
DEVELOPMENT OF AN ENHANCED… Paul et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 5, October, 2023, pp 156 - 164 156

8

DEVELOPMENT OF AN ENHANCED C4.5 DECISION TREE ALGORITHM USING A MEMOIZED

MAPREDUCE MODEL

*1Paul, O. Florence, 1Obiniyi, A. Afolayan, 1Donfack-Kana, F. Armand and 2Paul, D. Elaoyi

1Department of Computer Science, Faculty of Physical Sciences, Ahmadu Bello University, Zaria,

2Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria,

*Corresponding authors’ email: bimione2004@gmail.com

ABSTRACT

Classification technique in data mining concentrates on the prediction of categorical or discrete target variables

which is designed to be handled by the classical C4.5 decision tree algorithm, an algorithm whose aim is to

produce a tree which accurately predicts the target variable for a new unseen data. However its recursive nature

poses a limitation when huge volume of dataset is involved; making computation more complex and resulting

in an inefficient implementation of the algorithm in terms of computing time, memory utilization and data

complexity. Meanwhile, several researches have been done to control these limitations. One of such

improvements is the parallelizing of the algorithm using the MapReduce model. This involves dividing the

large dataset into smaller units and sharing them on multiple computers for parallel processing, but the

recursive nature of the algorithm makes the cost of computing large number of repeated calculations quite

high, which is our concern in this work. . This research is aimed at reducing computation time further, by using

a memoized MapReduce model, which involves the saving of the result of previous calculations in a cache;

hence, when same calculations are encountered again, the cached result is returned, thus re-computation is

avoided. The cached result is considered a reduced cost compared to the computational cost of re-computation.

Keywords: Data mining, C4.5 Algorithm, Memoization, MapReduce, Hadoop

INTRODUCTION

The emergence of powerful computing and data storage

technologies has led to the explosion of massive data in the

area of medicine, agriculture, education, business and in

several other fields. It is important to note that the generation

of this huge amount of data can become a great challenge if

not properly harnessed (Jaseena et al., 2014). In the bid to

solve this problem, Gregory Piatetsky-Shapiro (a Data Mining

Expert) saw the need to discover useful knowledge from these

databases and this led to the first workshop on Artificial

Intelligence which took place in Detroit in 1989 where he

coined the phrase “Knowledge Discovery in Databases”

(KDD) (Piatetsky-Shapiro, 1991). A phrase which deals with

the overall process of obtaining useful knowledge from data

(Fayyad et al., 1996). Data mining is a method in KDD

process which involves the application of specific algorithms

for developing patterns from data. Majority of these

algorithms are limited in their capacity to deal with large

volume of data, therefore, the need to improve them has

become of great importance, so that their efficiency can be

enhanced.

Research has shown that most of these algorithms have

undergone series of improvements in order to enhance their

performance with regards to accuracy, execution time as well

as memory management. These algorithms perform well

when the data is small but does otherwise when the data is

large (Han and Kamber, 2006). C4.5 decision tree algorithm

is an example of such algorithms, it is an algorithm which is

widely used in classification due to its ability to perform well

in the prediction of unknown variables from data that is

already known. It is easy to use and the cost of implementing

it is less expensive compared to other classification

algorithms. The algorithm has undergone series of

improvements in order to enhance its efficiency in terms of

time and storage capability. However, the current

performance of the algorithm shows that it suffers from high

computational time and memory due to storage requirement.

To address this, this study propose to apply a novel method to

the high memory problem through memorized MapReduce

model. The remaining part of the paper is organized as

follows: The review of related work and concepts is presented

in section 2, while a detailed presented of methodology used

in the study are discussed in section 3. In sections 4 and 5,

experimentation, results and discussions are outlined, while

conclusion is drawn in section 6 to emphasize the findings

from the study.

Related Works

The work of Dai and Ji (2014) improved the C4.5 algorithm

through the introduction of the MapReduce programming

model,which involved the parallelization of the algorithm

through distributed computing, which resulted in time

efficiency and scalability of the algorithm. Data structures

were also designed to minimise communication cost which

was generated by the movement of some computations to the

external storage due to memory limitation. Wang et al., (2016)

proposed the classical SPRINT algorithm which was a

scalable and parallel method of the C4.5 decision tree. The

authors came up with a new method for improving the

calculation process by looking for a better candidate

segmentation point for the discrete and continuous attributes.

