. Several vaccine candidates for Shigella are in 

various stages of development including live attenuated, 

conjugate, ribosomal, and proteosome vaccines (Mani et. al., 

2016; WHO, 2016; VRD, 1997).In clinical trials, these O-

specific polysaccharide conjugate vaccines appeared safe and 

immunogenic in adults (Taylor et al., 1993; Cohen et al., 

1996; Passwell et al., 2001) and in children 4 to 7 years of age 

(Ashkenazi et al., 1999), but the antibody responses were 

lower for children 3 years of age (Passwell et al., 2003 & 

Passwell et al., 2010). (CDC, 2017) Shigellosis usually 

resolves without specific treatment. (CDC, 2017) Rest and 

sufficient fluids by mouth are recommended. (CDC, 

2017) Bismuth subsalicylate may help with the symptoms; 

however, medications that slow the bowels such 

as loperamide are not recommended. (CDC, 2017) In severe 

cases, antibiotics may be used but resistance is common. 

(CDC, 2017) (CDC, 2018).Commonly used antibiotics 

include ciprofloxacin and azithromycin. (CDC, 2017)  

 

Mathematical Model Literatures  

(Ojaswita et al., 2014) developed a continuous mathematical 

model for shigella diarrhea outbreak. According to the 

pathogenesis of shigella, they partitioned the population into 

Susceptible (S), Infected (I) and recovered (R) individuals. 

They computed the disease-free equilibrium state and the 

basic reproduction number 𝑅0such that 𝑅0 < 1 indicates the 

possibility of shigella diarrhea eradication in the community 

while 𝑅0 > 1 represents uniform persistence of the disease.  

(Ebenezer et al., 2019) developed a compartmental 

mathematical model of (SITR) to investigate the effect of 

saturation treatment in the dynamical spread of diarrhea in the 

community. Their mathematical analysis showed that the 

disease free and the endemic equilibrium points of the model 

exist. They also showed that the disease-free equilibrium is 

locally and globally asymptotically stable if 𝑅0 < 1  and 

unstable if𝑅0 > 1 . From simulation, the efficacy of the 

treatment also showed a great impact in the total eradication 

of diarrhea epidemic.  

(Hailay et al., 2019a) developed and investigated dysentery 

dynamics model with incorporating controls. The system is 

considered as SIRSB deterministic compartmental model 

with treatment and sanitation. They obtained the threshold 

number 𝑅0  such that 𝑅0 ≤ 1  indicates the possibility of 

dysentery eradication in the community while 𝑅0 > 1 

represents uniform persistence of the disease. They used 

Lyapunov–LaSalle method to prove the global stability of the 

disease-free equilibrium. Moreover, they used geometric 

approach method to obtain the sufficient condition for the 

global stability of the unique endemic equilibrium for𝑅0 > 1.  
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Mathematical formulation 

In this section, we formulate and analyze a mathematical 

model of Shigella disease. The modeled populations include 

humans and pathogens. The human population is subdivided 

into eight classes. These classes of individual are: 

Susceptible(S), Vaccinated (V), Education campaign (G), 

Exposed (E), Asymptomatic (A), Infected (I), Hospitalized 

(H) and Recovered (R). The pathogen population 

(concentration of shigella dysenteriae) is represented by B. 

The formulation of the model is based on the following 

assumptions:  

 

Assumptions of the model 

i. the recruitment is through birth only and it is constant. 

ii. all individuals are born susceptible. 

iii. an individual can be infected through contact with the 

infectious individuals’ faeces and contaminated water 

or food. 

iv. infected individuals die either naturally or due to the 

disease. 

v. vaccination is strictly on susceptible adult and 

susceptible children between the ages of 4 to 7years. 

vi. Vaccinated individuals move back to the susceptible 

class when they lose immunity due to the vaccine.  

vii. there is no permanent recovery. 

viii. there is homogenous mixture in the population. 

ix. the interaction of individuals in the human population 

is panmictic. 

x. the recruitment of bacteria in the environment is 

constant. 

xi. humans and primate animals are the only source of 

pathogens. 

xii. in the environment, pathogens interact to replicate and 

hence are recruited through birth only. 

xiii. pathogen population in the environment diminishes 

through natural death and environmental 

contamination. 

xiv. environmental sanitation will be enforced so that 

shigella pathogen death can be approximated to be 

constant at a rate 𝜎3.  

