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ABSTRACT 

This paper presents numerical scheme for solving singular Volterra integral equations via midpoint rule. The 

functions were approximated under the integrals by considering the non-variable subinterval. The convergence 

analysis of the error bound of the scheme is established. The numerical results show that the scheme has less 

number of iterations to obtain the best errors compared with other method. 
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INTRODUCTION 

Singular Volterra integral equations are of high applicability in 

different areas of applied mathematics, physics and chemistry, 

Rahbar and Hashemizadeh (2008). Singular Volterra integral 

equation can be viewed as the form 

          𝑢(𝑡) = ∫
𝑠𝜇−1

𝑡𝜇

𝑡

0
𝑢(𝑠)𝑑𝑠 + 𝑔(𝑡),   𝑡 ∈ (0, 𝑇]            (1) 

With 𝜇> 0, g(t) ∈ 𝐶[0, 𝑇] is a given function and the kernel of 

the equation is of weaklytype that has been considered in several 

works. The precise analysis of (1) depends particularly on the 

value of 𝜇, if 𝜇> 1 the kernel has singularity at t = 0 and a 

function g leads to the smooth solution u. However, if 0 <𝜇< 1 

then, thekernel has singularities at both t = 0 and s = 0 for all 

value of t. Lima and Diogo (1997) developed an extrapolation 

algorithm, based on Eulers method. Also Lima and Diogo in 

(2002) proved that the Eulers method converges to a particular 

solution and showed that the asymptotic error expansion 

converges to order 𝜇. Diogo and Lima (2004) investigated the 

application of product integration method for the numerical 

solutions. In (2005) Diogo et al. obtained the analytic results for 

the existence and uniqueness solutions of (1). Diogo et al. 

(2006) obtained the numerical schemes of Eulers and 

Trapezoidal methods, also Proved the convergence of the error 

bound analysis of the methods. Also in (2006) Diogo et al. used 

the product Eulers and classical Trapezoidal methods over an 

initial time interval of the split-interval method. However Diogo 

and Lima (2007) analyzed discrete supperconvergence 

properties of spline collocation solutions of (1). Diogo and Lima 

(2008) proved that a higher orderattained at the meshes points 

by special choice of the collocation methods. Also Diogo (2009) 

Used iterated collocation methods. Al-Jawary and Shehan 

(2015) implemented an efficient method for the exact solutions 

of (1). Wazwaz et al. (2013) used systematic modified Adomian 

decomposition method for solving singularproblems. Prajapati 

et al. (2012) used friendly algorithm based on the variational 

iteration method of singular integral equations. 

In this paper we consider the work of Diogo et al. (2006) where 

we used the Midpoint method, in the case 0 <𝜇< 1. However, 

for these values of 𝜇 (1) has a family of solutions in thespace of 

continuous class of functions 𝐶[0, 𝑇]. The work has been 

organized as follows; In section 2, we derived the scheme by the 

used of Midpoint method. In section 3, we estimated the 

convergence of error bound analysis of the scheme obtained. 

Also, in section 4, we used some examples and tested the 

scheme and finally in section 5 the conclusion was presented. 

 

 

Derivation of the Scheme by Midpoint Rule Approach 

Definitions of the basic concepts 

We start by presenting some definitions, theorems and lemmas; 

 

Definition1 A kernel is called separable if it can be expressed as the outer product 

of two variables (vectors). For examples 

𝑢(𝑡) = ∫
𝑠𝜇−1

𝑡𝜇

𝑡

0

𝑢(𝑠)𝑑𝑠 + 𝑔(𝑡),   𝑡 ∈ (0, 𝑇] 

where 𝑘(𝑡, 𝑠) =
𝑠𝜇−1

𝑡𝜇  that can be expressed as𝑘(𝑡, 𝑠) =
1

𝑡𝜇 𝑠𝜇−1otherwise, it is non-separable. 