Muslim et al., (2017) also proposed an improvement of the

C4.5 algorithm for breast cancer diagnosis. In order to

enhance the accuracy of the algorithm, they combined the

Particle Swarm Optimization (PSO) algorithm with C4.5

algorithm. The combination of the two algorithms was used

to enhance attribute selection in the C4.5 algorithm, for a

better performance of the algorithm. Rajeshinigo and

Jebamaler, (2017) also improved on the accuracy in

prediction of the C4.5 algorithm by using the K-means

clustering algorithm to change continuous values into

categorical values. Cherfi et al., (2018) proposed a novel

method named VFC4.5, implying a Very Fast C4.5 algorithm.

It was meant to speed up and increase the performance of the

algorithm. VFC4.5 was able to handle the problem of the C4.5

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 7 No. 5, October, 2023, pp 156 - 164

DOI: https://doi.org/10.33003/fjs-2023-0705-1691

mailto:bimione2004@gmail.com
https://doi.org/10.33003/fjs-2023-0705-

DEVELOPMENT OF AN ENHANCED… Paul et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 5, October, 2023, pp 156 - 164 157

algorithm in managing continuous values through the

introduction of some of the statistical tools (for example the

mean and the median), as an ancillary to the original process

of finding the threshold in the C4.5 algorithm. Badgujar and

Sawant, (2017) improved the rule of C4.5 through the use of

L’Hospital Rule, which involved the use of an approximation

method to simplify the calculation process by removing the

logarithmic calculation involved in calculating the Gain-Ratio

in the C4.5 algorithm and approximating them with less

complex operations. Mu et al., (2017) proposed a parallelized

C4.5 decision tree algorithm built on MapReduce (MR-C4.5-

Tree) in order to solve the problem of memory restriction and

time complexity owing to large dataset. This research work

recommends an enhanced C4.5 decision tree algorithm using

a Memoized MapReduce model, which integrates a

memoization technique with the parallelized C4.5 decision

tree algorithm. This integration is meant to improve the

existing algorithm by further reducing the execution time,

thereby improving the performance of the algorithm. The

perceived trade-off as observed in the study is the cache

occupancy memory cost.

Memoization

Memoization is a technique from the concept of dynamic

programming, it used in computer programming to optimize

the performance of a function by caching its result for later

use. In other words the function stores the results of its

calculations in the memory so that when the same inputs occur

again, the cached result is returned. The term “Memoization”,

which means to memorise or remember was first introduced

by Donald Michie in the 60’s. His work was the first to show

the benefit of storing the result of a function in a table and re-

using it as the need arises (Suresh et al., 2016). He proposed

an effective Memoization in generalizing the context of

subproblems by using interpolants. This was meant to tackle,

the difficulty of effective reuse in subproblem solutions

within the field of dynamic programming (Jaffar et al., 2008).

A summary of the generalizations and its optimal solutions

was stored in a memo table to be reused when it encounters a

subproblem with a similar context in the search tree. It is an

approach that proffers hands-on problem-solving tools in

several application areas such as Artificial Intelligence, for

instance in Machine Learning Applications, it can be used to

speed up the training of models. It can also be used in Network

optimization, decision analysis, inventory problems,

computer science, agriculture, finance and medicine

(Sniedovich, 2004). A major disadvantage of this technique is

the overhead incurred on function calls. It trades memory for

speed, it uses more memory by storing the results of previous

computations in order to remove some code. execution. We

anticipate a slight memory swell during computation when

results are kept in cache for avoidance of re-computation.

The Classical C4.5 Decision Tree Algorithm

The traditional C4.5 algorithm which is used in building

decision trees and generating classification rules used in

decision making, is an improvement to a previous algorithm

created in 1986 by Quinlan Ross, namely the ID3 algorithm

(Iterative Dichotomiser 3) (Quilan, 1993). The C4.5 algorithm

was rated one of the top ten most influential data mining

algorithms in the research community (Wu, X., Kumar, V.,

Ross Quinlan, J. et al., 2008). It is a standard algorithm that

employs a divide-and-conquer method to grow decision trees,

this process is based on information gain ratio which is

evaluated by entropy. The measure of information gain ratio,

which is also referred to as feature selection measure is used

to select the test attribute at each node in the tree, where the

attribute with the maximum information gain ratio is chosen

as the best feature for the current node (Seema et al., 2013).