 

Flow diagram of the model with constant control 

We demonstrate the dynamical transfer of the population with 

the flow diagram in Figure 1 below 

 
Figure 1: A schematic representation of flow of individuals (solid lines) among states and flow of pathogen in the 

environment (dotted lines) for the environmental infect transmission system (EITS) of the modified model. 

 

Table 1: Description of the variables of the models  

Variables Description 

𝑆(𝑡) Number of susceptible individuals at time (𝑡). 

𝑉(𝑡) Number of vaccinated individuals at time (𝑡). 

𝐺(𝑡) Number of educated individuals at time (𝑡). 

𝐸(𝑡) Number of exposed individuals at time (𝑡). 

𝐴(𝑡) Number of asymptomatic individuals at time (𝑡). 

𝐼(𝑡) Number of infected individuals at time (𝑡). 

𝐻(𝑡) Number of hospitalized individuals at time (𝑡). 

𝑅(𝑡) Number of Recovered individuals at time (𝑡). 

𝐵(𝑡) Number of bacteria in the environment at time (𝑡). 

𝑁ℎ(𝑡) The total human population size at time (𝑡). 
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Table 2: Description of the parameters of the models 

Parameters Description 

𝜋 The recruitment rate. 

𝑚 The vaccination rate at which the susceptible individuals move to the  

vaccinated class. 

𝑛 The vaccine immunity loss rate at which the vaccinated individuals 

 move to the susceptible class. 

𝑓 The education rate at which the susceptible individuals move to the educated class. 

𝑒 The recovering rate at which the educated individuals (who failed to 

 adhere to the education they received) moved back to the susceptible 

 class. 

𝑟   The rate at which the hospitalized individuals moved to the recovered    

  class. 

𝜃 The rate at which the infected individuals moved to the hospitalized class. 

𝜂 The rate at which the asymptomatic individuals moved to the recovered class. 

𝜇 The natural death rate. 

𝑑1 The death rate due to the disease in the infected class. 

𝑑2 The death rate due to the disease in the hospitalized class. 

𝜑 The proportion of the recovered individuals who moved to the educated class at a rate𝛼1. 

(1 − 𝜑) The proportion of the recovered individuals who moved to the 

susceptible class at a rate𝛼2. 

𝑞 The proportion of the exposed individuals who moved to the infected class at a rate𝜔. 

(1 − 𝑞) The proportion of the exposed individuals who moved to the asymptomatic class at a rate. 

𝜔 The incubation rate (rate at which exposed individuals, E(t), progress to 

either asymptomatic class A(t) or infected I(t)). 

𝜓 The rate at which the asymptomatic individuals moved to the hospitalized class. 

𝜌 The recovering rate at which the infected individuals moved to the 

 recovered class. 

𝐾 The concentration of Shigella in the environment that yields 50% chance 

 of catching dysentery diarrhea (Berhe et al., 2019). 

𝜆ℎ The force of infection in the human to human interaction. 

𝜆𝐵 The force of infection in the environment to human interaction. 

𝛽1 The transmission rate of shigella for the infected individuals due to human to human interaction. 

𝛽2 The transmission rate of shigella for the asymptomatic individuals due to human to human interaction. 

𝛽3 The transmission rate of shigella for the hospitalized individuals due to human to human interaction. 

𝛽𝐵 The ingestion rate of shigella by human from the environment. 

𝜀 Shigella pathogen shedding rate for the infected individuals. 

𝛿 Shigella pathogen shedding rate for the asymptomatic individuals. 

𝛾 Shigella pathogen shedding rate for the hospitalized individuals. 

𝜎1 Shigella pathogen growth rate. 

𝜎2 Shigella pathogen natural death rate. 

𝜎3 Death rate of shigella pathogen due to environmental decontamination. 

