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ABSTRACT 

Classification technique in data mining concentrates on the prediction of categorical or discrete target variables 

which is designed to be handled by the classical C4.5 decision tree algorithm, an algorithm whose aim is to 

produce a tree which accurately predicts the target variable for a new unseen data. However its recursive nature 

poses a limitation when huge volume of dataset is involved; making computation more complex and resulting 

in an inefficient implementation of the algorithm in terms of computing time, memory utilization and data 

complexity. Meanwhile, several researches have been done to control these limitations. One of such 

improvements is the parallelizing of the algorithm using the MapReduce model. This involves dividing the 

large dataset into smaller units and sharing them on multiple computers for parallel processing, but the 

recursive nature of the algorithm makes the cost of computing large number of repeated calculations quite 

high, which is our concern in this work. . This research is aimed at reducing computation time further, by using 

a memoized MapReduce model, which involves the saving of the result of previous calculations in a cache; 

hence, when same calculations are encountered again, the cached result is returned, thus re-computation is 

avoided. The cached result is considered a reduced cost compared to the computational cost of re-computation.  
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INTRODUCTION 

The emergence of powerful computing and data storage 

technologies has led to the explosion of massive data in the 

area of medicine, agriculture, education, business and in 

several other fields. It is important to note that the generation 

of this huge amount of data can become a great challenge if 

not properly harnessed (Jaseena et al., 2014). In the bid to 

solve this problem, Gregory Piatetsky-Shapiro (a Data Mining 

Expert) saw the need to discover useful knowledge from these 

databases and this led to the first workshop on Artificial 

Intelligence which took place in Detroit in 1989 where he 

coined the phrase “Knowledge Discovery in Databases” 

(KDD) (Piatetsky-Shapiro, 1991). A phrase which deals with 

the overall process of obtaining useful knowledge from data 

(Fayyad et al., 1996). Data mining is a method in KDD 

process which involves the application of specific algorithms 

for developing patterns from data. Majority of these 

algorithms are limited in their capacity to deal with large 

volume of data, therefore, the need to improve them has 

become of great importance, so that their efficiency can be 

enhanced. 

Research has shown that most of these algorithms have 

undergone series of improvements in order to enhance their 

performance with regards to accuracy, execution time as well 

as memory management. These algorithms perform well 

when the data is small but does otherwise when the data is 

large (Han and Kamber, 2006). C4.5 decision tree algorithm 

is an example of such algorithms, it is an algorithm which is 

widely used in classification due to its ability to perform well 

in the prediction of unknown variables from data that is 

already known. It is easy to use and the cost of implementing 

it is less expensive compared to other classification 

algorithms. The algorithm has undergone series of 

improvements in order to enhance its efficiency in terms of 

time and storage capability. However, the current 

performance of the algorithm shows that it suffers from high 

computational time and memory due to storage requirement. 

To address this, this study propose to apply a novel method to 

the high memory problem through memorized MapReduce 

model. The remaining part of the paper is organized as 

follows: The review of related work and concepts is presented 

in section 2, while a detailed presented of methodology used 

in the study are discussed in section 3. In sections 4 and 5, 

experimentation, results and discussions are outlined, while 

conclusion is drawn in section 6 to emphasize the findings 

from the study. 

 

Related Works 

The work of Dai and Ji (2014) improved the C4.5 algorithm 

through the introduction of the MapReduce programming 

model,which involved the parallelization of the algorithm 

through distributed computing, which resulted in  time 

efficiency and scalability of the algorithm. Data structures 

were also designed to minimise communication cost which 

was generated by the movement of some computations to the 

external storage due to memory limitation. Wang et al., (2016) 

proposed the classical SPRINT algorithm which was a 

scalable and parallel method of the C4.5 decision tree. The 

authors came up with a new method for improving the 

calculation process by looking for a better candidate 

segmentation point for the discrete and continuous attributes. 

