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ABSTRACT 

The Variational Iteration Method is applied to solve Fredholm Integro-differential Equation. The initial 

approximation was selected wisely which satisfies the initial condition of the given Fredholm Integro-

differential Equation. The numerical result was analyzed with the aid of Mat-Lab and Maple software’s and 

are compared with the exact solution to show the usefulness and efficiency of the Method. The results show 

that the Variational Iteration Method is very efficient, reliable and of high accuracy for solving Fredholm 

Integro-differential Equation when compared with the exact solution.  
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INTRODUCTION 

Most engineering and physical problems are governed by 

functional Equations, for example, ordinary differential 

equations, integral equation, Integro-differential equation 

(IDEs) and stochastic equations. Many mathematical 

formulations of physical phenomena contain IDEs with 

proper boundary conditions, these equations arise in fluid 

dynamics, biological models and chemical kinetics etc. 

(Abbasbandy, 2009). In most cases, the equation is too 

complex to allow one to find an exact solution, where solution 

of such equation is always demanded due to practical interest. 

Therefore, an efficient, reliable computer simulation is 

required, it is little wonder that with the development of fast, 

efficient digital computers, the role of numerical methods in 

mathematical, physical and engineering problems solving has 

increased dramatically in recent years. Today, computer and 

numerical methods provide an alternative for complicated 

calculations. Using computer power to obtain solution 

directly, we can approach these calculations without recourse 

to simplifying assumptions techniques. Although analytical 

solution is still extremely valuable both for problems solving 

and for providing insight, numerical methods represent 

alternatives that greatly enlarge our capabilities to confront 

and solve problems. Thus, more emphasis has been placed on 

problem formulation and solution interpretation and 

incorporation of total system. (Abdou &Soliman, 2005). 

The Variational Iteration Method has to be effective and 

reliable for analytic and numerical purposes. This method 

established by (Ji-Huan He, 1999) is now used to handle a 

wide a variety of linear and non-linear homogeneous and non-

homogeneous equations. The method provides rapidly 

convergent successive approximation of the exact solution if 

such a closed from solution exists, and not component as in 

Adomian Decomposition method. The Variational Iteration 

method handles linear and non-linear problems in the same 

manner without any need to specific restrictions such as the 

so called Adomian polynomials that we need for non-linear 

problems. (Arqub, 2014). 

Integro-differential Equations arise in many scientific and 

engineering applications, especially when we concert Initial 

value problems (IVPs) or Boundary Value problems (BVPs) 

to integral equations. An Integro-differential Equation is an 

equation in which the unknown function 𝑢(𝑥) appears under 

an integral sign and contains an ordinary derivative 𝑢(𝑥) as 

well. 

A standard integro-differential is of the form  

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘
ℎ(𝑥)

𝑔(𝑥)
(𝑥, 𝑟)𝑢(𝑟)𝑑𝑟                           (1)        

 Where 𝑔(𝑥)𝑎𝑛𝑑 ℎ(𝑥)the limits of the integration are, 𝜆 is a 

constant parameter 𝑘(𝑥, 𝑟)  is a function of two variables 

𝑥 and 𝑟 called kernel or the nucleus of the Integro -differential 

equation. The Integro-differential equations contain both 

integral and differential operators. The derivatives of the 

unknown are classified into following: 

Fredholm Integro-differential Equation appears when we 

convert differential equation to integral equations. The 

Fredholm Integro-differential Equation contains the unknown 

function 𝑢(𝑥) and one of its derivatives 𝑢𝑛(𝑥), 𝑛 ≥1 inside 

and sign respectively. The limits of integration in this case are 

fixed as in Fredholm Integro-differential Equations. 

The equation is libeled as Integro-differential because it 

contains differential and integral operators in the same 

equation. The Fredholm Integro-differential Equation appears 

in the form: 

  𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘
𝑏

a
(𝑥, 𝑟)𝑢(𝑟)𝑑𝑟                      (2) 

Where 𝑢𝑛(𝑥) indicates the nth derivative of 𝑢(𝑥)  

Volterra- Fredholm Integro-differential Equation appears 

when we convert initial value problems to integral equations. 

The Volterra- Fredholm Integro-differential Equation 

contains the unknown function 𝑢(𝑥) and one of its derivatives 

𝑢𝑛(𝑥), 𝑛 ≥ 1 inside and outside the integral sign. 

At least one of the limits of integration in this case is a variable 

as in Volterra integral equations. The Volterra Integro-

differential Equation appears in the form: 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘
𝑥

0
(𝑥, 𝑟)𝑢(𝑟) 𝑑𝑟                    (3)  

Where 𝑢𝑛(𝑥) indicates the nth derivative of 𝑢(𝑥) Volterra-

Fredholm Integro-differential Equation arises in the same 

manner as Volterra-Fredholm Integral equations with one or 

more of the ordinary derivatives in addition to the integral 

operator. 