Hadoop

Hadoop is an open source software framework, which enables

data storage and the parallel distribution and processing of

large dataset on a group of interconnected computers, using

the Hadoop Distribution File System (HDFS) and

MapReduce programming model respectively. Its ability to

store data and run applications for data computation on the

same computer within the network gives it the capability to

process large volumes of data efficiently. Hadoop provides an

uncomplicated easy to use tool for the purpose of storage and

analysis of huge datasets as well as the management of large

number of computers. In addition to this, the components

within the Hadoop framework are built to handle hardware

failures. Its fault-tolerant capability enables the system to

keep working uninterruptedly despite the failure of one or

more machines within the network, this is made possible by

what is known as data replication or duplication in Hadoop.

MapReduce

The MapReduce programming paradigm is used in Hadoop

for the parallel and distributed processing of large datasets on

a network of computers (Dean and Gemawat, 2008; Zhu et

al., 2018). Users are able to manage a large amount of

information because of its flexibility and capacity to tolerate

faults while processing these data (Wang et al., 2014). Its

computation has two sides, namely Map phase and Reduce

phase. The former plays a crucial role in the processing and

analyzing of large datasets, at this phase a user defined

function known as mapper function is applied on the input

data from the HDFS which are stored as input files. The

InputFormat which an important component in the map phase

specifies how these input files are used for input by creating

InputSplits, each split is divided into records which are meant

to be processed by the mapper i.e. a record per mapper. The

RecordReader which is also a built-in component of this

phase converts the input data into a <key, value> pair format

which is suitable for the mapper to process. The mapper

processes each record in parallel and generates a new <key,

value> pair completely different from the input pair. The new

<key, value> pair is referred to as an intermediate output and

it is written to the local hard disk because it is a temporary

data. In between the mapper phase and the reducer phase is

the partitioning stage which partitions the mapper output

based on the key. The partitioner does this, by ensuring that

all the values for a particular key are grouped together and

sent to the same reducer such that an even distribution of the

map output is allowed over the reducer. The combiner like the

partitioner also acts on the mapper output, although it is

optional, its main function is to sum up the map output

according to their key values. The purpose of this function, is

to assist in saving as much bandwidth as possible by reducing

the amount of data that needs to be transferred over the

network to the reducer phase. The shuffled and sorted output

is then passed to the reducer phase as input, the reducer in turn

applies a user defined reduced function on the input and

performs a series of operations such as addition, filtration,

aggregation and finding the minimum or maximum value.

Finally the output of the reduce function is written to the

output file or sent to another MapReduce job for processing.

Hadoop Distributed File System (HDFS)

The Hadoop File System is designed for storing very large

number of files with streaming data access, which implies that

applications or instructions are executed directly using the

DEVELOPMENT OF AN ENHANCED… Paul et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 5, October, 2023, pp 156 - 164 158

MapReduce processing model. The HDFS has a master-slave

architecture, with cluster consisting of a single namenode

known as the master and several datanodes known as the

slaves. The namenode is so critical to the HDFS such that

when it fails or it is down, the Hadoop cluster becomes

inaccessible. One of its functions is that it stores information

about the actual data, that is, the real content which is stored

in form of blocks, in the datanode. These information includes

the location where the data resides in the datanode, the

number of blocks, block id and so on. As the masternode, it

communicates regularly with the slavenodes by keeping track

of the various activities that goes on within them. It supervises

the different tasks assigned to them and receives feedback on

how each task is being carried out. The namenode is also

responsible for replicating the data on a datanode to other

datanodes to help prevent any failure that may occur on any

node, thus ensuring that the network is not affected at all. Its

ability to handle these challenges makes it highly fault

tolerant and reliable. The datanodes on the other hand are

responsible for storing and retrieving data in the form of

blocks. They maintain data integrity by ensuring that the

stored data are accurate, complete and consistent.

MATERIALS AND METHODS

Proposed Architecture

The proposed system architecture in figure 1 below shows the

integration of the memoization technique at the map phase.

This is the point where the gain-ratio is calculated for each

attribute, in order to determine the attribute with the highest

gain-ratio that would be selected for splitting the dataset.