 

Theorem2 Mean Value Theorem: Let u(x) be a function which is continuous onthe closed interval [a, b] and which is differentiable 

at every point of (a, b). Then there is a point c ∈ (a, b) such that 

𝑢′(𝑐) =
𝑢(𝑏) − 𝑢(𝑎)

𝑏 − 𝑎
 

Lemma3 Special Gronwall lemma: Let (𝑒𝑛) and (𝑒𝑗) be nonnegative sequences and C a nonnegative constant if 
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 𝑢𝑛 ≤ 𝐶 + ∑ 𝑔𝑘𝑢𝑘

𝑛−1

𝑘=0

        𝑓𝑜𝑟    𝑛 ≥ 0 

then 

 𝑢𝑛 ≤ 𝐶𝑒∑ 𝑔𝑗
𝑛−1
𝑗=0         𝑓𝑜𝑟    𝑛 ≥ 0 

Lemma4 (i) If 0 < 𝜇 ≤ 1 and 𝑔 ∈ 𝐶1[0, 𝑇] with𝑔(0) = 0 if𝜇 = 1, then (1) has a family of solutions 𝑢 ∈ 𝐶[0, 𝑇] given by the 

formula 

 

 𝑢(𝑡) = 𝑐0𝑡𝜇−1 + 𝑔(𝑡) + 𝛾 + 𝑡𝜇−1 ∫ 𝑠𝜇−2𝑡

0
(𝑔(𝑠) − 𝑔(0))𝑑𝑠                                  (*) 

where 

𝛾 = {0   𝑖𝑓     𝜇=1,

1
𝜇−1𝑔(0)       𝑖𝑓 𝜇<1,

 

and 𝑐0is an arbitrary constant. Out of this family of solutions there is one particular 

solution𝑢 ∈ 𝐶1[0, 𝑇] 
(ii) If 𝜇 ≤ 1and 𝑔 ∈ 𝐶𝑚[0, 𝑇],𝑚 ≥ 0, then the unique solution𝑢 ∈ 𝐶𝑚[0, 𝑇] of (1) is given by 

 

 𝑢(𝑡) = 𝑔(𝑡) + 𝑡𝜇−1 ∫ 𝑠𝜇−2
𝑡

0

𝑔(𝑠)𝑑𝑠 

 

We note that (3) can be obtained from (2) with 𝑐0 = 0. Indeed; it follows from (2) that 

𝑐0 = lim
𝑡→0

𝑡𝜇−1𝑢(𝑡) 

and this limit is zero when𝜇 > 1. 

 

Derivation of the scheme 

Let us reformulate (1) into a new form by choosing some fixed real number 𝛼> 0. 

Substituting 𝑡 by 𝑡 + 𝛼in (1) we have 

 

                               𝑢(𝑡 + 𝛼) = ∫
𝑠𝜇−1

(𝑡+𝛼)𝜇

𝑡+𝛼

0
𝑢(𝑠)𝑑𝑠 + 𝑔(𝑡 + 𝛼),   𝑡 ∈ [0, 𝑇]        (2) 

by splitting of the interval we have 

 

   𝑢(𝑡 + 𝛼) =
1

(𝑡+𝛼)𝜇 ∫ 𝑠𝜇−1𝑢(𝑠)𝑑𝑠 +
𝛼

0 ∫
𝑠𝜇−1

(𝑡+𝛼)𝜇

𝑡+𝛼

𝛼
𝑢(𝑠)𝑑𝑠 + 𝑔(𝑡 + 𝛼),   𝑡 ∈ [𝛼, 𝑇]    (3) 

or, equivalently, 

 

              𝑢(𝑡 + 𝛼) =
𝐼𝛼

(𝑡+𝛼)𝜇 + ∫
(𝑠+𝛼)𝜇−1

(𝑡+𝛼)𝜇

𝑡

0
𝑢(𝑠 + 𝛼)𝑑𝑠 + 𝑔(𝑡 + 𝛼)                         (4) 

where 

 

                                                       𝐼𝛼 ≔ ∫ 𝑠𝜇−1𝑢(𝑠)𝑑𝑠
𝛼

0
                                                                   (5) 

Since 𝐼𝛼is known exactly for a chosen the exact solution from using the solution formula 

then we can apply the numerical method to (4) and obtain the approximation. Now, let us define a uniform grid 𝑋ℎwith stepsize 