A Volterra-Fredholm Integro-differential equation appears in 

the form: 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆1 ∫ 𝑘1
𝑥

0
(𝑥1, 𝑟)𝑢(𝑟)𝑑𝑟 +

𝜆2 ∫ 𝑘2
𝑏

a
(𝑥2, 𝑟)𝑢(𝑟)𝑑𝑟                                             (4)  
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In recent years, there has been an increase interest in the 

Integro-differential Equation (IDEs). IDEs play an important 

role in many branches of linear functional analysis and their 

applications in the theory of engineering, mechanics, physics, 

chemistry, astronomy, biology, economics, potential theory 

and electrostatic. (Hussein et al, 2016).           

The variational iteration method was proposed by Ji-Huan He 

in 1999 and he successfully applied it to Autonomous 

ordinary differential equations, to nonlinear polycrystalline 

solids and other fields. The Method as proposed by Ji-Huan 

He is a Modification of general Lagrange multiplier method 

and it has been shown that this procedure is a powerful tool 

for solving various kinds of nonlinear problems. 

Besides its mathematical importance and its links to the other 

branches of mathematics, it is widely used in all reunifications 

and of modern sciences. Few years ago, the method received 

relatively little attention since the number of available 

materials was limited. A change in this view occurred in 

Batiha et al, (2008) published a series of publications on 

Variational Iteration method as a result of the development of 

some mathematical software such as Mathematical, Mat lab. 

Some rather extraordinary virtues of the method were 

exploited and connection to Adomian Method was found. 

These merits have enabled a very great number of potential 

applications. As an advantage of the Variational Iteration 

Method over decomposition procedure of Adomian, the 

former method provides the solution of the problem without 

any need to discretization of the variables. Therefore, it is not 

affected by computational round of errors and one is not faced 

with necessity of large computer memory and time. 

This scheme provides the approximation of mesh points only. 

Also, this method is useful for finding an accurate 

approximation of the exact solution (Tatari &Dehghan , 

2007). With rapid development of nonlinear sciences, there 

appears ever-increasing interest of scientist and engineers in 

the analytic asymptotic method for nonlinear problems. 

Though it is easy for us now to find the solution of linear and 

nonlinear system by means of computer, it is however still 

very difficult to solve nonlinear problems either numerically 

or theoretically. 

This is possibly due to fact that the various discredited 

methods or numerical simulation apply iteration methods to 

find their numerical solution of nonlinear problems and nearly 

all iterative techniques are sensitive to initial solutions. So, it 

is very difficult to obtain converged result in case of strong 

nonlinearity. (Ji-Huan, 2007). Applied the present method to 

coupled Schrodinger KDV equations and shallow water 

equations. 

Most realistic differential equations do not have exact analytic 

solutions, approximation and numerical techniques, therefore 

are used extensively. This new iterative method has proven 

rather successful in dealing with both linear as well as non-

linear problems, as yields analytic solution and offers certain 

advantages over standard numerical methods. (Hemeda, 

2012) extended the analysis of the Variational Iteration 

Method proposed by He to solve three different types of 

nonlinear equations, namely the coupled nonlinear RDEs, 

hirota-Satsuma coupled KDV system and Drinefil’d-

Sokolov-Wilson equations. Compared the Variational 

Iteration Method reduces the volume of calculation by not 

requiring the Adomian polynomials like the Adomian 

Decomposition method. Hence the iteration is more accurate. 

(Hesamedding & Rahimi, 2013). compared the numerical 

methods for the solution of first and second orders linear 

Integro-differential equations (Lanlegeet al ,2019), presented  

a new iterative method of solving IDEs of order n. (Lanlegeet 

al ,2015), in the computational l method for differential 

equations presented a new numerical scheme for solving 

system for solving systems of Integro-differential equations 

solved the IDE using the modified Laplace Adomian 

Decomposition Method.(Mohyud-din ,2013) presented a 

simple numerical method of solving nonlinear Volterra IDEs. 

(Safavi , 2012)., used the decomposition method for solving 

nonlinear IDEs. (Soliman &Abdou, 2007). used the method 

to search for solutions of a class of two-point boundary value 

problems (BVPs) for fourth order Integro-differential 

equations showing that the method needs much less 

computational work compared with traditional methods. 

