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ABSTRACT 

Predicting infant survival rates using the Classical Binary Logistic Regression Model with maternal and child 

characteristics as covariates can be a challenge when the modeler requires a Maternal Age-Specific model but that 

is not forthcoming. Reason being that mother age is not a significant covariate in the model. One way out of this is 

to group mother age at child birth into class intervals of age groups and see whether infant survival outcomes vary 

significantly with the age groups. If this is true, then Classical Binary Logistic Regression Models one for each age 

group, can be fitted for predicting infant survival outcomes. A fresh challenge would be that of incomplete data since 

the data set would have been merged by the age groupings. This new challenge can be overcome by the Bayesian 

Simulation Modeling Approach. Hence our task in this study is to develop a Bayesian Simulation Modeling 

Procedure implemented on the Simulation package; Windows Bayesian Inference Using Gibbs Sampling (WINBUG) 

with the aim of modeling the relationship between Infant Survival Outcomes and Maternal and Child characteristics, 

for each maternal age group. Besides the successful model fit in the face of incomplete data, the overall result of the 

study revealed that, the three maternal age groups; 15 – 25 years, 26 – 35 years and 36 years and above have positive 

impact on infant survival rate, while only the weight of infants delivered by mothers who are 36 years and above 

pose as risk factor to infant survival rate.  

Keywords:  Modeling, Logistic, Regression, WINBUG 

 

 INTRODUCTION 

Research has shown that mother age has become a 

significant contributor to infant mortality rate in recent times. 

Selemani, M., Mwanyangala, M.A., Mrema, S. (2014) stated 

that the results from a logistic regression model indicated 

increase in risk of  neonatal mortality among neonates born 

to young mothers aged 13–19 years compared with those 

whose mother‘s aged 20–34 years. Predicting infant survival 

rates using the Classical Binary Logistic Regression Model 

with maternal and child characteristics as covariates can be 

a challenge when the modeler requires a Maternal Age-

Specific model but that is not forthcoming. Reason being 

that mother age is not a significant covariate in the model. 

One way out of this is to group mother age at child birth into 

class intervals of age groups and see whether infant survival 

outcomes vary significantly with the age groups. If this is the 

case, then a Classical Binary Logistic Regression Model 

fitted for each age group, can be used for predicting infant 

survival outcomes. It is important to mention that this will 

not be without the challenge of incomplete data, as the 

original data set would have been merged by the age 

groupings. Hence our task in this study is to develop a 

Bayesian Simulation Modeling Procedure implemented on 

the Simulation package; Windows Bayesian Inference Using 

Gibbs Sampling (WINBUG) with the aim of modeling the 

relationship between Infant Survival Outcomes and 

Maternal and Child characteristics, for each maternal age 

group.  

 

Some authors support the above argument about the limitation 

of the use of the Classical Binary Logistic Model with 

incomplete data. One of such authors is Peduzzi et al., (1996) 

who emphasized the use of adequate data when the Classical 

Binary Logistic Model is been employed. This they did by 

suggesting a formula for computing the minimum sample size 

required, given the number of covariates and smallest value 

of the success rate.   Taeryon et al., (2008) tried to remove this 

dilemma by suggesting the use of the Bayesian Simulation 

Approach to Logistic Regression Modeling where only 

aggregate Bernoulli trials are available and not the individual 

trials; what they termed incomplete data.   Tripathi et al., 

(2019) developed a model for assessing child mortality under 

different parity using a Bayesian swatch. Other works in this 

direction include those of Gemperil, (2004) and Koissi and 

Hogens, (2005) to mention a few. 

 

We implement this approach on a data set of Infant Survival 

Outcomes (alive or dead) and some maternal and child 

characteristics (Mother age at child birth and HIV Status, 

Infant sex and weight). This data set was sourced from the 

hospital records of the Madonna Hospital, Makurdi Benue 

State Nigeria. The data set was found suitable for the scenario 

earlier described. 