Muslim et al., (2017) also proposed an improvement of the 

C4.5 algorithm for breast cancer diagnosis. In order to 

enhance the accuracy of the algorithm, they combined the 

Particle Swarm Optimization (PSO) algorithm with C4.5 

algorithm. The combination of the two algorithms was used 

to enhance attribute selection in the C4.5 algorithm, for a 

better performance of the algorithm. Rajeshinigo and 

Jebamaler, (2017) also improved on the accuracy in 

prediction of the C4.5 algorithm by using the K-means 

clustering algorithm to change continuous values into 

categorical values. Cherfi et al., (2018) proposed a novel 

method named VFC4.5, implying a Very Fast C4.5 algorithm. 

It was meant to speed up and increase the performance of the 

algorithm. VFC4.5 was able to handle the problem of the C4.5 
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algorithm in managing continuous values through the 

introduction of some of the statistical tools (for example the 

mean and the median), as an ancillary to the original process 

of finding the threshold in the C4.5 algorithm. Badgujar and 

Sawant, (2017) improved the rule of C4.5 through the use of 

L’Hospital Rule, which involved the use of an approximation 

method to simplify the calculation process by removing the 

logarithmic calculation involved in calculating the Gain-Ratio 

in the C4.5 algorithm and approximating them with less 

complex operations. Mu et al., (2017) proposed a parallelized 

C4.5 decision tree algorithm built on MapReduce (MR-C4.5-

Tree) in order to solve the problem of memory restriction and 

time complexity owing to large dataset. This research work 

recommends an enhanced C4.5 decision tree algorithm using 

a Memoized MapReduce model, which integrates a 

memoization technique with the parallelized C4.5 decision 

tree algorithm. This integration is meant to improve the 

existing algorithm by further reducing the execution time, 

thereby improving the performance of the algorithm. The 

perceived trade-off as observed in the study is the cache 

occupancy memory cost.    

 

Memoization 

Memoization is a technique from the concept of dynamic 

programming, it used in computer programming to optimize 

the performance of a function by caching its result for later 

use. In other words the function stores the results of its 

calculations in the memory so that when the same inputs occur 

again, the cached result is returned. The term “Memoization”, 

which means to memorise or remember was first introduced 

by Donald Michie in the 60’s. His work was the first to show 

the benefit of storing the result of a function in a table and re-

using it as the need arises (Suresh et al., 2016). He proposed 

an effective Memoization in generalizing the context of 

subproblems by using interpolants. This was meant to tackle, 

the difficulty of effective reuse in subproblem solutions 

within the field of dynamic programming (Jaffar et al., 2008). 

A summary of the generalizations and its optimal solutions 

was stored in a memo table to be reused when it encounters a 

subproblem with a similar context in the search tree. It is an 

approach that proffers hands-on problem-solving tools in 

several application areas such as Artificial Intelligence, for 

instance in Machine Learning Applications, it can be used to 

speed up the training of models. It can also be used in Network 

optimization, decision analysis, inventory problems, 

computer science, agriculture, finance and medicine 

(Sniedovich, 2004). A major disadvantage of this technique is 

the overhead incurred on function calls. It trades memory for 

speed, it uses more memory by storing the results of previous 

computations in order to remove some code. execution. We 

anticipate a slight memory swell during computation when 

results are kept in cache for avoidance of re-computation. 

 

The Classical C4.5 Decision Tree Algorithm 

The traditional C4.5 algorithm which is used in building 

decision trees and generating classification rules used in 

decision making, is an improvement to a previous algorithm 

created in 1986 by Quinlan Ross, namely the ID3 algorithm 

(Iterative Dichotomiser 3) (Quilan, 1993). The C4.5 algorithm 

was rated one of the top ten most influential data mining 

algorithms in the research community (Wu, X., Kumar, V.,  

Ross Quinlan, J. et al., 2008). It is a standard algorithm that 

employs a divide-and-conquer method to grow decision trees, 

this process is based on information gain ratio which is 

evaluated by entropy. The measure of information gain ratio, 

which is also referred to as feature selection measure is used 

to select the test attribute at each node in the tree, where the 

attribute with the maximum information gain ratio is chosen 

as the best feature for the current node (Seema et al., 2013). 