It also gives highly accurate numerical solutions without 

spatial discretization for fourth order integro-0differential 

equations. (Sweilam, 2007) Applied the Variational Iteration 

Methods to solve nonlinear Integro-differential equations and 

found that the solution obtained by VIM is valid for not only 

weekly nonlinear equations, but also strong ones.  

Also, the method is a powerful tool to search for solutions of 

various linear and nonlinear problems. 

(Tatari&Dehghan,2007).extended the analysis of the 

Variational Iteration Methods to solve the system of generally 

nonlinear Volterra Integro-differential equations by selecting 

the initial approximation arbitrarily not in found of the exact 

solution with unknown constants. The result showed that the 

Variational Iteration Method is remarkably effective and 

performing is very easy. In addition, it has more accuracy than 

Homotopy perturbation method and Adomian decomposition 

method for this kind of problems. (Taiwo &Jimoh,2014) 

employed the Variational Iteration Method (VIM) with 

Adomian decomposition method (ADM) for solving 

nonlinear Integro-differential equations without using 

linearization of any restrictive assumptions and it was 

observed that the Variational Iteration Methods (VIM) 

reduces the volume of calculations by not requiring the 

Adomian polynomials, hence the Iteration is direct and 

straightforward for the solution of Integro-differential 

equation. (Wazwaz, 2011). used modified Variational 

Iteration Method (MVIM) for solving Integro-differential 

equations and coupled system of Integro-differential 

equations. The proposed modification is made b the elegant 

coupling of He’s polynomials and the correction functional 

Variational Iteration Method. The proposed (MVIM) was 

applied without any discretization, Transformation of 

restrictive assumptions and is free from round off errors and 

calculations of the Adomian polynomials.  

The VIM is a simple and yet a powerful method of solving a 

wide class of linear and nonlinear Integro-differential 

equations. The method provides rapidly convergent 

successive approximations of the exact solutions if such a 

closed form solution exists. The method was used by he to 

give approximate solutions for some well-known nonlinear 

problems.  

On the other hand, Golbaba and Javidi solved the nth order 

Integro-differential equations by transforming to a system of 

ordinary differential equations and used the Homotopy 

Method solve. Other methods of solution include the series 

solutions, the Laplace transform method, the direct 

computational method and so on.  
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MATERIALS AND METHOD 

Iteration Method 

Consider the difference equation 

𝐿𝑢 + 𝑁𝑢 = 𝑔(𝑟)                                                                                                       (5) 

Where L and N are linear and nonlinear operators respectively, 𝑔(𝑟) is the source inhomogeneous term 

The correction functional for the above equation is given by: 

𝑈𝑛+1(𝑥) = 𝑈𝑛(𝑥) + ∫ 𝜆
𝑥

0
(𝑟)(𝐿𝑈𝑛(𝑟) + 𝑁𝑈𝑛(𝑟) − 𝑔(𝑟)) 𝑑𝑟                                        (6) 

Where  𝜆 is the Lagrange’s multiplier, it should also be noted that 𝜆 can be a constant or function, and 𝑈𝑛 is a restricted value 

that means it behaves as a constant, hence 𝛿𝑈𝑛 = 0 where 𝛿  is the variational derivate. 

The Variational Iteration Method can then be used following these steps: 

First, we determine the Lagrange’s multiplier 𝜆(𝑟) which will be found optimally and, We substitute the result into the 

correction functional where the restriction should be Omitted Taking the variation of the correction functional with respect to 

the independent variation𝑈𝑛, we have 

𝛿𝑈𝑛+1

𝛿𝑈𝑛
= 1 +  

𝛿

𝛿𝑈𝑛
(∫ 𝜆

𝑥

𝑜
(𝑟)(𝐿𝑈𝑛(𝑟) + 𝑁𝑈𝑛(𝑟) − 𝑔(𝑟))𝑑𝑟)                               (7) 

 Which gives 

   𝛿𝑈𝑛 + 1 = 𝛿𝑈𝑛 + 𝛿(∫ 𝜆
𝑥

𝑜
(𝑟)(𝐿𝑈𝑛(𝑟) 𝑑𝑟)                                                         (8) 

Integrating by parts to obtain value of the Lagrange multiplier 𝜆 (𝑟), that is  

∫ 𝜆(𝑟)
𝑥

𝑜
𝑈′𝑛(𝑟)𝑑𝑟 =  𝜆(𝑟)𝑈𝑛(𝑟) − ∫ 𝜆′(𝑟)

𝑥

𝑜
𝑈𝑛(𝑟)𝑑𝑟                                              (9) 