ℎ =
𝑡

𝑛
 

 

𝑋ℎ ≔ {𝑡𝑖 = 𝑖ℎ + 𝛼, 0 ≤ 𝑖 ≤ 𝑁} 

Setting 𝑡𝑖 = 𝑛ℎ in (4) we have 

 

                 𝑢(𝑡𝑛) =
𝐼𝛼

𝑡𝑛
𝜇 +

1

𝑡𝑛
𝜇 ∫ (𝑠 + 𝛼)𝜇−1𝑛ℎ

0
𝑢(𝑠 + 𝛼)𝑑𝑠 + 𝑔(𝑡𝑛)                         (6) 

In the Midpoint method, we approximated the integral on the right-hand side of equation (9) by considering each subinterval 

using: 

 

𝑢(𝑠 + 𝛼) ≈ 𝑢(𝑗ℎ+(𝑗+1)ℎ

2
)[(𝑗 + 1)ℎ − 𝑗ℎ]                                                      (7) 

 

on each subinterval 𝑠 ∈ [𝑗ℎ, (𝑗 + 1)ℎ] Defining 

 

 𝐷𝐽 ≔ ∫ (𝑠 + 𝛼)𝜇−1𝑑𝑠
(𝑗+1)ℎ

𝑗ℎ

 

which can be obtain analytically. 

Hence the scheme 
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   𝑢(𝑡𝑛)𝑛
ℎ =

𝐼𝛼

𝑡𝑛
𝜇 +

ℎ

𝑡𝑛
𝜇

∑  𝐷𝐽𝑢𝑗
ℎ𝑛−1

𝑗=0 + 𝑔(𝑡𝑛),     𝑛 = 1,2, … , 𝑁                                 (8) 

 

Algorithm: Midpoint rule approach 

Step1: Given 𝑛 = 1, 𝑡 ∈ [0, 𝑇], 𝜇 ∈ (0,1], 𝛼 > 0, 𝑢(𝑡), 𝑔(𝑡), 𝐼𝛼 . 

Step2: Set ℎ =
𝑡

𝑛
 

Step3: Compute 

𝑡𝑛 = 𝑛ℎ + 𝛼 

    𝑡𝑛
𝜇 = (𝑛ℎ + 𝛼)𝜇 

                                 𝑢𝑛
ℎ =

𝐼𝛼

𝑡𝑛
𝜇 +

ℎ

𝑡𝑛
𝜇 ∑  𝐷𝐽𝑢𝑗

ℎ

𝑛−1

𝑗=0

+ 𝑔(𝑡𝑛) 

where 𝐷𝐽 ≔
ℎ(((𝑗+1)ℎ+𝛼)

𝜇
−(𝑗ℎ+𝛼)𝜇)

𝜇
 and  𝑢𝑗

ℎ =  𝑢(𝑗ℎ+(𝑗+1)ℎ

2
) 

and check |𝑢(𝑡) − 𝑢𝑗
ℎ| < 𝜖 stop 

Step4: Set 𝑛 = 𝑛 + 1 and go to step3. 

 

Error Bound of the Scheme in Midpoint Rule Approach 

In this section we present the error bound for the convergence of the scheme. 

Theorem 3.1 Consider (1) with 0 < 𝜇 ≤ 1 and 𝑢 ∈ 𝐶1[0, 𝑇]. Let 𝛼 ≠ 0 be fixed in the equivalent (4) and assume the integral 𝐼𝛼is 

known exactly for a chosen particular solution (corresponding to a certain value of the parameter 𝑐0). Then the approximatesolution 

obtained by the product Midpoint method converges with order 2 to the exactsolution. 