 

Equations of the model 
𝑑𝑆

𝑑𝑡
= 𝜋 + 𝑛𝑉 + 𝑒𝐺 + 𝛼2(1 − 𝜑)𝑅 − (𝜆ℎ + 𝜆𝐵)𝑆 − (𝑚 + 𝑓 + 𝜇)𝑆     (1) 

𝑑𝑉

𝑑𝑡
= 𝑚𝑆 − (𝑛 + 𝜇)𝑉         (2) 

𝑑𝐺

𝑑𝑡
= 𝑓𝑆 + 𝛼1𝜑𝑅 − (𝑒 + 𝜇)𝐺

         

(3) 
𝑑𝐸

𝑑𝑡
= (𝜆ℎ + 𝜆𝐵)𝑆 − (𝜔 + 𝜇)𝐸        (4) 

𝑑𝐴

𝑑𝑡
= (1 − 𝑞)𝜔𝐸 − (𝜂 + 𝜓 + 𝜇)𝐴

        

(5) 
𝑑𝐼

𝑑𝑡
= 𝑞𝜔𝐸 − (𝜃 + 𝜌 + 𝑑1 + 𝜇)𝐼        (6) 

𝑑𝐻

𝑑𝑡
= 𝜃𝐼 + 𝜓𝐴 − (𝑟 + 𝑑2 + 𝜇)𝐻        (7) 

𝑑𝑅

𝑑𝑡
= 𝑟𝐻 + 𝜂𝐴 + 𝜌𝐼 − 𝛼1𝜑𝑅 − 𝛼2(1 − 𝜑)𝑅 − 𝜇𝑅      (8) 

𝑑𝐵

𝑑𝑡
= 𝜀𝐼 + 𝛿𝐴 + 𝛾𝐻 + (𝜎1 − 𝜎2 − 𝜎3)𝐵        (9) 

𝑁 = 𝑆 + 𝑉 + 𝐺 + 𝐸 + 𝐼 + 𝐴 + 𝐻 + 𝑅        (10) 

𝑆(0) = 𝑆0 > 0,𝑉(0) = 𝑉0 ≥ 0,𝐸(0) = 𝐸0 ≥ 0,𝐺(0) = 𝐺0 ≥ 0,𝐼(0) = 𝐼0 ≥ 0,𝐴(0) = 𝐴0 ≥ 0,  

𝐻(0) = 𝐻0 ≥ 0,𝑅(0) = 𝑅0 ≥ 0,
 
𝐵(0) = 𝐵0 > 0. 

 
The force of infection for human to human interaction (𝜆ℎ) and the force of infection for environment to human interaction 

(𝜆𝛽) are (11) and (12) respectively:  

𝜆ℎ = 𝛽1𝐼 + 𝛽2𝐴 + 𝛽3𝐻

         (11)
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𝜆𝐵 =
𝛽𝐵𝐵

𝐾+𝐵
           (12) 

𝜆0 = 𝛽1𝐼 + 𝛽2𝐴 + 𝛽3𝐻 +
𝛽𝐵𝐵

𝐾+𝐵        (13)
 

Where K is the shigella concentration that yields 25 − 50% 

chance of catching dysentery diarrhea (Cabral & Joao, 2010). 

𝛽1,𝛽1 and 𝛽1 are human to human interaction while 𝛽𝐵is the 

ingesting rate of shigella from the contaminated environment. 

Infected humans contribute to the concentration of shigella at 

a rate of 𝜀 , asymptomatic humans contribute to the 

concentration of shigella at a rate of𝛿and hospitalized humans 

contribute to the concentration of shigella at a rate of𝛾.The 

pathogen population is growing at a rate𝜎1 , natural death 

rate 𝜎2  and death rate of shigella pathogen due to 

environmental decontamination is 𝜎3. We assume that 𝜎1 −
𝜎2 − 𝜎3 > 0 𝜎1 > 𝜎2 + 𝜎3represents the net death rate of the 

pathogen population in the environment (Bani-Yaghoub et al., 

2012).  

