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ABSTRACT 

This paper presents an analysis of the effect of free vibrations of a free-free beam, fixed-fixed beam and simply 

supported beam using the series solution. It was found that the mode shape for each of the modes has effects 

on the displacement or deflection of such beam so that the deflection increases as the increase of the mode. 

Also, a Simply-Supported beam has a lower displacement compared to the free-free beam and fixed-fixed beam 

which almost have the same displacement. At mode one, it is seen that a Simply Supported beam has a higher 

amplitude, followed by a free-free beam and then a fixed-fixed beam. 
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INTRODUCTION 

The vibration analysis for structures is a very important field in 

engineering and computational mechanics. These dynamic 

problems are classically described by partial differential 

equations associated with a set of boundary conditions. The 

analysis of free vibration of the beam has been a topic of interest 

for well over a century.  

Doyle and Pavlovic (1982) solved analytically the free vibration 

equation of the beam on a partially elastic foundation including 

only bending moment effect. West and Mafi (1984) obtained the 

eigenvalues for free vibration of beam-column systems on an 

elastic foundation using a numerical approach. Catal (2002) 

used the separation of variables used to obtain the free vibration 

circular frequencies of piles partially embedded in soils. Chen 

and Ho (1996) examined the free and transverse vibration 

problems of a rotating twisted Timoshenko beam under axial 

loading. The method of differential transform method (DTM) 

was employed to solve the eigenvalue problems for free and 

transverse vibration problems of a rotating twisted Timoshenko 

beam under axial loading. In addition, the differential transform 

method (DTM) has been proposed to solve eigenvalue problems 

for free and transverse vibration problems of a rotating twisted 

Timoshenko beam under axial loading (Chen and Ho, 1999).  

Furthermore, Ozdemir and Kaya (2006) studied the dynamic 

response of a tapered cantilever Bernoulli-Euler beam. They also 

used the differential transform method (DTM) to find the non-

dimensional natural frequencies of tapered cantilever Bernoulli-

Euler beam. Catal (2008) examines the free vibration equations 

for one end clamped and another end simply supported beam on 

elastic foundation. The governing equations were solved, by 

using the differential transform method (DTM) for various axial 

loads acting on the beam. The beam on the elastic foundation 

was investigated for these three different support conditions 

considering the various values of the ratio of the axial load acting 

on the beam to Euler Bernoulli. Also, Somia (2013) studied the 

dynamic response of a tapered cantilever Bernoulli-Euler beam. 

Differential transform method (DTM) was also used to find the 

non-dimensional natural frequencies of tapered cantilever 

Bernoulli-Euler beam. 

Douka and Hadjileontiadis (2005) have investigated the 

dynamic behavior of a cantilever beam both theoretically and 

experimentally. Empirical mode decomposition and Hilbert 

transform were used and the instantaneous frequency was 

obtained. It was seen that the instantaneous frequency oscillation 

revealed breathing behavior. The changes in frequencies were 

small. Loutridis at. el. (2005) have developed a new method 

reliant on the instantaneous frequency and empirical mode 

decomposition using theoretical and experimental investigations 

that were done on a cantilever beam due to a harmonic excitation 

for presenting the dynamic response. It was seen that the 

instantaneous frequency oscillation revealed the breathing 

phenomenon. This time-frequency approach was better 

compared to Fourier analysis and is more effective for finding 

the dynamic response of the beam. Firouz-Abadi et al. (2007) 

studied the transverse free vibrations of a class of variable-cross 

section beams using Wentzel-Kramers-Brillouin (WKB) 
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approximation. The governing equation of motion for the Euler-

Bernoulli beam including axial force distribution was utilized to 

obtain a singular differential equation in terms of the natural 

frequency of vibration and a WKB expansion series was applied 

to find the solution. Ariaei, Ziaei-Rad, and Ghayour (2009) 

presented both analytical and calculation methods to determine 

the dynamic behavior of the un-damped Euler–Bernoulli 

breathing beams under a point moving mass using discrete 

element technique and the finite element method. It was 

observed that there were higher deflections and change in beam 

response was seen. The largest deflection in the beam for a 

particular speed takes long to build up. Huang and Li (2010) 

investigated the free vibration of axially functionally graded 

beams with variable flexural rigidity and mass density. The 

investigation into the dynamic response of a Bernoulli beam 

resting on a Winkler foundation under the action of uniform 

partially distributed moving load was presented by Usman 

(2003). The finite difference method was used to solve the 

coupled partial differential equation, the result revealed that the 

amplitude of the beam resting on the Winkler foundation 

increases with an increase in the value of the foundation 

constant. Papadimitriou et. al. (2005) provides a methodology 

for the optimal establishment of the number and location of 

sensors on randomly vibrating structures for the purpose of the 

response predictions at unmeasured locations in structural 

systems. 

Kozien (2013) analyzed the analytical solutions of excited 

vibrations of the Euler-Bernoulli beam, in the general case of the 

external loading function. The distribution theory was applied to 

formulate a solution when the external functions are the 

concentrated force type or the concentrated moment type.  

Meanwhile, Coskun et al. (2011); Ozturk, (2009); Snamina et al. 