The rest of the paper is organized as follows; Methodology, 

Results, Discussion, Conclusion and Recommendation.     
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MATERIALS AND METHOD 

Model description 

Binary logistic regression is a statistical modeling procedure 

for building regression models used for analyzing a data set 

in which there are one or more independent variables that 

determine an outcome. The outcome is measured with a 

dichotomous variable (in which there are only two outcomes). 

The main objective of binary regression modeling is to find a 

model that best describe the existing relationship between the 

dichotomous characteristic of interest and the set of 

independent or predictor variables. The model achieves this 

by generating the coefficients of a formula to predict a logit 

transformation of the probability of the presence of the 

characteristic of interest: 

 

     (1) 

 

It follows from equation (1) that the Infant Survival Rate (%) can be modeled as 

 

 * 100%       (2) 

 

Where p is the probability of the presence of the characteristic of interest, the ’s and the  are the 

regression coefficient and the independent variables respectively. The regression coefficients or parameters can be estimated 

by the Method of Maximum Likelihood (MLE). 

In this work, p is the probability of infant survival or infant survival rate, the independent variables include, mother age at 

child birth, mother HIV Status, child weight and child sex. 

The logit transformation is defined as the logged odds where; 

 

                                     (3) 

And 

 

                                                                                                                 (4) 

 

Unlike the ordinary regression model that chooses model 

parameters that minimize the sum of squares of errors, logistic 

models choose parameters that maximize likelihood of 

observing the sample values. A total of 974 cases were used 

in this work which according to Peduzzi et al., (1996) is 

considered adequate. The Forward Stepwise (Likelihood 

Ratio) regression method is employed in the modeling 

process.  The fitted Binary Logistic Model which was well 

validated (with a good Hosmer – Lemeshow goodness of fit 

test result(p > 0.05 and overall percentage model correct 

prediction of 95% survival outcomes, see table 2 and table  3), 

retained weight of infant as the only covariate. Hence the 

covariate mother age at child birth, which the researcher looks 

out for is not included in the model. This led to chi - square 

test of homogeneity of the distribution of infant survival 

outcomes across three classes of age group of mothers at child 

birth.  The three age groups identified were; 15 – 25, 26 – 35 

and greater than or equal to 36 years.  

 

Chi square test of homogeneity  

The chi – square test of homogeneity is used to determine 

whether frequency counts are identically distributed across 

different populations or across different sub-groups of the 

same population. In this work, we test the homogeneity of the 

distribution of infant survival outcomes across the classes of 

age group of mothers. The null hypothesis is that the 

distribution of infant survival outcomes is the same across 

these three age groups. If this is true, then equal frequencies 

should be expected across the age groups. The chi – square 

statistic helps to determine whether the null hypothesis should 

be accepted or not. The chi- square calculated value is 

computed using the formula;  
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Where iO observed or actual number of survivals, iE  expected number of survival for the ith age group and r the 

number of age groups.  

We have enough evidence to reject the null hypothesis at  level of significance if the critical value of the 

 )1,(
2

rcrit 
2

cal . The result on table 5 shows that the null hypothesis is to be rejected. The implication is that, the 

distribution of Infant Survival Outcomes is Age Group Specific. Hence, Binary Logistic Models, one for each age group should 

be fitted but not without the challenge of sample size inadequacy. 
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Model sample size adequacy 

The complexity in determining optimal sample size for logistic regression modeling made Peduzzi et al., (1996) suggested 

that, if p is the smallest of the proportions of positive or negative cases in a population and k the number of covariates, then 

the minimum number of cases to include is: 

 

                                                                                                                                     (6) 

 

If the resulting , Long (1997) suggested that it should be rounded up to 100. 