Figure 1: Memoized MapReduce Architecture

Memoized MapReduce Flowchart

In Figure 2 below, the flowchart depicts the workflow in the

proposed method. The input to the system is the attribute Ak

(where k = 1,2, …….. n) in the m subsets. The algorithm

checks the cache to ensure if the input and corresponding

result of the calculation exists in the hash table [line 26]. If the

result exists in the cache, it is returned and used [line 27], but

if it does not exist [line 28], the gain-ratio is evaluated by

taking the ratio of the quantity of information gained to the

intrinsic information for each value of an attribute and storing

the result into the variable ‘value’. The variable ‘value’ is then

stored in the memoization cache to be used when the need for

it arises [line 30 & 31].

DEVELOPMENT OF AN ENHANCED… Paul et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 5, October, 2023, pp 156 - 164 159

Figure 2: Memoized MapReduce flowchart

DEVELOPMENT OF AN ENHANCED… Paul et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 5, October, 2023, pp 156 - 164 160

Proposed Algorithm

Input: A training data X:

Output: A selected attribute Ak and the cut points cp(k^*)(X).

1: Initialise a Hadoop Job SELECTJOB:

2: Set SelectTaskMapper as the Mapper class

3: Set SelectTaskReducer as the Reducer class

4: Adjust the block size of HDFS until the dataset X can be divided into m splits {Xj}(j=1)^m

5: In the j-th SelectTaskMapper:

 Input: Xj = (xi)(i =1)^N, where xi is the i-th occurrence with n attributes (Ak)(k=1)^n

 Output: 〈key,value〉 = 〈Ak,[Ratiok(Xj,Ak),cpk(Xj)]〉
6: Memo_Cache ={ }

7: for each attribute Ak, k =1,2,…..,n do

8: if Ak is numerical then

9: Sort its values x1k,……,xNk and record as x1k^*,…..,xNk^*

10: Find all cut points cpik = (xik^* + x(i+1,k)^*)/2 ,i=1,….,N-1

11: for each cut points cpik do

12: Calculate the Information Gain:

13: Gain(Xj,cpik) = Info(Xj)-[|xij^1|/|xj| Info(Xij^1) + |xij^2 |/|xj| Info(Xij^2)] where

 Xij^1={xi∈Xj│xik ≤ cpik },Xij^2 ={xi∈Xj│xik > cpik} and symbol |x| is size of x

14: end

15: Select the optimal cut point cpk(Xj) = cp(i^* k) of Ak:

16: i^* = argmax{Gain(Xj,cpik)}(i=1)^(N-1)

17: Calculate the split information of cpk(Xj):

18: Split(Xj,cpk(Xj)) = -[|x(i^* k)^1|/|xj| log2|x(i^* k)^1|/|xj| + |x(i^* k)^2 |/|xj| log2|x(i^* k)^2 |/|xj|]

19: else

20: Cut points: cpk = ⋃(i=1)^C{xik^' },

 where xik^' ∈{x1k,…,xNk},C is the number of attribute values

21: Calculate the Information Gain:

22: Gain(Xj) = Info(Xj) -∑(i=1)^C|xj^i|/|xj| Info(Xj^i) where Xj^i ={xi∈X│xik = xik^'}

23: Calculate the split information of cpk

24: Split(Xj,cpk (Xj)) = -∑(i=1)^C|xj^i |/|xj| log2|xj^i |/|xj|

25: end

26: If Memo_Cache[Ak]not null

27: Ratio(Xj,Ak) = Memo_Cache[Ak]

28: else

29: Calculate the gain ratio of Ak: Ratio(Xj,Ak) = Gain(Xj,cpk (Xj))/(Split(Xj,cpk (Xj)))

30: Memo_Cache[Ak] = Ratio(Xj,Ak)

31: end

32: Mapper Output: 〈key,value〉 = 〈Ak ,[Ratiok(Xj,Ak),cpk (Xj)]〉
33: end

34: In the SelectTaskReducer:

 Input: 〈key,value〉 = 〈Ak, List[Ratiok(Xj,Ak),cpk(Xj)]〉,j = 1,2,…,m

 Output: 〈key,value〉 = 〈A(k^*),[Ratio(k^*)(X),cp(k^*)(X)]〉
35: for each attribute Ak do

36: Ratiok(X) =∑(j=1)^m Ratiok(Xj,Ak)

37: cpk(X) = (∑(j=1)^m cpk(Xj))/m (Ak is Numerical) or cpk(X) = U(j=1)^(j=m) cpk(Xj) (Ak is not Numerical)

38: end

39: Select the optimal index, where k^*= argmax{Ratiok(X)}(k=1)^n

40: Reducer Output: 〈key,value〉 = 〈A(k^*),[Ratio(k^*)(X), cp(k^*)(X)]〉
41: return A(k^*) and cp(k^*)(X).