Proof 

The solution u of the exact solution satisfies 

𝑢(𝑡𝑛)ℎ =
𝐼𝛼

𝑡𝑛
𝜇 +

ℎ

𝑡𝑛
𝜇 ∑  𝐷𝑗𝑢(𝑡𝑗)𝑛−1

𝑗=0 + 𝑔(𝑡𝑛) + 𝜂(ℎ, 𝑡𝑛),      𝑛 ≥ 1                                 (9) 

where 𝜂(ℎ, 𝑡𝑛) is the consistency error given by 

𝜂(ℎ, 𝑡𝑛) = ∫
𝑠𝜇−1

𝑡𝑛
𝜇

𝑡𝑛

0
𝑢(𝑠)𝑑𝑠 −

ℎ

𝑡𝑛
𝜇 ∑  𝐷𝑗𝑢(𝑡𝑗)𝑛−1

𝑗=0                                               (10)  

but the exact solution is 

𝑢(𝑡𝑛) =
𝐼𝛼

𝑡𝑛
𝜇 +

1

𝑡𝑛
𝜇 ∫ 𝑠𝜇−1𝑢(𝑠)𝑑𝑠

𝑇

𝛼
+ 𝑔(𝑡𝑛)                                                       (11) 

Setting 𝑒𝑛 = 𝑢(𝑡𝑛) − 𝑢(𝑡𝑛)ℎ for 𝑛 ≥ 1and by utilizing (9) and (11) this gives 

𝑒𝑛 =
1

𝑡𝑛
𝜇 ∫ 𝑠𝜇−1𝑢(𝑠)𝑑𝑠

𝑇

𝛼

−
ℎ

𝑡𝑛
𝜇 ∑  𝐷𝑗𝑢𝑗

ℎ

𝑛−1

𝑗=0

+ 𝜂(ℎ, 𝑡𝑛) 

=
1

𝑡𝑛
𝜇 ∑ ∫ 𝑠𝜇−1𝑢(𝑡𝑗)𝑑𝑠

𝑡𝑗+1

𝑡𝑗

𝑛−1

𝑗=0

−
ℎ

𝑡𝑛
𝜇 ∑ ∫ 𝑠𝜇−1𝑢(𝑡𝑗)𝑑𝑠 + 𝜂(ℎ, 𝑡𝑛)

𝑡𝑗+1

𝑡𝑗

𝑛−1

𝑗=0

 

=
1

𝑡𝑛
𝜇

∑ ∫ (𝑢(𝑡𝑗) − 𝑢(𝑡𝑗)
ℎ

) 𝑠𝜇−1𝑑𝑠 + 𝜂(ℎ, 𝑡𝑛)
𝑡𝑗+1

𝑡𝑗

𝑛−1
𝑗=0                               (12) 

Let 𝑒𝑗 = (𝑢(𝑡𝑗) − 𝑢(𝑡𝑗)
ℎ

) 

𝑒𝑛 =
ℎ

𝑡𝑛
𝜇 ∑ 𝑒𝑗 ∫ 𝑠𝜇−1𝑑𝑠

𝑡𝑗+1

𝑡𝑗

𝑛−1
𝑗=0 + 𝜂(ℎ, 𝑡𝑛),   𝑛 ≥ 1                                                        (13) 

but 
1

𝑡𝑛
𝜇 ∫ 𝑠𝜇−1𝑢(𝑠)𝑑𝑠

𝑡𝑗+1

𝑡𝑗
≤

𝑡𝑗
𝜇−1

𝑡𝑛
𝜇 ∫ 𝑑𝑠

𝑡𝑗+1

𝑡𝑗
= ℎ

𝑡𝑗
𝜇−1

𝑡𝑛
𝜇 ≤ ℎ (

𝑡𝑗

𝑡𝑛
)

𝜇 1

𝑡𝑗
≤

ℎ

𝛼
                                    (14) 

Since 𝛼 ≠ 0 and 𝛼 > 0 choose 𝛼 ≤ 𝑡𝑗 (𝑡𝑛
𝑡𝑗

)
𝜇

. By utilizing (14) in (13) we have 

 𝑒𝑛 ≤
ℎ2

𝛼
∑ 𝑒𝑗 + 𝜂(ℎ, 𝑡𝑛)𝑛−1

𝑗=0 ,    𝑛 ≥ 1                                                               (15) 

Taking the modulus in (15) we have 

| 𝑒𝑛| ≤
ℎ2

𝛼
∑ |𝑒𝑗| + |𝜂(ℎ, 𝑡𝑛)|𝑛−1

𝑗=0 ,    𝑛 ≥ 1                                                      (16) 