 

Model analysis 

Endemic equilibrium point of the model equations 

The endemic equilibrium state is the state where the disease 

cannot be totally eradicated but remains in the population. An 

endemic equilibrium exists if and only if the value of (𝐸∘) is 

less than(𝐸∗)and this is equivalent to(𝐸∘). For the disease to 

persist in the population, the susceptible, vaccinated, 

educated, exposed, asymptomatic, infected, hospitalized, 

recovered and bacteria class must not be zero at equilibrium 

state. In other words, if 𝐸∗ =
(𝑆∗, 𝑉∗, 𝐺∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐻∗, 𝐻∗, 𝑅∗)

 
is the endemic equilibrium 

state, then 𝐸∗ = (𝑆∗, 𝑉∗, 𝐺∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐻∗, 𝐻∗, 𝑅∗) ≠
(0,0,0,0,0,0,0,0,0) . In order to obtain the endemic 

equilibrium points of the system of non-linear ordinary 

differential equation, we solve equation (4.18 – 4.26) 

simultaneously by setting the total derivatives of the model 

equations to zero(𝑖. 𝑒.
𝑑𝑆

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝐺

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝐻

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
=

𝑑𝐵

𝑑𝑡
= 0). The system of equations (1) to (9) at endemic 

equilibrium point can be simplified to obtain: 

( ) = BRHIAEGVS ,,,,,,,,  

𝛩∗ =

{
 
 
 

 
 
 𝜋

𝑃10−𝑃19−𝑃20+(1−𝑃22)𝜆
∗
,

𝑚𝜋

𝑃10−𝑃19−𝑃20+(1−𝑃22)𝜆
∗
,

𝜋(𝑓+
𝛼1𝜑𝑃17𝜆

∗

𝑃13
)

𝑃10−𝑃19−𝑃20+(1−𝑃22)𝜆
∗
,

𝜋𝜆∗

𝑃13(𝑃10−𝑃19−𝑃20+(1−𝑃22)𝜆
∗)
,

𝑃14𝜋𝜆
∗

𝑃13(𝑃10−𝑃19−𝑃20+(1−𝑃22)𝜆
∗)
,

𝑃15𝜋𝜆
∗

𝑃13(𝑃10−𝑃19−𝑃20+(1−𝑃22)𝜆
∗)
,

𝑃16𝜋𝜆
∗

𝑃13(𝑃10−𝑃19−𝑃20+(1−𝑃22)𝜆
∗)
,

𝑃17𝜋𝜆
∗

𝑃13(𝑃10−𝑃19−𝑃20+(1−𝑃22)𝜆
∗)
,

𝑃18𝜋𝜆
∗

𝑃13(𝑃10−𝑃19−𝑃20+(1−𝑃22)𝜆
∗)
,}
 
 
 

 
 
 

    (14) 

where  

𝑃1 = (1 − 𝑞)𝜔,  𝑃2 = 𝜂 + 𝜓 + 𝜇, 𝑃3 = 𝑞𝜔, 𝑃4 = 𝜃 + 𝜌 + 𝑑1 + 𝜇, 𝑃5 = 𝑟 + 𝑑2 + 𝜇,  𝑃6 = 𝛼1𝜙, 𝑃7 = 𝛼2(1 − 𝜙), 𝑃8 =

𝜎2 + 𝜎3 − 𝜎1, 𝑃9 = 𝛽1𝐼
∗ + 𝛽2𝐴

∗ + 𝛽3𝐻
∗ +

𝛽𝐵𝐵
∗

𝐾+𝐵∗
, 𝑃10 = 𝑚 + 𝑓 + 𝜇, 𝑃11 = 𝑛 + 𝜇, 𝑃12 = 𝑒 + 𝜇, 𝑃13 = 𝜔 + 𝜇.    

 

Computation of the Basic Reproduction Number 𝑹𝟎 

The basic reproduction number 𝑅0 is the average number of 

new infections, that one infected case will generate during 

their entire infectious lifetime (Nelson & Williams, 2013; 

Addo, 2009; Heffernan et al., 2005). 

It is very important in determining whether the disease 

persists in the population or die out. We use the next 

generation matrix to compute the basic reproduction number 

𝑅0 which is formulated in (Van den Driessche & Watmough, 

2002). Let us assume that there are 𝑛 compartments of which 

the first 𝑚 compartments correspond to infected individuals.  