Algorithm 1: Modified Attribute Selection Algorithm (MR-A-S)

The Input at the beginning of the algorithm is the data saved

into the Hadoop Distributed File System (HDFS), at this point

the file is broken down into blocks of size 128MB each and

dispersed across datanodes in the hadoop distributed file

system. However, Output is the expected output after the best

attribute, which has the maximum gain ratio has been selected

for splitting the dataset at each node for the building of the

decision tree. In lines 1-4: During the job initialization, the

job tracker creates an object to track the tasks and their

progress. At this stage the map tasks for each InputSplit are

created and the number of reduce tasks is specified by the

configuration mapred.reduce.tasks which is set by the

setNumReduceTasks method. The Input in Line 5 is the input

to each individual mapper. When Hadoop submits a job, it

splits the input data logically, this is also known as Input

splits, and these splits are processed by each mapper. The

InputFormat.getSplits() method is responsible for generating

the InputSplits which are converted by the RecordReader into

a <key, value> pair format that can be read by each mapper

for processing. For each InputSplit, a map task is created,

hence the number of mappers required depends on the amount

of InputSplits generated. The relationship between the input

at the beginning and the input in line 5 is that the latter is a

subset of the previous, which is m subsets as stated in line 4.

The previous data is broken down into smaller chunks or input

splits, and assigned to individual mappers for parallel

DEVELOPMENT OF AN ENHANCED… Paul et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 5, October, 2023, pp 156 - 164 161

processing. The output in line 5 is the expected output from

the map phase known as the intermediate output which is in a

key/value pair format. It serves as Input to the reduce phase.

In line 6 the Memo_Cache is created for storing the results

from gain ratio computation. In Line 7, the For loop iterates

on each of the attributes in the m subsets of the dataset, and

line 8 checks if the values are numerical or nominal. If it is

numerical (continuous values need to be converted to nominal

values) then Line 9 sorts out the values in ascending order

that is, from the smallest to the highest.

In Line 11 A loop is created where an iteration is carried out

on all values and the dataset is divides into two parts that is

instances less than or equal to the current value, and instances

greater than the current value. Lines 12 and 13 calculates the

gain for every step while line 14 ends the loop. In Lines 15

and 16, the value with the highest gain is selected as the

threshold value. The Split Information for the optimal cut

point is evaluated in Lines 17 and 18, this information

determines how broadly and uniformly the attribute separates

the data.

Experimentation

Computational environment

Host System

i. Windows 10 Pro Operating system

ii. Intel Core i5-4210U CPU

iii. 8.00 GB RAM

iv. A 64 bit processor laptop (minimum operating

frequency of 2.4GHz)

Virtual System

i. 6 GB RAM

ii. 20.13 GB Hard Disk

iii. Ubuntu 16.04 Long-Term Support (64-bit) Operating

System

iv. Netbeans IDE 8.1

v. Hadoop Framework Installation setup

Experimental Setup

A single node Hadoop cluster experiment was carried out on

a dual core personal computer with the CPU running at a clock

rate 1.70GHz to 2.40GHz. Hadoop version 2.6 and JDK

version 8 were installed on Linux Ubuntu with SSH properly

configured to manage the nodes on the cluster.

Data Collection

The datasets used for the experiment were sourced from

online open sourced repositories. This include the University

of California Irvine (UCI) Machine Learning Repository,

which is a pool of databases, domain theories, and data

generators. Three data sets were downloaded from the

repository namely diabetes, breast cancer and dermatology

(Khan, n.d; Zwitter &Soklic 1988; llter & Guvenir, 1998)

respectively, they are commonly used datasets in the machine

learning community. The Fifa Worldcup dataset (Becklas,

2018) and NBA Historical Stats and Betting Data (Hallmark,

2018), were downloaded from Kaggle, which is a virtual

community of data scientists while the Labour statistics

dataset was retrieved from Data.gov. Repository.

RESULTS AND DISCUSSION

The proposed model was compared with the existing system

with the execution time used as the performance metric for

evaluating the result on different sizes of datasets.