(2012a, 2012b); Sriram and Craig, (1992); Trucco and Verri, 

1998; Van der Avweraer et al, (2002) used both the variational 

iteration method (VIM) and homotopy perturbation method 

(HPM) to solve the free vibration equations of beam on elastic 

foundation for support conditions of one end clamped, and 

another end simply supported, both ends clamped and both ends 

simply supported considering various case studies. Civalek and 

Ozurk (2010) studied the dynamic behavior of the tapered 

column with pinned ends embedded in the Winkler-Pasternak 

elastic foundation.  

Pesterve et al. (2015) developed simple tools for finding the 

maximum deflection of a beam for any given velocity of the 

traveling force. It’s shown that for given boundary conditions, 

there exists a unique response velocity dependence function. 

They suggested a technique to determine this function which is 

based on the assumption that the maximum beam response can 

be adequately approximated by means of the first mode. 

Also, the maximum response function is calculated analytically 

for a simply supported beam and constructed numerically for a 

clamped-damped beam. Friction dampers are another common 

passive vibration control system that dissipates energy through 

friction forces. These forces are generated with moving parts by 

sliding over each other. The energy dissipated by a friction 

damper reduces the energy demand on the structure and damps 

the structural response. The friction damper system includes the 

friction unit and a structural system in order to integrate the 

friction unit with the structure. The structural system can be 

either steel braces bolted to corner regions of the open bay space 

in the frame or an infill wall with gaps around the edges to 

prevent stiffness interaction of the wall with the frame members. 

Friction dampers are used as sacrificial or non-sacrificial 

elements. Their utilization as sacrificial elements is a very 

common attitude in a civil engineering environment. In 

earthquake engineering applications, some of the structural 

members might be sacrificed in order to prevent the collapse of 

the entire structure. These structural members absorb and 

dissipate the transmitted energy through plastic deformation in 

specially detailed regions. Location of the friction damper and 

stiffness of the braces which are used in order to install dampers 

are the main factors that affect the design parameters of the 

damper. 

Usman et al. (2018) presented an analysis of free vibrations of a 

cantilever beam and simply supported beam using a series 

solution. It was found that the deflection of the beam increases 

as the length of the beam increases for a cantilever beam but 

decreases for the case of a simply supported beam. The response 

amplitude of a cantilever beam is greater than that of a simply 

supported beam. 

The deflection of the beam can be studied using different beam 

theories approach which includes the Euler-Bernoulli beam, 

Shear beam, Rayleigh beam and Timoshenko beam This study 

investigates the deflection of the free vibration of Timoshenko 

beam. The aim of this paper is to investigate the effect of various 

parameters on the vibration of the free Euler-Bernoulli beam 

with different boundary conditions. In order to achieve the set 

aim, the following are the objectives of this study, which are:  

1 .To give a comprehensive analysis of free vibration of 

Euler-Bernoulli beam 

2 . To present a very simple and practical technique for 

determining the response of Euler-Bernoulli beams with 

different boundary conditions (Simply Supported, Free-

Free and Fixed-Fixed Condition). 
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3. To compare between Simply Supported, Free-Free and 

Fixed-Fixed Euler-Bernoulli Beam. 

 

MATHEMATICAL FORMULATION 

In this work, a uniform beam of free vibration is considered the 

free vibration of a beam of finite length L, the differential 

equation for the free vibration of a beam when the beam is of 

constant flexural rigidity EI is given as  

 

= 0     (1) 

where: 

E = Coefficient of elasticity, I = is the moment of inertia of the beam cross-section, ρ =Density of the mass, A = Surface area of the 

beam t = Time coordinate x = Spatial coordinate ρA = Mass per unit length, V (x,t) = is the deflection of the beam.  

The boundary conditions: 

Three cases are considered in this work, namely beams which are Fixed-beam, free beam and simply supported beam respectively. 

𝑉(𝑥, 𝑡) =
𝜕𝑣(𝑥, 𝑡)

𝜕𝑥
= 0   𝑎𝑡  𝑥 = 0   𝑜𝑟  𝑥 = 𝐿 

𝑉(𝑥, 𝑡) =
𝜕2𝑣(𝑥,𝑡)

𝜕𝑥2
= 0   𝑎𝑡 𝑥 = 0   𝑜𝑟  𝑥 = 𝐿 

𝜕2𝑣(𝑥,𝑡)

𝜕𝑥2
=

𝜕3𝑣(𝑥,𝑡)

𝜕𝑥3
= 0   𝑎𝑡 𝑥 = 0   𝑜𝑟  𝑥 = 𝐿 

𝜕𝑣(𝑥, 𝑡)

𝜕𝑥
=

𝜕3𝑣(𝑥, 𝑡)

𝜕𝑥3 = 0   𝑎𝑡 𝑥 = 0   𝑜𝑟  𝑥 = 𝐿 

and finally the initial conditions are: 

V (x,0) = V0(x)  

) = 0       

METHOD OF SOLUTION 

In this section, the initial-boundary value problem described by equations (1),(2),(3),(4),(5),(6) and (7). To the effect, is assume that 

the unknown Lateral deflection 𝑉(𝑥, 𝑡) of the beam resting on a foundation can be expressed as 