Let 

• 𝐹𝑖(𝑦)  be the rate of appearance of new infections in 

compartment 𝑖,  
• 𝑉𝑖

+(𝑦)  be the rate of transfer of individuals into 

compartment 𝑖 by all other means, and  

• 𝑉𝑖
−(𝑦)  be the rate of transfer of individuals out of 

compartments𝑖.  
It is assumed that each function is continuously differentiable 

at least twice in each variable. The disease transmission model 

consists of nonnegative initial conditions together with the 

following system of equations: 

 
𝑑𝑦𝑖

𝑑𝑡
= 𝑓𝑖(𝑦) = 𝐹𝑖(𝑦) − 𝑉𝑖(𝑦), 𝑖 = 1,2,3, . . . , 𝑛       (15) 

 where𝑉𝑖(𝑦) = 𝑉𝑖
−(𝑦) − 𝑉𝑖

+(𝑦).        (16) 

( ) ( )
( ) ( )
( )
( )

( ) 





















−−−−+

−−++

−+++

−−++

+

−





















 +

=−=

HAIB

AIHdr

EqId

EqA

ES

VF
dt

d

Bh











132

2

1

1

0

0

0

0  

𝑅0 = 𝜌(𝐹𝑉
−1) = 𝜌((

𝜕𝐹𝑖

𝜕𝑦𝑗
|
𝐸0
) (

𝜕𝑉𝑖

𝜕𝑦𝑗
|
𝐸0
)

−1

),         (17) 

where 𝐹are the new infection transfer terms and 𝑉is the non-singular matrix of the remaining transfer terms. The basic 

reproduction number 𝑅0of the model (1) – (9) is calculated using the next generation matrix (Van den Driessche & Watmough, 

2002). In using their approach (Van den Driessche & Watmough, 2002), we have: 
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𝐹 = (
𝜕𝐹𝑖

𝜕𝑦𝑗
|
𝐸∘
) =

(

  
 

0 𝛽2𝑆
∘ 𝛽1𝑆

∘ 𝛽3𝑆
∘ 𝛽𝐵𝑆

∘

𝐾

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 )

  
 
⇒ 𝐹 =

(

 
 

0 𝑦1 𝑦2 𝑦3 𝑦4
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 )

 
 

   (18)  

Let 𝑦1 = 𝛽2𝑆
°, 𝑦2 = 𝛽1𝑆

°, 𝑦3 = 𝛽3𝑆
°and 𝑦1 = 𝑃30 =

𝛽𝐵𝑆
°

𝐾
 

Similarly,

𝑉 = (
𝜕𝑉𝑖

𝜕𝑦𝑗
|
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) =
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−(1 − 𝑞)𝜔 𝜂 + 𝜓 + 𝜇 0 0 0
−𝑞𝜔 0 𝜃 + 𝜌 + 𝑑1 + 𝜇 0 0
0 −𝜓 −𝜃 𝑟 + 𝑑2 + 𝜇 0
0 −𝛿 −𝜀 −𝛾 𝜎2 + 𝜎3 − 𝜎1)

 
 

 

 

 

|𝑉| = 𝑇15 = 𝑃2𝑃4𝑃5𝑃8𝑃13
   

𝐶𝑇 =

(
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𝑇3 0 𝑇9 0 0
𝑇4 𝑇7 𝑇10 𝑇12 0
𝑇5 𝑇8 𝑇11 𝑇13 𝑇14)

 
 
= 𝐴𝑑𝑗𝑉

   

   

𝑉−1 =
1
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1
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.
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⇒ 𝑉−1 =
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.