An experiment was carried out to assess the performance of

the proposed algorithm using different sizes of datasets to

measure the time it takes to run the proposed algorithm and

that of the existing algorithm. Figure 3.1a, b and c shows the

MapReduce log file statistics at different stages of processing

Figure 3a: Image of a Memoized MapReduce Process

DEVELOPMENT OF AN ENHANCED… Paul et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 5, October, 2023, pp 156 - 164 162

Figure 3b: Image of Memoized MapReduce Process

Figure 3c: Image of Memoized MapReduce Process

Table 1: Comparing execution time between the proposed algorithm and the existing system

S/No
Datasets

Time taken without

Memoization (sec)

Time taken with

Memoization (sec)

Percentage

decrease in time

1. Diabetes 4.02 4.22 - 4.7%

2. Worldcups 3.31 1.6 51.66%

3. Dermatology.csv 4.27 4.06 4.92%

4. Breast cancer 3.84 3.82 0.52%

5. Nba_players_all 5.66 5.26 7.07%

6. Nba_betting_Totals 13.44 13.66 - 1.61%

7. Nba_betting_money_line 13.79 12.4 10.08%

8. Nba_betting_spread 13.87 14.24 - 2.66%

9. Worldcupplayers 11.41 5.16 54.78%

10. Ici_dec_18qtr 9.94 8.67 12.7%

11. Ques-dec 18qtrs 19.99 19.26 3.65%

 Total 103.54 92.35 10.80%

DEVELOPMENT OF AN ENHANCED… Paul et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 5, October, 2023, pp 156 - 164 163

Figure 4: Comparing execution time

The result in Table 1 above shows the execution time (in

seconds) of the old system and the new system when applied

on 11 datasets using the Mapreduce framework on a single

node cluster environment. When compared with each other it

was observed that the recommended system did better than

the existing system except on three datasets where the results

were negative - 4.7 %, - 1.66 % and - 2.6 % indicating a

percentage increase in the execution time of the proposed

system. The result is shown on the graph in Figure 4, with y

axis showing the execution time and x axis the different

datasets.

The red colour indicates the time taken with memoization,

while the blue colour depicts the time taken without

memoization. The comparison of the results showed that the

proposed algorithm performed better in some cases though

not all. The ability of the memoization technique to store

results of computation and make them available for reuse

when the need arises without wasting time to re-compute

them, has helped to enhance the C4.5 decision tree algorithm.

CONCLUSION

The C4.5 decision tree algorithm is an algorithm which is

commonly used for classication and prediction in different

applications, but its limitation in handling large datasets

which results in high execution time has been one of the

bottlenecks. Parallelising the C4.5 algorithm through the use

of a MapReduce programming model has improved the

algorithm by reducing the execution time. This research

further enhanced the existing system by reducing the

execution time through the application of memoization. The

enhancement exhibited an average of 10.80 % decrease in

execution time when compared with the time taken by the

existing system.

REFERENCES

Badgujar, G., & Sawant, K. (2017). Improved C4.5 Decision

Tree Classifier Algorithm for Analysis of Data Mining

Application. International Journal for Research in

Engineering Application & Management, 2(10), 18-24.

Becklas, A. (2018). FIFA World Cup. Kaggle Repository.

Kaggle Inc. Retrieved October 17, 2019, from

https://www.kaggle.com/abecklas/fifa-world-cup

Cherfi, A., Nouira, K., & Ferchichi, A. (2018). Very Fast C4.5

Decision Tree Algorithm. Applied Artificial Intelligence,

32(2), 119–137. doi:10.1080/08839514.2018.1447479

Dai, W., & Ji, W. (2014). A MapReduce Implementation of

C4.5 Decision Tree Algorithm. International Journal of

Database Theory Application, 7(1), 49-60.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified

data processing on large clusters. Proceedings of the 6th

conference on Symposium on Opearting Systems Design &

Implementation -, 6, pp. 137-150. San Francisco, CA.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From

Data mining to Knowledge Discovery in Databases. AI

Magazine, 17(3), 37-54.

Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J.

(1992). Knowledge discovery in databases: an overview. AI

Magazine, 13(3), 57-70.

Hallmark, E. (2018). NBA Historical Stats and Betting Data.

Kaggle Repository. Kaggle Inc. Retrieved August 13, 2019,

from https://www.kaggle.com/ehallmar/nba-historical-stats-

and-betting-data

Han, J., & Kamber, M. (2006). Data Mining: Concepts and

Techniques (2nd ed.). San Francisco, CA, USA: Morgan

Kaufmann.