On the other hand from (10) we have 

|𝜂(ℎ, 𝑡𝑛)| = | ∫
𝑠𝜇−1

𝑡𝑛
𝜇

𝑡𝑛

0

𝑢(𝑠)𝑑𝑠 −
ℎ

𝑡𝑛
𝜇 ∑  𝐷𝑗𝑢(𝑡𝑗)

𝑛−1

𝑗=0

| 

= |
ℎ

𝑡𝑛
𝜇 ∑  𝐷𝑗 (𝑢(𝑠) − 𝑢(𝑡𝑗))

𝑛−1

𝑗=0

| 

but 
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 𝐷𝑗 ≔ ∫ 𝑠𝜇−1𝑑𝑠
𝑡𝑗+1

𝑡𝑗

 

Therefore,  

|𝜂(ℎ, 𝑡𝑛)| ≤
ℎ

𝑡𝑛
𝜇

∑ ∫ 𝑠𝜇−1|
𝑡𝑗+1

𝑡𝑗
(𝑢(𝑠) − 𝑢(𝑡𝑗)) |𝑑𝑠𝑛−1

𝑗=0                                           (17) 

by applying the mean value theorem in (17), we have 

|𝜂(ℎ, 𝑡𝑛)| ≤
ℎ2

𝑡𝑛
𝜇 max

𝑠∈[𝛼,𝑇]
|𝑢′(𝑠)| ∫ 𝑠𝜇−1𝑑𝑠

𝑡𝑛

𝛼

 

Defining 𝑀(𝛼) ≔ max
𝑠∈[𝛼,𝑇]

|𝑢′(𝑠)| 

|𝜂(ℎ, 𝑡𝑛)| ≤
𝑀(𝛼)ℎ2

𝑡𝑛
𝜇 ∫ 𝑠𝜇−1𝑑𝑠

𝑡𝑛

𝛼

 

=
𝑀(𝛼)ℎ2

𝜇
(

𝑡𝑛
𝜇−𝛼𝜇

𝑡𝑛
𝜇 ) 

= (1 −
𝛼𝜇

𝑡𝑛
𝜇)

𝑀(𝛼)ℎ2

𝜇
 

we obtained the following bound 

|𝜂(ℎ, 𝑡𝑛)| ≤ (1 − 𝛼𝜇

𝑡𝑛
𝜇)

𝑀(𝛼)ℎ2

𝜇
                                                                (18) 

substitute (18) into (16) we have 

| 𝑒𝑛| ≤
ℎ2

𝛼
∑ |𝑒𝑗| + (1 − 𝛼𝜇

𝑡𝑛
𝜇)

𝑀(𝛼)ℎ2

𝜇

𝑛−1
𝑗=0 ,    𝑛 ≥ 1                                             (19) 

by applying the special Gronwall lemma for the discrete in (19) we have 

| 𝑒𝑛| ≤ (1 −
𝛼𝜇

𝑡𝑛
𝜇)

𝑀(𝛼)ℎ2

𝜇
∏ (1 +

𝑛−1

𝛼
)

𝑛−1

𝑗=0

 

we obtained the error bound as 

| 𝑒𝑛| ≤ (1 −
𝛼𝜇

𝑡𝑛
𝜇)

𝑀(𝛼)ℎ2

𝜇
𝑒(𝑇−1

𝛼
) 

Hence, a second order convergence follows. 

 

NUMERICAL RESULTS 

In this section we tested the scheme using Maple13 version 10 with the stopping rule as 

|𝑢𝑛
ℎ − 𝑢(𝑡)| ≤ 10−4 

Problem 1 Given 𝑔(𝑡) = 1 + 𝑡 + 𝑡2and 0 < 𝜇 ≤ 1 in (1), then using (*) we obtained the general form of its family of solutions: 

 

 𝑢(𝑡) = 𝑐0𝑡𝜇−1 +
𝜇

𝜇−1
+

𝜇+1

𝜇
𝑡 +

𝜇+2

𝜇+1
𝑡2                                                   (20) 

where 𝑐0is an arbitrary constant. The exact solution (20) when t =  0.99 is compared 

with numerical solution (8) and errors are presented in Table (1) 

 

Table 1: The results obtained by the numerical scheme (8) on problem1. 