   

(19)

 

Substitute (18) and (19) in (17), we have 
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𝑅0 =
(1 − 𝑞)𝜔𝛽2𝑆

∘

(𝜂 + 𝜓 + 𝜇)(𝜔 + 𝜇)
+

𝑞𝜔𝛽1𝑆
∘

(𝜃 + 𝜌 + 𝑑1 + 𝜇)(𝜔 + 𝜇)
+
((1 − 𝑞)𝜔(𝜃 + 𝜌 + 𝑑1 + 𝜇)𝜓 + (𝜂 + 𝜓 + 𝜇)𝑞𝜔𝜃)𝛽3𝑆

∘

(𝜂 + 𝜓 + 𝜇)(𝜃 + 𝜌 + 𝑑1 + 𝜇)(𝑟 + 𝑑2 + 𝜇)(𝜔 + 𝜇)
 

+
(1 − 𝑞)𝜔((𝜃 + 𝜌 + 𝑑1 + 𝜇)(𝜓𝛾 + (𝑟 + 𝑑2 + 𝜇)𝛿) + (𝜂 + 𝜓 + 𝜇)𝑞𝜔(𝜃𝛾 + (𝑟 + 𝑑2 + 𝜇)𝜀))𝛽𝐵𝑆

∘

𝐾(𝜂 + 𝜓 + 𝜇)(𝜃 + 𝜌 + 𝑑1 + 𝜇)(𝑟 + 𝑑2 + 𝜇)(𝜎2 + 𝜎3 − 𝜎1)(𝜔 + 𝜇)
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The local stability analysis of the endemic equilibrium of 

the model 

To examine the local stability of the endemic (E*) 

equilibrium, we obtain the Jacobian matrix by differentiating 

the functions (𝑓𝑖; = 1,2,3,… ,9) partially with respect to the 

variables in the system of the modified equations.  

Theorem  

The endemic equilibrium point 𝛩∗ is locally asymptotically 

stable when 𝑅0 > 1. 

 

Proof 

The Jacobian matrix from the partial derivatives of (1) to (9) 

at endemic equilibrium (𝐽𝛩∗) is given by: 

𝐽𝛩∗ =

(

 
 
 
 
 
 
 

−(𝜆1 + 𝑃10) 𝑛 𝑒 0 −𝑃26 −𝑃27 −𝑃28 𝑃7 −𝑃30
𝑚 −𝑃11 0 0 0 0 0 0 0
𝑓 0 −𝑃12 0 0 0 0 𝑃6 0
𝜆1 0 0 −𝑃13 𝑃26 𝑃27 𝑃28 0 𝑃30
0 0 0 𝑃1 −𝑃2 0 0 0 0
0 0 0 𝑃3 0 −𝑃4 0 0 0
0 0 0 0 𝜓 𝜃 −𝑃5 0 0
0 0 0 0 𝜂 𝜌 𝑟 −𝑃31 0
0 0 0 0 𝛿 𝜀 𝛾 0 −𝑃8 )

 
 
 
 
 
 
 

 

where S226P = , S127P = , S328P = , 
430 yP ==

K
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From equation (20), we obtain 

021 =+=− IJ
E

          (21) 
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More so, 
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10111 PJ +=  and ( )( )( ) +++= 31121112 PPPJ
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Let ( ) ( ) ( ) ( )3082753230828321385423082654130828411 PPPPPPPPPPPPPPPPPPPPPPPPPPPJ  +−+−++++=
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Adding equation (23), (24), (25) and (26), we have 
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Substitute equation (22) and (27) in (21), we have 
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  (28) 

Therefore, we used Routh-Hurwitz necessary and sufficient conditions to investigate the stability of the endemic equilibrium 

of (28) as stated in chapter three. It is given below:
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For order three, 
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For order four, 
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Use the same determinant approach to obtain the remaining results.  

The global stability analysis of the endemic equilibrium of the model 

We investigated the global asymptotic stability of the endemic equilibrium of shigella using Lyapunov quadratic approach. 

Theorem  

The endemic equilibrium point 
  of system (1) – (9) is globally asymptotically stable whenever 𝑅0 ≥ 1. 