  

Hadoop 

Hadoop is an open source software framework, which enables 

data storage and the parallel distribution and processing of 

large dataset on a group of interconnected computers, using 

the Hadoop Distribution File System (HDFS) and 

MapReduce programming model respectively.  Its ability to 

store data and run applications for data computation on the 

same computer within the network gives it the capability to 

process large volumes of data efficiently. Hadoop provides an 

uncomplicated easy to use tool for the purpose of storage and 

analysis of huge datasets as well as the management of large 

number of computers. In addition to this, the components 

within the Hadoop framework are built to handle hardware 

failures. Its fault-tolerant capability enables the system to 

keep working uninterruptedly despite the failure of one or 

more machines within the network, this is made possible by 

what is known as data replication or duplication in Hadoop. 

 

MapReduce 

The MapReduce programming paradigm is used in Hadoop 

for the parallel and distributed processing of large datasets on 

a network of computers (Dean and Gemawat, 2008; Zhu et 

al., 2018). Users are able to manage a large amount of 

information because of its flexibility and capacity to tolerate 

faults while processing these data (Wang et al., 2014). Its 

computation has two sides, namely Map phase and Reduce 

phase. The former plays a crucial role in the processing and 

analyzing of large datasets, at this phase a user defined 

function known as mapper function is applied on the input 

data from the HDFS which are stored as input files. The 

InputFormat which an important component in the map phase 

specifies how these input files are used for input by creating 

InputSplits, each split is divided into records which are meant 

to be processed by the mapper i.e. a record per mapper. The 

RecordReader which is also a built-in component of this 

phase converts the input data into a <key, value> pair format 

which is suitable for the mapper to process. The mapper 

processes each record in parallel and generates a new <key, 

value> pair completely different from the input pair. The new 

<key, value> pair is referred to as an intermediate output and 

it is written to the local hard disk because it is a temporary 

data. In between the mapper phase and the reducer phase is 

the partitioning stage which partitions the mapper output 

based on the key. The partitioner does this, by ensuring that 

all the values for a particular key are grouped together and 

sent to the same reducer such that an even distribution of the 

map output is allowed over the reducer. The combiner like the 

partitioner also acts on the mapper output, although it is 

optional, its main function is to sum up the map output 

according to their key values. The purpose of this function, is 

to assist in saving as much bandwidth as possible by reducing 

the amount of data that needs to be transferred over the 

network to the reducer phase. The shuffled and sorted output 

is then passed to the reducer phase as input, the reducer in turn 

applies a user defined reduced function on the input and 

performs a series of operations such as addition, filtration, 

aggregation and finding the minimum or maximum value.  

Finally the output of the reduce function is written to the 

output file or sent to another MapReduce job for processing. 

 

Hadoop Distributed File System (HDFS) 

The Hadoop File System is designed for storing very large 

number of files with streaming data access, which implies that 

applications or instructions are executed directly using the 
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MapReduce processing model. The HDFS has a master-slave 

architecture, with cluster consisting of a single namenode 

known as the master and several datanodes known as the 

slaves. The namenode is so critical to the HDFS such that 

when it fails or it is down, the Hadoop cluster becomes 

inaccessible. One of its functions is that it stores information 

about the actual data, that is, the real content which is stored 

in form of blocks, in the datanode. These information includes 

the location where the data resides in the datanode, the 

number of blocks, block id and so on. As the masternode, it 

communicates regularly with the slavenodes by keeping track 

of the various activities that goes on within them. It supervises 

the different tasks assigned to them and receives feedback on 

how each task is being carried out. The namenode is also 

responsible for replicating the data on a datanode to other 

datanodes to help prevent any failure that may occur on any 

node, thus ensuring that the network is not affected at all. Its 

ability to handle these challenges makes it highly fault 

tolerant and reliable. The datanodes on the other hand are 

responsible for storing and retrieving data in the form of 

blocks. They maintain data integrity by ensuring that the 

stored data are accurate, complete and consistent.  

 

MATERIALS AND METHODS 

Proposed Architecture 

The proposed system architecture in figure 1 below shows the 

integration of the memoization technique at the map phase. 