∫ 𝜆(𝑟)
𝑥

𝑜
𝑈′′𝑛(𝑟)𝑑𝑟 =  𝜆(𝑟)𝑈′𝑛(𝑟) − 𝜆′(𝑟)𝑈𝑛(𝑟) + ∫ 𝜆′′𝑥

𝑜
(𝑟)𝑈𝑛(𝑟)𝑑𝑟              (10) 

∫ 𝜆(𝑟)
𝑥

𝑜
𝑈′′′𝑛(𝑟)𝑑𝑟 =  𝜆(𝑟)𝑈′′𝑛(𝑟) − 𝜆′(𝑟)𝑈′𝑛(𝑟) + 𝜆′′(𝑟)𝑈𝑛 ∫ 𝜆′′′(𝑟)

𝑥

𝑜
𝑈𝑛(𝑟)𝑑𝑟   (7) ∫ 𝜆(𝑟)

𝑥

𝑜
𝑈′𝑣𝑛(𝑟)𝑑𝑟 =

 𝜆(𝑟)𝑈′′′𝑛(𝑟) −  𝜆′(𝑟)𝑈′′𝑛(𝑟) + 𝜆′′(𝑟)𝑈′𝑛(𝑟) −  𝜆′′′(𝑟)𝑈𝑛 (𝑟) +

∫ 𝜆′′′(𝑟)
𝑥

𝑜
𝑈𝑛(𝑟)𝑑𝑟                                                                                                                              (11) 

 

And so on to the nth derivative. These identities are determined integrating by parts. 

For instance, if   𝐿𝑈𝑛 (𝑟) = 𝑈′𝑛(𝑟) in (4) therefore we have,  

 𝛿𝑈𝑛 + 1 = 𝛿𝑈𝑛 + 𝛿(∫ 𝜆
𝑥

𝑜
(𝑟)(𝐿𝑈𝑛(𝑟) 𝑑𝑟)                                                                           (12) 

 Or we have by using the identity above 

𝛿𝑈𝑛 + 1 = 𝛿𝑈𝑛(𝑟) + 𝜆(𝑟)𝛿𝑈𝑛(𝑟) −  ∫ 𝜆′
𝑥

𝑜

(𝑟)𝛿𝑈𝑛(𝑟)𝑑𝑟(10) 

𝛿𝑈𝑛 + 1 = 𝛿𝑈𝑛(𝑟) + 𝜆(𝑟) (1 +  𝜆|
𝑥

O 
) −  ∫ 𝜆′𝑥

𝑜
(𝑟)𝛿𝑈𝑛(𝑟) 𝑑𝑟                                           (13) 

 But the extremism condition of 𝑈𝑛 + 1 requires that 𝛿𝑈𝑛 + 1 = 0. 

This means that the left-hand side of (11) is zero, and as a result the right-hand side should be zero as well.  

This reduces (11) to and thus yield the stationary conditions, 

1 +  𝜆r = 0,               
  𝜆 ′ 𝑟 = 𝑥, 𝜆 ′ 𝑟 =0 

This gives 𝜆 =  −1 

  Also, if 𝐿𝑈𝑛 (𝑟) = 𝑈′′𝑛 (𝑟) in (3.4), then it becomes 

 𝛿𝑈𝑛 + 1 =  𝛿𝑈𝑛 +  𝛿(∫ 𝜆
𝑥

𝑜
(𝑟)(𝐿𝑈𝑛(𝑟)𝑑𝑟))                                                                          (14) 

 Integrating the integral of (14) by part, we have 

𝛿𝑈𝑛 + 1 =  𝛿𝑈𝑛 +  𝛿𝜆(𝑈𝑛)′ 𝑥

0
− (𝜆′𝑈𝑛)

𝑥

0
+ ∫ 𝜆′′𝑥

𝑜
𝛿𝑈𝑛𝑑𝑟                                                 (15) 

Or 

  𝛿𝑈𝑛 + 1 =  𝛿𝑈𝑛(𝑟)(1 − 𝜆′𝑟 = 𝑥 + 𝛿𝜆(𝑈′𝑛)𝑟 = 𝑥r + ∫ 𝜆′′𝑥

𝑜
𝛿𝑈𝑛𝑑𝑟                              (16) 

 Where 𝛿𝑈𝑛 + 1 = 0, and these yields stationary condition 

             1 − 𝜆 𝑟r
′ = 𝑥 = 0,    

             𝜆(𝑟)𝑟 = 𝑥 = 0                                                                                                                    (17) 

   𝜆 = 𝑟 − 𝑥                                                                                                                            (18) 

 he Lagrange Multiplier can also be determined from the general formula 

𝜆(𝑟) =  
(−1)(𝑟−𝑥)−1

( −1)!
                                                                                                 (19) 

 With the Lagrange multiplier 𝜆(𝑟) determined, we now obtain the successive approximation 𝑈𝑛 + 1, 𝑛 ≥ 1, of the solution 

𝑈(𝑥), which will be obtained using selective function 𝑈𝑜(𝑥).  
 However, for the solution to converge fast; the function 𝑈𝑜 (𝑥) should be selected using the initial conditions as follows: 

𝑈0(𝑥) = 𝑢(0), 𝑓𝑜𝑟 𝑜𝑟𝑑𝑒𝑟 𝑜𝑛𝑒.  