 

Proof: 

Suppose 𝑅0 ≥ 1then the existence of the endemic equilibrium point is assured. We applied the common quadratic Lyapunov 

function: 

( ) ( )
29

1

9321
2

.,..,,, 
=

−=
i

ii
i xx

c
xxxxF  

as illustrated in (De Le & De Le´on, (2009). We consider the Lyapunov function F with respect to the existing variables; S

,V , G , E , A , I , H , R and B . 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2
2

1
),,,,,,,,(  −+−+−+−+−+−+−+−+−= BBRRHHIIAAEEGGVVSSBRHIAEGVSF  

Differentiating ),,,,,,,,( BRHIAEGVSF with respect to t  resulted to  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) −+−+−+−+−+−+−+−+−= BBRRHHIIAAEEGGVVSS
dt

dF  ( )BRHIAEGVS
dt

d
++++++++  
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Substitute equations (1) – (9) in (29), we have 
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Substitute equation (31) in (30), we have 
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2

 

        ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  −+−+−+−+−+−+−+−−−−−−− BBRRHHIIEEGGVVSSAAAA 
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        ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  −+−+−+−+−+−+−+−−−+−−−+− BBRRIIAAEEGGVVSSHHdHHd  2

2

2
 

        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  −+−+−+−+−+−+−+−−−−− BBHHIIAAEEGGVVSSRRRR 
2

 

         ( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  −+−+−+−+−+−+−+−−−++−−−++− RRHHIIAAEEGGVVSSBBBB 132

2

132 
     

(32)

 

From the result of (32), it is obvious that 
𝑑𝐹

𝑑𝑡
is 

negative(𝑖. 𝑒.
𝑑𝐹

𝑑𝑡
< 0). 

Furthermore, at 𝐸
∗  (i.e. if 𝑆 = 𝑆∗ , 𝑉 = 𝑉∗ , 𝐺 = 𝐺∗ , 𝐸 =

𝐸∗,𝐴 = 𝐴∗,𝐼 = 𝐼∗,𝐻 = 𝐻∗ 
, 𝑅 = 𝑅∗ , 𝐵 = 𝐵∗ ), 

𝑑𝐹

𝑑𝑡
= 0 .From La Salle’s invariant 

principle, it follows that all solutions of the system (1) – (9) 

approaches 𝐸∗  as 𝑡 → ∞ if 𝑅0 > 1. Therefore, the endemic 

equilibrium 𝐸∗  is globally asymptotically stable in 

𝛺whenever 𝑅0 > 1. 

RESULTS 

Numerical results  

In this section, we carried out the numerical solution of the 

system (1) – (9) using the Runge-Kutta order four scheme. 

The numerical results are shown in Figure 2 to Figure 5 

below. With data1, 𝑅0 = 3.8643 > 1and with data 2 (where 

some of the parameters are varied), 𝑅0 = 0.0388 < 1. Figure 

2, 3, 4 and 5 represent the graphical behaviour of the 

asymptomatic, infected, hospitalized and bacteria individuals 

of a dynamic system respectively. 

  

Data 1: 𝜋 = 500,𝑚 = 0.02,𝑛 = 0.027,𝑒 = 0.42,𝑓 = 0.7,𝛽1 = 0.0095,𝛽2 = 0.0075, 𝛽𝐵 = 0.000039,  

             
𝛽3 = 0.0055,𝐾 = 600,𝜔 = 0.35,𝑞 = 0.9,𝜂 = 0.41,𝜓 = 0.04,𝜃 = 0.03,𝜌 = 0.14, 𝛿 = 70,          

             𝑑1 = 0.02,𝑑2 = 0.025,𝑟 = 0.06,𝜀 = 80,𝛾 = 90,𝜎1 = 0.73,𝜎2 = 0.83,𝜎3 = 1.60, 

             
𝜇 = 0.45,𝛼1 = 0.65,𝛼2 = 0.98, 𝜑 = 0.029. 

 

Data 2: 𝜋 = 5,𝑚 = 0.02,𝑛 = 0.027,𝑒 = 0.42,𝑓 = 0.7,𝛽1 = 0.0095,𝛽2 = 0.0075, 𝛽𝐵 = 0.000039,  

             
𝛽3 = 0.0055,𝐾 = 60,𝜔 = 0.35,𝑞 = 0.9,𝜂 = 0.41,𝜓 = 0.04,𝜃 = 0.03,𝜌 = 0.14, 𝛿 = 70,          

             𝑑1 = 0.02,𝑑2 = 0.025,𝑟 = 0.06,𝜀 = 80,𝛾 = 90,𝜎1 = 0.73,𝜎2 = 0.83,𝜎3 = 1.60, 

             
𝜇 = 0.45,𝛼1 = 0.65,𝛼2 = 0.98, 𝜑 = 0.029. 