Jaffar, J., Santosa, A. E., & Voicu, R. (2008). Efficient

Memoization for Dynamic Programming with Ad-Hoc

Constraints. Proceedings of the Twenty-Third AAAI

Conference on Artificial Intelligence, (pp. 297-303). Chicago,

USA.

0

5

10

15

20

25

Ex
ec

u
ti

o
n

 t
im

e
(S

ec
)

Datasets

Comparing execution time

without memo with memo

DEVELOPMENT OF AN ENHANCED… Paul et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 7 No. 5, October, 2023, pp 156 - 164 164

Jaseena , K. U., & David, J. M. (2014). Issues, Challenges and

Solutions : Big Data Mining. Sixth International Conference

on Networks & Communications, (pp. 131–140).

doi:10.5121/csit.2014.41311

 Kahn, M. (n.d.). Diabetes Data Set. UCL Machine Learning

Repository. St. Louis: Center for Machine Learning and

Intelligent Systems. Retrieved August 13, 2019, from

https://archive.ics.uci.edu/ml/datasets/Diabetes

Ilter, N., & Guvenir, H. A. (1998, January 1). Dermatology

Data Set. UCI Machine Learning Repository. Ankara, Turkey:

Center for Machine Learning and Intelligent Systems.

Retrieved August 13, 2019, from

https://archive.ics.uci.edu/ml/datasets/Dermatology

Mu, Y., Liu, X., Yang, Z., & Liu, X. (2017). A parallel C4.5

decision tree algorithm based on MapReduce. Concurrency

and Computation. Concurrency and Computation: Practice

and Experience, 29(8), 1-12. doi:10.1002/cpe.4015

Muslim, M. A., Rukmana, S. H., Sugiharti, E., Prasetiyo, B.,

& Alimah, S. (2018). Optimization of C4.5 algorithm-based

particle swarm optimization for breast cancer diagnosis.

Journal of Physics: Conf. Series, 983(2018), 1-8.

doi:10.1088/1742- 6596/983/1/012063.

Piatetsky-Shapiro, G. (1991). Knowledge Discovery in Real

Databases. AI Magazine, 11(5), 68-70.

Quinlan, J. (1993). C4.5: Programs for machine learning

(Vol. 16). San-Mateo, CA: Morgan Kaufman.

Rajeshinigo, D., & Jebamalar, J. P. (2017). Accuracy

Improvement of C4.5 using K Means Clustering.

International Journal of Science and Research, 6(6), 2755-

2758.

Seema, S., Agrawal, J., & Sharma, S. (2013). Classification

through Machine Learning. International Journal of

Computer Applications, 82(16), 20- 27

Sniedovich, M., & Lew, A. (2006). Dynamic Programming :

an overview. Control and Cybernatics, 35(3), 513-533.

Suresh, A., Swamy, B. N., Rohou, E., & Seznec, A. (2015).

Intercepting Functions for Memoization: A Case Study Using

Transcendental Functions. ACM Transsactions on

Architecture and Code Optimization, 12(2), 18:1-18:23.

Wang, B., Huang, S., Qiu, J., Liu, Y., & Wang, G. (2014).

Parallel online sequential extreme learning machine based on

MapReduce. Neurocomputing, 149, 224-232.

Wang, Z., Wang, J. Huo, Y. Tuo, Y., & Yang, Y. (2016) “A

Searching Method of Candidate Segmentation Point in

SPRINT Classification,” Journal of Electrical and Computer

Engineering, vol. 2016, pp. 1-5. doi:10.1155/2016/2168478

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q.,

Motoda, H.. Geoffery, J.M., Ng, A., Liu, B., Yu, P.S., Zhou,

Z., Steinbach, M., Hand, D.J., & Steinberg, D. (2008) “Top

10 algorithms in data mining,” Knowledge Information

System, 14, pp. 1–37.

Zhu, F., Tang, M., Xie, L., & Zhu, H. (2018). A Classification

Algorithm of CART Decision Tree based on MapReduce

Attribute Weights. International Journal of Performability

Engineering, 14(1), 17-25. doi:10.23940/ijpe.18.01.p3.1725

Zwitter, M., & Soklic, M. (1988, July 11). Breast Cancer Data

Set. UCI Machine Learning Repository. Ljubljana,

Yugoslavia: Center for Machine Learning and Intelligent

Systems. Retrieved August 13, 2019, from

http://mlr.cs.umass.edu/ml/datasets/Breast+Cancer

 ©2023 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

https://creativecommons.org/licenses/by/4.0/