This is the point where the gain-ratio is calculated for each 

attribute, in order to determine the attribute with the highest 

gain-ratio that would be selected for splitting the dataset.

 

 
Figure 1: Memoized MapReduce Architecture 

 

Memoized MapReduce Flowchart 

In Figure 2 below, the flowchart depicts the workflow in the 

proposed method. The input to the system is the attribute Ak 

(where k = 1,2, …….. n) in the m subsets. The algorithm 

checks the   cache to ensure if the input and corresponding 

result of the calculation exists in the hash table [line 26]. If the 

result exists in the cache, it is returned and used [line 27], but 

if it does not exist [line 28], the gain-ratio is evaluated by 

taking the ratio of the quantity of information gained to the 

intrinsic information for each value of an attribute and storing 

the result into the variable ‘value’. The variable ‘value’ is then 

stored in the memoization cache to be used when the need for 

it arises [line 30 & 31].
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Figure 2: Memoized MapReduce flowchart 
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Proposed Algorithm 

Input: A training data X:   

Output: A selected attribute Ak and the cut points cp(k^*)(X). 

1:  Initialise a Hadoop Job SELECTJOB: 

2:            Set SelectTaskMapper as the Mapper class       

3:            Set SelectTaskReducer as the Reducer class 

4:           Adjust the block size of HDFS until the dataset X can be divided into m splits {Xj}(j=1)^m     

5:  In the j-th SelectTaskMapper:   

     Input: Xj = (xi)(i =1)^N, where xi  is the i-th occurrence with n attributes (Ak)(k=1)^n        

     Output: 〈key,value〉 = 〈Ak,[Ratiok(Xj,Ak),cpk(Xj)]〉 
6:  Memo_Cache ={ } 

7:  for each attribute Ak, k =1,2,…..,n do    

8:           if Ak is numerical then  

9:                      Sort its values x1k,……,xNk  and record as x1k^*,…..,xNk^* 

10:                      Find all cut points cpik = (xik^* + x(i+1,k)^*)/2  ,i=1,….,N-1   

11:                      for each cut points cpik  do   

12:                            Calculate the Information Gain:  

13:                       Gain(Xj,cpik) = Info(Xj )-[|xij^1|/|xj| Info(Xij^1) + |xij^2    |/|xj| Info(Xij^2 )]     where 

                                   Xij^1={xi∈Xj│xik ≤ cpik },Xij^2 ={xi∈Xj│xik > cpik}  and    symbol |x| is size of x  

14:                      end 

15:                      Select the optimal cut point cpk(Xj ) = cp(i^* k)  of Ak: 

16:                           i^* = argmax{Gain(Xj,cpik)}(i=1)^(N-1)   

17:                      Calculate the split information of cpk(Xj):    

18:                        Split(Xj,cpk(Xj)) = -[|x(i^* k)^1|/|xj| log2|x(i^* k)^1|/|xj| + |x(i^* k)^2 |/|xj| log2|x(i^* k)^2 |/|xj|] 

19:                   else    

20:                     Cut points:  cpk = ⋃(i=1)^C{xik^' },  

                               where xik^'  ∈{x1k,…,xNk},C is the number of attribute  values 

21:                     Calculate the Information Gain:   

22:                         Gain(Xj) = Info(Xj ) -∑(i=1)^C|xj^i|/|xj| Info(Xj^i)   where   Xj^i ={xi∈X│xik = xik^'}   

23:                     Calculate the split information of cpk    

24:                        Split(Xj,cpk (Xj)) = -∑(i=1)^C|xj^i |/|xj| log2|xj^i |/|xj|  

25:              end   

26:        If  Memo_Cache[Ak]not  null     

27:              Ratio(Xj,Ak)  =  Memo_Cache[Ak] 

28:        else 

29:     Calculate the gain ratio of Ak: Ratio(Xj,Ak) = Gain(Xj,cpk (Xj))/(Split(Xj,cpk (Xj)))   

30:              Memo_Cache[Ak] = Ratio(Xj,Ak) 