If we consider p = 0.1 as the least proportion of infants who survived (the highest been 0.9 approximately see table 4) and four 

(4) independent variables, a sample size of 400 would be required. This is against the 307, 267 and 174 available cases for the 

three respective age groups. Hence, these sample sizes can be considered adequate for fitting Age Group Specific Classical 

Binary Logistic Models. 

Model goodness of fit and adequacy checks 

In order to test for the goodness of fit of the Classical Binary Logistic model, Hosmer – Lemeshow test was employed. The 

test divides the test data into approximately 10 groups. The chi-square statistic for this test is computed by; 

 

=                                                                                                            (7) 

 

with  defined as the observed events, expected events and number of observations for the gth decile group 

and G the number of groups. The number of degree of freedom is G-2. A large value of chi-square with small p-value < 0.05 

indicates poor fit while a small chi-square vale with p –value closer to 1 indicate a good logistic regression model fit.  

In order to evaluate the prediction accuracy of the Binary logistic model, the classification table is employed. On this table, 

the observed values of the dependent variable and the predicted values at a user defined cut - off value are cross classified. 

The Walds statistic tests the significance of model parameters. This helps to determine whether or not an independent variable 

stays in the model as it tests if the associated model parameter differs significantly from zero. The Walds statistic is computed 

as the regression coefficient divided by its standard error squared: 

 

            (8) 

 

Where , .  

If the p-value is less than the usual , then we have evidence that to conclude that the independent variable differ 

significantly from zero. Hence it stays in the model. This test was used to determine if the significant independent variable in 

the model, most especially whether infant weight was retained is significant. 

 

 Odds ratio 

Re-writing equation (1) by taking the exponential of both sides of the equation, we have; 

 

                                                                                   (9) 

It is obvious from equation 5 above that when an independent variable  changes by 1 unit (all other variables kept constant), 

the odds changes by the factor  . This factor is termed the odds ratio (O.R) for the independent variable . It gives the 

relative amount by which the odds of the outcome of interest increases (O.R > 1) or decreases (O.R < 1) when the value of the 

independent variable is changes by 1 unit. The relative amount by which the odd of the survival outcome increases by a unit 

change in infant weight is determined by this approach. 

 

 Mathematical analysis of the Binary Logistic Model relating Infant Survival Outcomes and Infant weight 

 

We state the model as;  

 

                                (10) 
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where, 

 

 , (11) 

  

 are the logistic regression parameters, ip is the Infant Survival Rate, the covariate  is the average weight of 

infant in each age group  3,2,1i . In this work, we refer to average weight of infant in each age group simply as infant 

weight and the overall mean weight of infants as the mean weight of infants for convenience. 

 

From equation (1) we have that; 

 

                (12) 

 

Centering the weight of Infants ( ) at the mean ( ) 

We centre the average weight of infants for each age group denoted   at the overall mean denoted  for convenience. This 

is because none centering will mean zero weight which is not realistic. Centering at the overall mean weight will help determine 

the impact the age grouping has on the infant survival rate (p) as shown below. 

Centering implies   

When this holds, equation (12) becomes,  

          (13) 

If  then; 

             (14) 

this has a negative impact on    

If  then; 

                                                                                                                                                             (15) 

this has a positive impact on    

 Effect of the covariate weight of infant ( ) on the infant survival rate ( ) 

We establish mathematically, the effect of infant weight  on the infant survival rate,   of the ith  

age group.  Recall equation (12); 

   

Observe that, if  then; 

 as  This shows that increased and decreased magnitude of  has the effect of decreasing and increasing  

respectively. Hence, we term infant weight   a Non-risk factor of infant survival rate ( . 
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Observe also from equation (2) that if  then; 

 as . This shows that increased and decreased levels of  has the effect of increasing and decreasing  

respectively. Hence, we term infant weight   a Risk factor of infant survival rate ( . 

We model the level of the risk factor (  as; 

        (16) 

where   is the probability of having positive values of . This is the proportion of time (%) that reduced magnitudes 

of Maternal Age group – Specific Infant Weight have negative effect on infant survival rate. 