𝑈0(𝑥) = 𝑢(0) + 𝑥𝑢′(0), 𝐹𝑜𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑤𝑜. 
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𝑈0(𝑥) = 𝑢(0) + 𝑥𝑢′(0) + 
𝑥2

2!
𝑢′′(0), 𝐹𝑜𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡ℎ𝑟𝑒𝑒 

𝑈0(𝑥) = 𝑢(0) + 𝑥𝑢′(0) + 
𝑥2

2!
𝑢′′(0) + ⋯ + 

𝑋𝑛−1

(𝑛−1)!
𝑈𝑛−1(0), For order n                          (20) 

 Consequently, the solution 

𝑈(𝑥) =  
Lim

𝑛→∞
𝑈𝑛(𝑥)           (21) 

 This means that the correction functional (2) will give several approximate solutions which will approach the exact solution. 

 The correction functional (2) is given by   

𝑈𝑛+1(𝑥) = 𝑈𝑛(𝑥) + ∫ 𝜆
𝑥

𝑜

(𝑈𝑛(𝑛)(𝑡) − 𝑓(𝑡) − ∫ 𝑘(𝑥, 𝑟)𝑈𝑛(𝑟)𝑑𝑟
𝑏

𝑎

) 𝑑𝑡 

 For 𝑛 = 0, 1, 2 .  .  .   , 𝑘 − 1 then (27) becomes 

𝑈1(𝑥) = 𝑈𝑜(𝑥) +  ∫ 𝜆
𝑥

0

[𝑈𝑜(𝑛)(𝑡) − 𝑓(𝑡) − ∫ 𝐾
𝑏

𝑎

(𝑡, 𝑟)𝑈𝑜(𝑟)𝑑𝑟] 𝑑𝑡 

𝑈2(𝑥) = 𝑈1(𝑥) + ∫ 𝜆
𝑥

0

[𝑈1(𝑛)(𝑡) − 𝑓(𝑡) − ∫ 𝐾
𝑏

𝑎

(𝑡, 𝑟)𝑈𝑜(𝑟)𝑑𝑟] 𝑑𝑡 

𝑈𝑘(𝑥) = 𝑈𝑘 − 1(𝑥) + ∫ 𝜆
𝑥

0
[𝑈𝑘 − 1(𝑛)(𝑡) − 𝑓(𝑡) −  ∫ 𝐾

𝑏

𝑎
(𝑥, 𝑟)𝑈𝑘 − 1 (𝑟)𝑑𝑟] 𝑑𝑡        (23) 

Numerical examples 

Example 1 

 Consider the third order Fredholm Integro-differential equation 

𝑢′′′(𝑥) =  −1 + 𝑒𝑥 + ∫ 𝑙𝑢(𝑙)𝑑𝑙
1

0
𝑢(0) = 𝑢′(0) = 𝑢′′(0) = 1                                              (24) 

With exact solution 𝑢(𝑥) = 𝑒𝑥. Following the VIM discussed in above 

the correctional functional is obtained as: 

  𝑈𝑛+1(𝑥) = 𝑈𝑛(𝑥) +  𝜆 ∫ [𝑈′′′𝑛(𝑠) +  1 𝑒𝑠 − ∫ 𝑙𝑢
1

0

𝑛(𝑙)𝑑𝑙] 𝑑𝑟
𝑥

0

 

 Where  𝜆 =  − 
1

2
(𝑠 − 𝑥)  and 𝑈𝑜(𝑥) = 1 + 𝑥 + 

1

2
𝑥  

 Differentiating 𝑈𝑜 (𝑥) three times we obtain 

𝑈0
′′′(𝑥) = 0 

 Substituting into correctional functional for 𝑛 =0 we obtain 

 

𝑈1(𝑥) = 1 + 𝑥 +  
1

2
𝑥2 − ∫

1

2
(𝑠 − 𝑥)2

1

0

[0 + 1 − 𝑒𝑠 − ∫ 𝑡
1

0

(1 + 𝑡 +
1

2
𝑡2) 𝑑𝑡] 𝑑𝑠                       

Simplifying we obtain 

𝑈1(𝑥) =  − 
1

144
𝑥3 + 𝑒𝑥 

For 𝑛 = 1 and substituting the value of 𝑈1(𝑥), we obtain 

𝑈1(𝑥) =  − 
1

144
𝑥 + 𝑒𝑥 − ∫

1

2
(𝑠 − 𝑥)