 

n 𝑢𝑛
ℎ 

       (8) 
|𝑢𝑛

ℎ − 𝑢(𝑡)| 
 

80     2.4241 5.759E − 1 

82 2.4817 5.183E − 1 

84 2.5401 4.599E − 1 

86 2.5991 4.009E − 1 

88 2.6588 3.412E − 1 

90 2.7193 2.807E − 1 

92 2.7804 2.196E − 1 

94 2.8422 1.578E − 1 

96 2.9048 9.520E − 2 

98 2.9681 3.190E − 2 

99 2.9999 1.000E − 4 

 

Table (1) Shows that the results of problem1 obtained from scheme (10) is a good resultsat n =  99 with an error of1.000E − 4 

compared with Euler's method in Diogo et al. (2006). 

 

Problem 2 Given 𝑔(𝑡) = 1 + 𝑡and 0 < 𝜇 ≤ 1 in (1), then using (*) we obtainedthe general form of its family of solutions: 
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 𝑢(𝑡) = 𝑐0𝑡𝜇−1 +
𝜇

𝜇−1
+

𝜇+1

𝜇
𝑡                                                     (21) 

where 𝑐0is an arbitrary constant. The exact solution (21) when t =  0.99 is compared 

with numerical solution (8) and errors are presented in Table (2) 

 

Table 2: The results obtained by the numerical scheme (8) on problem2. 

 

n 𝑢𝑛
ℎ 

(8) 
|𝑢𝑛

ℎ − 𝑢(𝑡)| 
 

80 1.7679 2.321E − 1 

82 1.7928 2.072E − 1 

84 1.8175 1.825E − 1 

86 1.8422 1.578E − 1 

88 1.8667 1.333E − 1 

90 1.8911 1.089E − 1 

92 1.9154 8.460E − 2 

94 1.9397 6.030E − 2 

96 1.9638 3.620E − 2 

98 1.9879 1.210E − 2 

99 1.9999 1.000E − 4 

 

Table (2) shows that the numerical results of problem2 obtained from the scheme (8) is the best result at n =  99 with an error 

of1.000E − 4 when compared with Euler's method in Diogo et al. (2006). 

 

The comparison of the numerical schemes 

Here we presented the scheme (8) derived from Midpoint's rule when compared with Euler's method in Diogo et al. (2006). 

 

Table 3: The comparison of scheme (8) and Euler's methods in Diogo et al. (2006) using errors of 

problem 1 and 2. 

N scheme (8) 

Error1 

scheme (8) 

Error2 

Euler's method 

Errors 

80 5.759E − 1 2.321E − 1 3.919E − 1 

82 5.183E − 1 2.072E − 1 4.173E − 1 

84 4.599E − 1 1.825E − 1 4.423E − 1 

86 4.009E − 1 1.578E − 1 4.671E − 1 

88 3.412E − 1 1.333E − 1 4.817E − 1 

90 2.807E − 1 1.089E − 1 5.159E − 1 

92 2.196E − 1 8.460E − 2 5.400E − 1 

94 1.578E − 1 6.030E − 2 5.638E − 1 

96 9.520E − 2 3.620E − 2 5.874E − 1 

98 3.190E − 2 1.210E − 2 6.108E − 1 

99 1.000E − 4 1.000E − 4 6: 224E − 1 

 

Table (3) shows that the errors obtained from the scheme (8) is an improvement when compared with the work of Diogo et al. 

(2006), which uses Euler's method. Since the error decreases when the number of iterations are increased. This shows that the 

scheme obtained has a better result when compared with the Euler's method with number of iterations up to 1600 corresponding 

to an error of 4.82E − 2. 
 

CONCLUSION 

We presented new numerical scheme for solving singular 

Volterra integral equations, where the functions under the 

integrals were approximated by means of Midpoint rule.The 

error bound estimation were established for the convergence of 

the new scheme obtained. The some problems were used to test 

the effectiveness and accuracy of the scheme and compared with 

other existing method. 
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