The Bayesian Binary Logistic Simulation Model relating Maternal Age –Specific Infant Survival Outcomes and Infant 

weight  

As earlier mentioned, the Classical Binary Logistic Modeling Approach can be challenging in the face of incomplete data. On the 

contrary, the Bayesian Binary Logistic Model does not bow to this challenge (Taeryon et al. 2008). This is because unlike its 

classical counterpart which considers model parameters as fixed and data as random variables, it considers model parameters as 

random variables with known probability distributions and data as fixed. Hence it depends chiefly on model parameter sampling 

and not data sampling.  

We therefore develop and implement a Bayesian Statistical Modeling Procedure for modeling the relationship between Maternal 

– Age Specific Infant Survival Outcomes and Infant Weight. The modeling procedure embeds the Markov Chain Monte Carlo 

(MCMC) algorithm implemented on an Open Source Software Platform - Windows Bayesian Inference Using the Gibbs Sampler 

(WINBUG) (Geman and Geman, 1984). 

 The Bayesian Statistical Simulation Modeling Procedure  

Given two faces of the coin; the narcotic drug use prevalence ) for an a maternal age group  and the infant death rate 

( , we propose the Binomial Likelihood such that;  

 Binomial (   

Where,   is the number of survivals in age group  , the survival rate,  ,   is the number of infants delivered 

by mothers in age group. We state that the computation of  per   persons was done in order to determine the 

observed values of   per 1000 persons and for computational ease. 

Logistically,   is the transformation of the regression mean,  

       and we state that; 

 . 

We suppose that the regression parameters   have the priors; 

 ,  . 

In WINBUG syntax, we fit the Bayesian Logistic Regression Model with centered covariate as follows; 

Model { 
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 For (  in 1: k) { 

             

  

             

  

              } 

            } 

Where the data list of number of infant,  and infant weight ,  as well as the initialization list for the model parameter 

arrays; are defined for each age group  in each zone.   is set as the number of age groups while 

 is set at 1000. The simulation was run for 100,000 burn-ins after which samples were collected for 300,000 iterations. A thinning 

of 32 was maintained throughout the simulations and the overlay check box in WINBUG checked to reduce autocorrelation. Other 

modeling requirements are as stated by the WINBUG Software documentation. 

We mention that WINBUG uses the equation; 

         (17) 

in computing the Survival Rate (  ) for each age group,  . This gives the simulated value of  .  

  Model convergence diagnostic check  

Model convergence diagnostics was done using history plots, 

density plots and autocorrelation plots. They plots were 

produced when the model parameters and measures were 

monitored on WINBUG. Our approach for investigating 

convergence issues is by inspecting the mixing and time 

trends within the chains of individual parameters. The history 

plots are the most accessible convergence diagnostics and are 

easy to inspect visually. The history plot of a parameter plots 

the simulated values for the parameter against the iteration 

number. The history plot of a well-mixing parameter should 

traverse the posterior domain rapidly and should have nearly 

constant mean and variance. The density plots of the model 

parameters were checked against their actual probability 

distributions to see whether the right distribution is simulated. 

This was done for the alpha and beta distribution for each age 

group . 

 

Samples simulated using MCMC methods are correlated. The 

smaller the correlation, the more efficient the sampling 

process. Though, the Gibbs, MCMC algorithm typically 

generates less-correlated draws, there is a need to monitor the 

autocorrelation of each parameter to ensure samples are 

independent. The autocorrelation plot that comes from a well-

mixing chain becomes negligible fairly quickly, after a few 

lags. This was achieved for the model parameters and 

measures.  

  RESULTS AND DISCUSSION 

The study results include some results of the Classical Binary 

Logistic Modeling approach such as; the fitted Binary 

Logistic Model, the Hosmer – Lemeshow goodness of fit test 

and the model outcome classification table. The study results 

further include the actual infant survival rate and the infant 

weight for each maternal age group in the population of study. 