V (x,t) = F(x)sin(ωt + α) 

The equation can be written as; 

 
Solution of the Spatial Function/Mode Shape Function 

we shall consider the solution of the spatial function and then apply the boundary conditions considering two cases of the beam, the 

simply supported beam, and the cantilever beam. From the equation, with K = λ4 

Five − λ4F = 0 

The general solution now becomes 

     

Simply Supported Beam 

For a simply supported beam, we have that the displacement and the bending moments ar zero at both ends, this translate into the 

following boundary conditions 

𝑉 (0, 𝑡)  =  0 =  𝑉 (𝐿, 𝑡)  

  

       

(2) (3) 

(4) 

(5) 

(6) 
(7) 

(8) 

(9) 

(10) 
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Substituting the expression V in the boundary conditions, we have 

      

as the free vibration solution of a simply supported beam. 

 

 

Free-Free Beam 

For a free-free beam, we have that the bending moment and shear forces are zero at both ends which translate into the following 

boundary conditions 

 

     

 

Substituting the expression V in the boundary conditions, we have 

)   

Equation (15) is the free vibration of a Free-Free beam. 

Fixed-Fixed Beam 

For a fixed-fixed beam, we have that the displacement and slope are zero at both ends which translate into the following boundary 

condition 

V (0,t) = 0 = V (L,t)  

        

Substituting the expression V in the boundary conditions 

)  

Equation (18) is the free vibration of a Fixed-Fixed beam. 

 

 

RESULTS AND DISCUSSION 

In order to validate our model in the previous section, the following beam dimension and specification are used: 

The beam was made of steel  

E=2.1×1011N 

Length (L)=10 m 

Density of the mass (ρ) = 7800kg/m3 

The surface area of the beam cross-section A=0.01×0.01m2 

Moment of Inertia I = 8.33 × 10−17m4 alpha(α)=0.005; 

 

  

(11) 

(12) 

(13) 

(14) 

(15) (16) 

(17) 
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DISCUSSIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: First five mode shapes for Fixed-Fixed Beam 

 

Figure 1 shows the mode shape for Fixed-Fixed Beam while figure 2 display the mode shape for Free-Free Beam, it is found that 

the resonance frequencies are the same for both cases (Free-Free beam and Fixed-Fixed beam) except that in the case of Fixed-

Fixed beam, there is no translation and rotation at ω = 0 since it is not allowed by the boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: First five mode shapes for Free-Free Beam 

 

Figure 2 shows the modal shapes for the simply supported beam.  
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Figure 3: First five mode shapes for Simply Supported Beam 

 

Figure 3 shows the mode shape for a Simply Supported Beam, It can be seen that as the number of mode increases the amplitude 

also increases which shows that the mode shape for each of the modes has effects on the displacement or deflection of such beam 

so that the deflection increases as the modes increases. 

 

 
Figure 4: Displacement of a Simply Supported Beam for n=1...5 

Figure 4 shows displacement for the simply supported beam. 
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Figure 5: Displacement of a Free-Free Beam for n=1...5 

 

Figure 5 SHOW displacement for a force-free and fixed beam for the values of n=1 to 5 

 

 
Figure 6: Displacement of a Fixed-Fixed Beam for n=1…5 

 

Figure 4, 5 and 6 Shows the displacement of a Simply Supported Beam, Free-Free Beam, and Fixed-Fixed respectively for the 

summation of n=1 to 5. It is found that the amplitude decreases along the axis. Figure 7 displays the comparison between the 

displacement of a Simply Supported, Free-Free and Fixed-Fixed Beam for n=1 to 5. It is found that a Simply-Supported beam has 

a lower displacement compared to the Free-Free Beam and Fixed-Fixed Beam which almost have the same displacement. 
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Figure 7: Displacement Comparison for n=1..5 between Simply Supported, Free-Free and Fixed-Fixed Beam. 

 
Figure 8: Displacement Comparison for n=1 between Simply Supported, Free-Free and Fixed-Fixed Beam 

 

Figure 8 displays the comparison for n=1 between the displacement of a Simply Supported, Free-Free and Fixed-Fixed beam. At 

mode one, it is seen that a Simply Supported beam has a higher amplitude, followed by a Free-Free beam and then a Fixed-Fixed 

beam. 

 

CONCLUSION 

The effect of free vibration of the Euler-Bernoulli beam for 

various support conditions is considered in this paper. The 

governing equation of the fourth-order partial differential 

equation was solved using a series solution. The deflection for 

various values of the length of the beam was considered for each 

of the beams and was plotted against x using a computer program 

(MATLAB). 

It can be concluded from the Figures (4.1)-(4.8) above that the 

mode shape for each of the modes has effects on the 

displacement or deflection of such beam so that the deflection 

increases as the modes increase. Also, a Simply-Supported beam 

has a lower displacement compared to the Free-Free Beam and 

Fixed-Fixed Beam which almost have the same displacement. 

At mode one, it is seen that a Simply Supported beam has a 

higher amplitude, followed by a Free-Free beam and then a 

Fixed-Fixed beam.  
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