1

0

[−
1

24
𝑠 + 𝑒𝑠 + 1 − ∫ 𝑡

1

0

(−
1

144
𝑡 + 𝑒𝑡) 𝑑𝑡] 𝑑𝑠    

After simplification we obtain 

𝑈2(𝑥) =  − 
1

4320
𝑥 + 𝑒𝑥 

 For 𝑛 = 2 and using the result obtained for 𝑈2(𝑥)we have(𝑥) =  −
1

4320
𝑥 + 𝑒𝑥 − 

∫
1

2
 (𝑠 − 𝑥)

1

0

[−
1

720
𝑠 + 𝑒𝑠 + 1 − 𝑒𝑠 − ∫ 𝑡

1

0

(−
1

4320
𝑡 + 𝑒𝑡) 𝑑𝑡] 𝑑𝑠 

𝑈3(𝑥) =  −
1

129600
𝑥 + 𝑒𝑥 

 Continuing this process for 𝑛 = 3,4,5,6,7,8,9 we have the results  

𝑈4(𝑥) =  −
1

3888000
𝑥 + 𝑒𝑥 

𝑈5(𝑥) =  −
1

116640000
𝑥 + 𝑒𝑥 

𝑈6(𝑥) =  −
1

499200000
𝑥 + 𝑒𝑥 

𝑈7(𝑥) =  −
1

104976000000
𝑥 + 𝑒𝑥 

𝑈8(𝑥) =  −
1

3149280000000
𝑥 + 𝑒𝑥 

𝑈9(𝑥) =  −
1

944784000000000
𝑥 + 𝑒𝑥 

𝑈10(𝑥) =  −
1

2834352000000000
𝑥 + 𝑒𝑥 

2 2

3 2 3 3

3

3

2 3 3

3

3

3

3

3

3

3

3
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RESULTS 
 

Table 1: Comparison of the Numerical Results with the Exact Solution  𝒖(𝒙) and the Error 

 

X 

 

Exact 

 

VIM Result 

 

Error 

1.0 2.718281828459046 2.718281828459045 0.000000000000001 

1.1 3.004166023946433 3.004166023946433 0.000000000000000 

1.2 3.320116922736547 3.320116922736547 0.000000000000000 

1.3 3.669296667619244 3.669296667619244 0.000000000000001 

1.4 4.055199966844675 4.055199966844674 0.000000000000001 

1.5 4.481689070338065 4.481689070338064 0.000000000000001 

1.6 4.953032424395115 4.953032424395113 0.000000000000002 

1.7 5.473947391727199 5.473947391727197 0.000000000000002 

1.8 6.049647464412947 6.049647464412947 0.000000000000002 

1.9 6.685894442279269 6.685894442279266 0.000000000000003 

2.0 7.389056098930650 7.389056098930648 0.000000000000002 

 

Graphical Representation of Result as shown below: 

 

 
                   Figure 1: Graphical Illustration of VIM compared to the Exact Solution  

 

Example 2 

Consider the second order Fredholm Integro-differential equation 

𝑢′′(𝑥) = −1 sin 𝑥 ∫ 𝑡𝑢(𝑡)𝑑𝑡𝑢(0) = 0, 𝑢′ (0) = 1                                                                           
𝜋

2
0

  (25) 

With exact solution 𝑢(𝑥) =  sin 𝑥 The correction functional is given by 

𝑈𝑛 + 1 (𝑥) = 𝑈𝑛 + ∫ 𝜆
𝑥

0

[ [𝑈′′𝑛(𝑠) + 1 + sin 𝑠 − ∫ 𝑡𝑢𝑛(𝑡)𝑑𝑡

𝜋
2

0

] 𝑑𝑠                                                   

Where 𝜆 = (𝑠 − 𝑥) and 𝑢𝑜′′(𝑥) = 𝑥 

Differentiating𝑢𝑜(𝑥) = 𝑥  twice we have 𝑢′′𝑜(𝑥) = 0 

Substituting these result in to the correction functional for 𝑛 = 0 we  

𝑈 (𝑥) =  − 
1

2
𝑥 + sin 𝑥 + 

1

48
𝜋3𝑥2 

For 𝑛 = 1 and using the result obtained for 𝑈 (𝑥)we have 

𝑈2(𝑥) =  − 
1

2
𝑥  + sin 𝑥 +

1

48
𝜋3𝑥2 + ∫ (𝑠 − 𝑥)