Before the results of the Bayesian Statistical Simulation 

Modeling Approach, we present the Chi-square test of 

homogeneity of number of Infant Survival Outcomes across 

maternal age groups. Results of the Bayesian Statistical 

Simulation include the simulation model parameter and 

measure values for each maternal age group, results of the 

model diagnostic checks for the first maternal age group; 

these include history plots, density and autocorrelation plots. 

Further result include the distribution of Maternal Age group 

- Specific impact of infant weight on infant Survival Outcome, 

a distribution of infant weight factor status and an infant 

weight risk magnitude across the maternal age groups.  
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Table 1 : Classical Binary Regression Model Parameters  

 Model 

coefficient 

(B) 

S.E.of B Value of 

Wald 

Statistic  

Degree of 

Freedom 

(df) 

P _ value Exp(B) 95% 

Confidence 

.Interval 

for EXP(B) 

 

Lower Upper 

 
ChildWT .856 .190 20.392 1 .000 2.354 1.623 3.413 

Constant .305 .567 .289 1 .591 1.356   

 

Model: Logit(p) =  0.305 + 0.856 * Infant weight. 

 

The model shows that infant weight was retained as the only covariate (table 1) and since mother age is not retained, the model 

cannot be Maternal Age-Specific which is the modeler’s interest. This as earlier mentioned led to the chi - square test of 

homogeneity of the distribution of infant survival outcomes across three classes of maternal age group at child birth. 

 

Table 2 : Contingency Table for Hosmer and Lemeshow Test 

  State of Infant Birth (dead) = 0  State of Infant Birth (alive) = 1 Total 

Observed Expected Observed Expected 

 

1 12 11.562 75 75.438 87 

2 3 8.049 116 110.951 119 

3 6 2.726 41 44.274 47 

4 4 5.403 97 95.597 101 

5 4 6.372 132 129.628 136 

6 9 5.044 116 119.956 125 

7 6 4.799 129 130.201 135 

8 2 2.963 92 91.037 94 

9 4 3.081 126 126.919 130 

Chi-square value = 13.049, degree of freedom (df) = 7, p_value = 0.071 

 

  Table 3 : Model outcome classification table 

 Observed Predicted 

 State of Infant Birth Percentage 

Correct 0 1 

 
 State of Infant  Birth  

0 0 50 0.00 

1 0 924 100.0 

Overall Percentage   94.9 

The cut value = 0.50 

 

The fitted Binary Logistic Model is well validated with a good Hosmer – Lemeshow goodness of fit test result (p > 0.05) and 

overall percentage model correct classification of 95% survival outcomes, as shown in table 2 and table 3. 

 

Table 4: Distribution of actual infant survival rate and weight across maternal age groups 

Age 

group 

(years) Actual survival rate 

Average weight of 

infant (kg) 

15-25 0.900 3.261 

26-35 0.869 3.150 

<= 36 0.887 3.687 
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The actual infant survival rate and the average infant weight for each maternal age group are captured on table 4. These values 

were computed from actual aggregate data on the number of infant who survived and actual weights of infants. The number of 

infants who survived per 1000 persons were determined for each maternal age-group and used as number of trials for the Binomial 

distribution in the course of the Bayesian statistical modeling. The average weights of infant data sets for each age group also serve 

as input to the model. 

 

Table 5 : Frequency of survivals 

 Observed 

frequency 

Expected  

frequency 

Residual 

15 - 25 years 273 197.0 76.0 

26 - 35 years 232 197.0 35.0 

Greater than or equal to 36 years 86 197.0 -111.0 

Total 591   

Chi-square value = 98.081, Degree of freedom = 2, p_value = 0.00 

Table 5 shows the distribution of survival across maternal age groups. The test shows that the distribution of infants who survived 

differ significantly across the age groups (P < 0.05) hence the need for Maternal Age-Specific Infant Survival Outcome Prediction 

Model. The three age groups identified were: 15 – 25, 26 – 35 and greater than or equal to 36 years. 