31:         end 

32:             Mapper Output: 〈key,value〉 = 〈Ak ,[Ratiok(Xj,Ak ),cpk (Xj)]〉        
33: end  

34: In the SelectTaskReducer: 

      Input: 〈key,value〉 = 〈Ak, List[Ratiok(Xj,Ak),cpk(Xj)]〉,j = 1,2,…,m 

      Output: 〈key,value〉 = 〈A(k^*),[Ratio(k^*)(X),cp(k^*)(X)]〉  
35: for each attribute Ak do 

36:        Ratiok(X) =∑(j=1)^m  Ratiok(Xj,Ak)  

37:      cpk(X) = (∑(j=1)^m cpk(Xj))/m    (Ak  is Numerical)  or   cpk(X) = U(j=1)^(j=m) cpk(Xj)      (Ak  is not Numerical) 

38: end 

39: Select the optimal index, where k^*= argmax{Ratiok(X)}(k=1)^n 

40: Reducer Output: 〈key,value〉 = 〈A(k^* ),[Ratio(k^*)(X), cp(k^*)(X)]〉 
41: return A(k^*) and cp(k^*)(X).    

 

Algorithm 1: Modified Attribute Selection Algorithm (MR-A-S) 

 

The Input at the beginning of the algorithm is the data saved 

into the Hadoop Distributed File System (HDFS), at this point 

the file is broken down into blocks of size 128MB each and 

dispersed across datanodes in the hadoop distributed file 

system. However, Output is the expected output after the best 

attribute, which has the maximum gain ratio has been selected 

for splitting the dataset at each node for the building of the 

decision tree. In lines 1-4: During the job initialization, the 

job tracker creates an object to track the tasks and their 

progress. At this stage the map tasks for each InputSplit are 

created and the number of reduce tasks is specified by the 

configuration mapred.reduce.tasks which is set by the 

setNumReduceTasks method. The Input in Line 5 is the input 

to each individual mapper. When Hadoop submits a job, it 

splits the input data logically, this is also known as Input 

splits, and these splits are processed by each mapper. The 

InputFormat.getSplits() method is responsible for generating 

the InputSplits which are converted by the RecordReader into 

a <key, value> pair format that can be read by each mapper 

for processing. For each InputSplit, a map task is created, 

hence the number of mappers required depends on the amount 

of InputSplits generated. The relationship between the input 

at the beginning and the input in line 5 is that the latter is a 

subset of the previous, which is m subsets as stated in line 4. 

The previous data is broken down into smaller chunks or input 

splits, and assigned to individual mappers for parallel 
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processing. The output in line 5 is the expected output from 

the map phase known as the intermediate output which is in a 

key/value pair format. It serves as Input to the reduce phase. 

In line 6 the Memo_Cache is created for storing the results 

from gain ratio computation. In Line 7, the For loop iterates 

on each of the attributes in the m subsets of the dataset, and 

line 8 checks if the values are numerical or nominal. If it is 

numerical (continuous values need to be converted to nominal 

values) then Line 9 sorts out the values in ascending order 

that is, from the smallest to the highest. 

In Line 11 A loop is created where an iteration is carried out 

on all values and the dataset is divides into two parts that is 

instances less than or equal to the current value, and instances 

greater than the current value. Lines 12 and 13 calculates the 

gain for every step while line 14 ends the loop. In Lines 15 

and 16, the value with the highest gain is selected as the 

threshold value. The Split Information for the optimal cut 

point is evaluated in Lines 17 and 18, this information 

determines how broadly and uniformly the attribute separates 

the data. 

 

Experimentation 

Computational environment 

Host System 

i. Windows 10 Pro Operating system 

ii. Intel Core i5-4210U CPU 

iii. 8.00 GB RAM 

iv. A 64 bit processor laptop (minimum operating 

frequency of 2.4GHz) 

Virtual System 

i. 6 GB RAM  

ii. 20.13 GB Hard Disk 

iii. Ubuntu 16.04 Long-Term Support (64-bit) Operating 

System 

iv. Netbeans IDE 8.1 

v. Hadoop Framework Installation setup 

 

Experimental Setup 

A single node Hadoop cluster experiment was carried out on 

a dual core personal computer with the CPU running at a clock 

rate 1.70GHz to 2.40GHz. Hadoop version 2.6 and JDK 

version 8 were installed on Linux Ubuntu with SSH properly 

configured to manage the nodes on the cluster. 