𝑥

0

(−1 − sin(𝑠) 

+ 
1

24
𝜋 +  1 + sin 𝑠 

− ∫ 𝑡 (− 
1

2
𝑡 + sin 𝑡 + 

1

24
𝜋 𝑡 ) 𝑑𝑡

𝜋
2

0

 

After simplification we obtained  

𝑈2(𝑥) =  − 
1

2
𝑥  + sin 𝑥 +

1

48
𝜋3𝑥2 − 

1

2
(

1

24
𝜋 − 

1

3072
𝜋 − 1 + 

1

128
𝜋 ) 𝑥  

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11

EXACT VIM

1

2

1

2

3

2 3 2

2 3 7 4 2
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For 𝑛 = 2 and using the result for 𝑈2(𝑥) we have 

𝑈2(𝑥) =  − 
1

2
𝑥 +  sin 𝑥 + 

1

48
𝜋3𝑥2 − 

1

2
(

1

24
𝜋 −  

1

3072
𝜋 − 1 + 

1

128
𝜋 ) 𝑥  

+ ∫ (𝑠 − 𝑥)
𝑥

0

[− sin 𝑠 + 
1

3072
𝜋 −

1

128
𝜋 + 1 + sin 𝑠 

− ∫ 𝑡

𝜋
2

0

((− 
1

2
𝑡 + sin 𝑡

1

48
𝜋 𝑡 ) −

1

2
(

1

24
𝜋 −  

1

3072
𝜋 − 1 + 

1

128
𝜋 ) 𝑡 ) 𝑑𝑡]𝑑𝑠 

Simplifying we have 

𝑈3(𝑥) =  − 
1

2
𝑥 +  sin 𝑥 + 

1

48
𝜋3𝑥2 − 

1

2
(

1

24
𝜋 − 

1

3072
𝜋 − 1 + 

1

128
𝜋 ) 𝑥  

   −
1

2
(

1

3072
𝜋7 − 

1

128
𝜋4 + 

1

16384
𝜋8

1

393216
𝜋11) 𝑥2 

Repeating this procedure for 𝑛 = 3,4,5,6,7 we have 

  𝑈4(𝑥) =  − 
1

2
𝑥2 + sin 𝑥 +  

1

48
𝜋3𝑥2 −  

1

2
(

1

24
𝜋3 − 

1

3072
𝜋7 − 1 +  

1

128
𝜋4) 𝑥2 

  −
1

2
(

1

3072
𝜋7 −  

1

128
𝜋4 +  

1

16384
𝜋8

1

393216
𝜋11) 𝑥2 

   −
1

2
(

1

16384
𝜋8 + 

1

393216
𝜋11 − 

1

50331648
𝜋15 +  

1

2097152
𝜋12) 𝑥2 

  𝑈5(𝑥) =  − 
1

2
𝑥2 +  sin 𝑥 + 

1

48
𝜋3𝑥2 − 

1

2
(

1

24
𝜋3 −  

1

3072
𝜋7 − 1 + 

1

128
𝜋4) 𝑥2 

  −
1

2
(

1

3072
𝜋7 −  

1

128
𝜋4 +  

1

16384
𝜋8

1

393216
𝜋11) 𝑥2 

−
1

2
(

1

16384
𝜋8 + 

1

393216
𝜋11 −  

1

50331648
𝜋15 + 

1

2097152
𝜋12) 𝑥2 

-12150331648𝜋15- 12097152𝜋12+ 1268435456𝜋16- 16442450944π19𝑥2 

𝑈6(𝑥) =  − 
1

2
𝑥2 + sin 𝑥 +  

1

48
𝜋3𝑥2 −  

1

2
(

1

24
𝜋3 − 

1

3072
𝜋7 − 1 +  

1

128
𝜋4) 𝑥2 

 