 

Table 6:  Model parameters and measure values for each maternal age group  

Node Mean Sd MC error 2.50% median 97.50% start sample 

alpha[1] 2.183 1.048 0.004257 0.1187 2.178 4.247 100000 50001 

alpha[2] 1.774 2.1 0.01352 -2.327 1.763 5.917 100000 50001 

alpha[3] 1.859 3.044 0.02579 -4.083 1.855 7.842 100000 50001 

beta[1] -0.2818 9.972 0.04011 -19.9 -0.2977 19.39 100000 50001 

beta[2] -0.5623 9.707 0.06228 -19.5 -0.6125 18.57 100000 50001 

beta[3] 0.6415 9.491 0.0804 -18.01 0.6503 19.17 100000 50001 

p[1] 0.9009 0.009422 4.12E-05 0.8817 0.9012 0.9185 100000 50001 

p[2] 0.869 0.01063 4.94E-05 0.8475 0.8692 0.8891 100000 50001 

p[3] 0.887 0.01004 4.47E-05 0.8666 0.8873 0.906 100000 50001 

prob[1] 0.4671 0.4989 0.002073 0 0 1 100000 50001 

prob[2] 0.4558 0.498 0.002964 0 0 1 100000 50001 

prob[3] 0.506 0.5 0.003665 0 1 1 100000 50001 

Note (i) The numbers 1 – 3 indicate the maternal age groups     

         (ii)  model parameters are alpha and beta 

        (iii)  model measures are  infant survival rate  (p) and  risk magnitude of infant weight  (prob)       

 

 

Model parameters and measure values for each maternal age group are captured on table 6. Details on these tables include the mean, 

standard deviation, Monte Carlo Simulation Error, median and 95 % credible interval. Estimates of the model parameters (alpha 

and beta) and their measures infant survival rate ( ) and magnitude of risk (prob (beta > 0)) are their respective mean values. The 

values of alpha and beta for each maternal age group, helps to determine the relationship between the infant survival outcomes and 

infant weight. This is achieved when they are plugged into equation (1). Observe the close values of the actual infant survival rate 

( ) on table 4 for each maternal age group and the simulated values  on tables 6. This also validates the model. 
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 Table 7: Distribution of model measures across maternal age groups 

Age group Sign of model 

parameter (α) 

Age group impact 

on infant survival  

Sign of model 

parameter (β) 

Infant weight 

factor status 

Risk magnitude of  

infant weight  (%) 

  rate    

15 – 25 years + Positive - Non-risk factor - 

26 – 35 years + Positive - Non-risk factor - 

>= 36 years + Positive + Risk factor 50.60 

As established in the mathematical analysis, the sign of the model parameter alpha assists in determining the impact of an age group 

(positive or negative) on infant survival rate while the sign of beta assists in determining whether the infant weight is a risk factor of  

infant survival rate or not. The level of this risk is computed using equation (6).  As earlier mentioned, it is the proportion of time (%) 

that reduced magnitude of infant weight of a maternal age group has negative effect on the infant survival rate. The overall results 

shows that all the three maternal age groups have positive impact on infant survival rate while, the weight of infants delivered by 

mothers in the 15 – 25 years and 26 – 35 age groups are none risk factors to infant survival rates but those of infants delivered by 

mothers in the 36 years and above age group pose as risk factor to infant survival rate. See table 7 for details. The Binary Logistic 

Model has become richer as it has become Maternal Age – Specific. Hence, once mother age is known, an appropriate model can be 

chosen to predict infant survival outcome or rate given infant weight.  
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Fig. 1: History plots of model parameter alpha 
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Fig. 2: History plots f model parameter beta 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A BAYESIAN SIMULATION… Agada, Udoumoh and Gboba FJS 