 
Figure 2: The graphical behavior of the asymptomatic individuals of a dynamic system. With data1,𝑅0 = 3.8643 >
1and with data 2, 𝑅0 = 0.0388 < 1. 

 

It can be seen that when 𝑅0 > 1 , the number of the 

asymptomatic individuals drops from 90 at 𝑡 = 0 to its 

minimum size of 36 after 𝑡 = 10days and remain constant till 

the final time while when 𝑅0 < 1 , the number of the 

asymptomatic individuals drops from 90 at 𝑡 = 0to zero (i.e. 

eradication point of the disease) after 𝑡 = 13days and remain 

constant till the final time. 

 
Figure 3: The graphical behaviour of the infected individuals of a dynamic system. With data1,𝑅0 = 3.8643 >
1and with data 2, 𝑅0 = 0.0388 < 1. 
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It can also be seen that when𝑅0 > 1 , the number of the 

infected individuals rises from 30 at 𝑡 = 0to its maximum 

size 530 after 𝑡 = 4days and gradually drops to 400 after 𝑡 =
11days before it remains constant till the final time while 

when𝑅0 < 1 , the number of the infected individuals rises 

from 30 at 𝑡 = 0to its maximum size 380 after 𝑡 = 3days and 

gradually drops to 0 (i.e. the point of the disease eradication) 

after 𝑡 = 16days before it remains constant till the final time.

 

 
Figure 4: The graphical behaviour of the Hospitalized individuals of a dynamic system. With data1,𝑅0 = 3.8643 >
1and with data 2, 𝑅0 = 0.0388 < 1. 

 

It can also be seen that when𝑅0 > 1 , the number of the 

infected individuals rises from 60 at 𝑡 = 0and gradually drops 

to 24 after 𝑡 = 15days before it remains constant till the final 

time while when 𝑅0 < 1 , the number of the infected 

individuals drop from 60 at 𝑡 = 0to its minimum size 0 (i.e. 

the point of the disease eradication) after 𝑡 = 17days before 

it remains constant till the final time. 

 

Figure 5: The graphical behaviour of the bacteria individuals of a dynamic system. With data1,𝑅0 = 3.8643 > 1and 

with data 2, 𝑅0 = 0.0388 < 1. 

 

It can also be seen that when𝑅0 > 1 , the number of the 

bacteria population rises from 300 at𝑡 = 0to its maximum 

size 2.8 × 104after 𝑡 = 4days and gradually drops to 2.2 ×
104after 𝑡 = 15days before it remains constant till the final 

time while when 𝑅0 < 1 , the number of the infected 

individuals rises from 300 at 𝑡 = 0 to its maximum size 

2.1 × 104 after 𝑡 = 3days and gradually drops to 0 (i.e. the 

point of the disease eradication) after 𝑡 = 17days before it 

remains constant till the final time. 

 

CONCLUSION 

In this Paper, we formulated a mathematical model equation 

of shigella infection with the aid of system of ordinary 

differential equations to study the dynamics of shigella 

infection by incorporating a vaccinated class
 
(V), educated 

class (G), exposed class (E), asymptomatic
 
(A) hospitalized 

class
 
(H) and Bacteria class (B) with their corresponding 

parameters. The next generation matrix approach was used to 

determine the basic reproduction number 𝑅0 .The endemic 

equilibrium (EE) was obtained. The local and global stability 

of the endemic equilibrium (EE) were also obtained. The 

numerical solution of the model system in MATLAB was also 

obtained. From the simulation, we observed that the shigella 

infection persist in the environment when 𝑅0 = 3.8643 >
1 with the original data and was eradicated with 𝑅0 =
0.0388 < 1when some of the original data were varied. 
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