   −
1

2
(

1

3072
𝜋7 − 

1

128
𝜋4 + 

1

16384
𝜋8

1

393216
𝜋11) 𝑥2 

−
1

2
(

1

16384
𝜋8 + 

1

393216
𝜋11 −  

1

50331648
𝜋15 + 

1

2097152
𝜋12) 𝑥2 

−
1

2
(

1

50331648
𝜋15 − 

1

2097152
𝜋12 + 

1

268435456
𝜋16 − 

1

6442450944
𝜋19) 𝑥2 

−
1

2
(

1

268435456
𝜋16 −  

1

6442450944
𝜋19 +  

1

824633720832
𝜋23 − 

1

39582418599936
𝜋20) 𝑥2 

−
1

2
(

1

549755813888
𝜋23 − 

1

34359738368
𝜋20 −   

1

39582418599936
𝜋26) 𝑥2 

𝑈7(𝑥) =  − 
1

2
𝑥2 + sin 𝑥 +  

1

48
𝜋3𝑥2 −  

1

2
(

1

24
𝜋3 − 

1

3072
𝜋7 − 1 +  

1

128
𝜋4) 𝑥2 

  −
1

2
(

1

3072
𝜋7 −  

1

128
𝜋4 +  

1

16384
𝜋8

1

393216
𝜋11) 𝑥2 

  −
1

2
(

1

16384
𝜋8 +  

1

393216
𝜋11 − 

1

50331648
𝜋15 +  

1

2097152
𝜋12) 𝑥2 

−
1

2
(

1

50331648
𝜋15 − 

1

2097152
𝜋12 + 

1

268435456
𝜋16 − 

1

6442450944
𝜋19) 𝑥2 

−
1

2
(

1

268435456
𝜋16 −  

1

6442450944
𝜋19 +  

1

824633720832
𝜋23 − 

1

39582418599936
𝜋20) 𝑥2 

1

2
(

1

549755813888
𝜋23 −  

1

34359738368
𝜋20 −  

1

39582418599936
𝜋26) 𝑥2 

 −
1

2
(

1

2638827906624
𝜋26 −  

1

1649267441664
𝜋23 −  

1

1899956092796928
𝜋29) 𝑥2 

Representation of Result 

 

Table 2: Comparison of the Numerical Results with the Exact Solution  𝒖(𝒙) and the Error 

X Exact VIM Result 

VIM Resulthhh 

Error 

1.0 0.000000000000000 0.000000000000000 0.000000000000000 

1.1 0.099833416646828 0.099991348565143 0.0001579319191815 

1.2 0.198669330795061 0.199301058468320 -0.000631727673258 

1.3 0.295520206661340 0.296941593926171 -0.001421387264831 

1.4 0.389418342308651 0.391945253001684 -0.002526910693034 

1.5 0.479425538604203 0.483373836562068 -0.003948297957865 

1.6 0.564642473395035 0.570328022454361 -0.005685549059326 

2 3 7 4 2

7 4

2 3 2 3 7 4 2

2 3 7 4 2
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1.7 0.644217687237691 0.651956351235106 -0.007738663997415 

1.8 0.717356090899523 0.727463733671657 -0.010107642772134 

1.9 0.783326909627483 0.796119395010966 -0.012792485383483 

2.0 0.841470984807897 0.857264176639357 -0.015793191831460 

 

Graphical Representation of Numerical Results with the Exact 

 

                   Figure 2: Graphical Illustration of VIM compared to the Exact Solution 

It is very clear to observe from the examples considered in 

this work that the Variational Iteration Method is a powerful 

tool for solving Fredholm Integro-differential equation. It was 

also discovered that the result obtained by the Variational 

Iteration Method are in close agreement with the exact 

solution, this is evidently seen in the tables above and the 

obtained by plotting the exact solution with the approximate 

analytic solutions obtained by the Variational Iteration 

Method.  

From the first example the result obtained by Variational 

Iteration Method is in close agreement with that of the exact 

solution with ten (10) Iteration carried out.  In the second 

example, with reduction in the number Iterations to eight (8), 

there is a slight change in the alignment of the exact solution 

and the solution obtain by the Variational Iteration Method as 

shown by the tabulated numerical result and the graph. From 

the third example and with the number of Iterations increased 

to nine (9), we see a great agreement of the approximate 

solution of Variational Iteration Method with the exact 

solution. 

 

CONCLUSION  

The Variational Iteration Method discussed in chapter three 

has been successfully applied to solve Fredholm Integro-

differential equations, three examples were considered to 

illustrate the procedure. it was observed that the solutions 

obtained are in closed agreement with those of  the exact 

solutions which can be seen from the tables and the graphs. It 

was also observed that with more Iterations performed the 

approximate analytic solution of the Variational Iteration 

Method will approach the exact solution of the given problem. 

In this project work, we have studied the solution of Fredholm 

Integro-differential equations by Variational Iteration Method 

(VIM). The solution of the initial approximation was done 

wisely not in form of the exact solution with the unknown 

constants. Maple package was used to calculate the 

approximate analytic solution obtained from the Variational 

Iteration Method. The result showed that the Variational 

Iteration Method is remarkable effective and is very easy, it 

may also be concluded that the Variational Iteration Method 

(VIM) (Arqub, 2014).is very powerful and efficient in finding 

the analytical solutions of Fredholm Integro-differential 

equations with increased the number of interactions to 

performed. 
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