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 328 - 344  
338 

p[1]

iteration

100000 120000 140000

   0.84

   0.86

   0.88

    0.9

   0.92

   0.94

 

p[2]

iteration

100000 120000 140000

    0.8

  0.825

   0.85

  0.875

    0.9

  0.925

 
 

p[3]

iteration

100000 120000 140000

  0.825

   0.85

  0.875

    0.9

  0.925

 
Fig. 3: History plots of infant survival rate (p) 
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Fig. 4: History plots of risk magnitude of infant weight 
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Fig. 6: Autocorrelation plots of infant survival rate (p) and risk magnitude of infant weight (prob)  

 



A BAYESIAN SIMULATION… Agada, Udoumoh and Gboba FJS 

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 328 - 344  
341 

alpha[1] sample: 50001

   -2.5     0.0     2.5     5.0

    0.0

    0.1

    0.2

    0.3

    0.4

alpha[2] sample: 50001

  -10.0    -5.0     0.0     5.0    10.0

    0.0

   0.05

    0.1

   0.15

    0.2

 
 

alpha[3] sample: 50001

  -20.0   -10.0     0.0    10.0

    0.0

   0.05

    0.1

   0.15

beta[1] sam ple: 50001

  -50.0   -25.0     0.0    25.0

    0.0

   0.02

   0.04

   0.06

 
 

beta[2] sam ple: 50001

  -50.0     0.0    25.0    50.0

    0.0

   0.02

   0.04

   0.06

beta[3] sam ple: 50001

  -50.0   -25.0     0.0    25.0

    0.0

   0.02

   0.04

   0.06

 
Fig. 7:  Density plots of model parameters alpha and beta  
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Fig, 8:  Density plots of infant survival rate (p) and risk magnitude of infant weight (prob)  
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As earlier mentioned, the incompleteness of this data limits the 

use of the Classical Logistic Regression Model (Taeryon et al., 

2008). Tripathi et al (2019) further confirm this when they 

consider a Logit model for assessing child mortality under 

three maternal parity (3, 4 and 5) using a Bayesian swatch. 

Parity according to them is the number of child birth 

experienced by the infant’s mother. The grouping of the 

original data to reflect the parity definitely reduce the sample 

size, hence the use of Classical Bayesian Approach becomes 

futile. This limitation calls for the development of a Bayesian 

Statistical Modeling Procedure using the MCMC Gibbs 

algorithm on the WINBUG platform. 

After the development of the model, convergence diagnostic 

checks were conducted for each model parameter and measure 

in order to ascertain model adequacy. The history plot, density 

plots and autocorrelation plots were used for this purpose. See 

figures 1 – 8. Observe that the history plots shows that the 

model parameters and measures are well – mixed. This is 

because they traverse the posterior domain rapidly with nearly 

constant mean and variance.  The model prior distribution for 

alpha and bêta is normal (0, 0.01). The density plots of these 

priors reflect this distribution which further validates the model. 

The autocorrelation plots of each parameter and measure depict 

the independence of the samples generated. This is because the 

autocorrelations become negligible fairly quickly, after a few 

lags.   

CONCLUSION AND RECOMMENDATION 

A Bayesian Binary Logistic modeling procedure was 

developed for predicting Maternal Age Specific Infant Survival 

Outcome using incomplete data. The three maternal age groups; 

15 - 25 years, 26 - 35 years and 36 years and above have 

positive impact on infant survival rate. The weight of infants 

delivered by mothers in the 15 - 25 years and 26 - 35 years age 

groups are none risk factors to infant survival rates but those of 

infants delivered by mothers in the 36 years and above age 

group pose as risk factor to infant survival rat 

The study recommends that this modeling procedure should be 

applied to similar modeling problems with the challenge of 

incomplete data and that the models be used to compliment 

doctors efforts in antenatal care delivery.  
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