 

Data Collection 

The datasets used for the experiment were sourced from 

online open sourced repositories. This include the University 

of California Irvine (UCI) Machine Learning Repository, 

which is a pool of databases, domain theories, and data 

generators. Three data sets were downloaded from the 

repository namely diabetes, breast cancer and dermatology 

(Khan, n.d; Zwitter &Soklic 1988; llter & Guvenir, 1998) 

respectively, they are commonly used datasets in the machine 

learning community. The Fifa Worldcup dataset (Becklas, 

2018) and NBA Historical Stats and Betting Data (Hallmark, 

2018), were downloaded from Kaggle, which is a virtual 

community of data scientists while the Labour statistics 

dataset was retrieved from Data.gov. Repository. 

 

RESULTS AND DISCUSSION  

The proposed model was compared with the existing system 

with the execution time used as the performance metric for 

evaluating the result on different sizes of datasets.  

An experiment was carried out to assess the performance of 

the proposed algorithm using different sizes of datasets to 

measure the time it takes to run the proposed algorithm and 

that of the existing algorithm. Figure 3.1a, b and c shows the 

MapReduce log file statistics at different stages of processing

 

 
Figure 3a: Image of a Memoized MapReduce Process 
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Figure 3b: Image of Memoized MapReduce Process 

 

 
Figure 3c: Image of Memoized MapReduce Process 

 

Table 1: Comparing execution time between the proposed algorithm and the existing system 

 

S/No 
Datasets 

Time taken without 

Memoization (sec) 

Time taken with 

Memoization (sec) 

Percentage 

decrease in time 

1. Diabetes 4.02 4.22 - 4.7% 

2. Worldcups 3.31 1.6 51.66% 

3. Dermatology.csv 4.27 4.06 4.92% 

4. Breast cancer 3.84 3.82 0.52% 

5. Nba_players_all 5.66 5.26 7.07% 

6. Nba_betting_Totals 13.44 13.66 - 1.61% 

7. Nba_betting_money_line 13.79 12.4 10.08% 

8. Nba_betting_spread 13.87 14.24 - 2.66% 

9. Worldcupplayers 11.41 5.16 54.78% 

10. Ici_dec_18qtr 9.94 8.67 12.7% 

11. Ques-dec 18qtrs 19.99 19.26 3.65% 

 Total 103.54 92.35 10.80% 
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Figure 4: Comparing execution time 

 

The result in Table 1 above shows the execution time (in 

seconds) of the old system and the new system when applied 

on 11 datasets using the Mapreduce framework on a single 

node cluster environment. When compared with each other it 

was observed that the recommended system did better than 

the existing system except on three datasets where the results 

were negative - 4.7 %, - 1.66 % and - 2.6 % indicating a 

percentage increase in the execution time of the proposed 

system. The result is shown on the graph in Figure 4, with y 

axis showing the execution time and x axis the different 

datasets. 

The red colour indicates the time taken with memoization, 

while the blue colour depicts the time taken without 

memoization. The comparison of the results showed that the 

proposed algorithm performed better in some cases though 

not all. The ability of the memoization technique to store 

results of computation and make them available for reuse 

when the need arises without wasting time to re-compute 

them, has helped to enhance the C4.5 decision tree algorithm. 

 

CONCLUSION 

The C4.5 decision tree algorithm is an algorithm which is 

commonly used for classication and prediction in different 

applications, but its limitation in handling large datasets 

which results in high execution time has been one of the 

bottlenecks. Parallelising the C4.5 algorithm through the use 

of a MapReduce programming model has improved the 

algorithm by reducing the execution time. This research 

further enhanced the existing system by reducing the 

execution time through the application of memoization. The 

enhancement exhibited an average of  10.80 % decrease in 

execution time when compared with the time taken by the 

existing system. 
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