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ABSTRACT

In this paper, the concept of n-upper level soft set is introduced together with some of its properties. It is shown
that some properties holding in n-level soft set do not hold in n-upper level soft set. It is further demonstrated
that both the first and the second decomposition theorems fails in n-upper level soft set.
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INTRODUCTION
The issue of handling various problems arising in environmental
science, medicine, engineering, social sciences etc., which has
various uncertainties has become a great concern to scientist.
Therefore, the theories of soft set and multiset emerged which
are useful mathematical tools in dealing with uncertainties.
Researchers such as (Blizard, 1991; Molodtsov, 1999; Maji et
al., 2002; Singh et al., 2007; Ali et al., 2009; Qin and Hong,
2010; Sezgin and Atagun, 2011; Alkhazaleh et al., 2011;
Majumdar, 2012; Babitha and Sunil, 2013; Tokat and
Osmanoglu, 2013; Isah and Tella, 2015; Singh and Isah, 2016)
immensely contributed to the emergence and development of
these theories.
The concept of n-level set and n-upper level set were first
introduced in (Nazmul et al., 2013) and (Ibrahim et al. 2016),
respectively, together with some of their properties. However,
the concept of n-level Soft set was first initiated in (Isah, 2019).
In this paper n-upper level soft set is introduced and some of its
properties characterized.
Preliminaries
Definition 1 Soft set (Molodtsov, 1999)
Let U be an initial universe set and E a set of parameters or
attributes with respect to U. Let P(U) denote the power set of U
and A € E. A pair (F, A)is called a soft set over U, where F is a
mapping given by F: A — P(U).
In other words, a soft set (F, A) over U is a parameterized family
of subsets of U. For e € A, F(A) may be considered as the set
of e-elements or e-approximate elements of the soft set (F, A).
Thus (F, A) is defined as

(F,A) ={F(e) e P(U):e € E,F(e) = pife ¢ A}.

Definition 3 Soft Multiset (Tokat and Osmanoglu, 2013)

Definition 2 Multisets (Jena et al., 2001; Girish and John, 2009)
An mset M drawn from the set X is represented by a function
Count Mor Cydefined asCy;: X — N.

Let M be a multiset from X with x appearing ntimes in M. It is
denoted by x €™ M. M = {ki/x1,ky/%5, ..., kn/x3,} Where M
is a multiset with x; appearing k, times, x, appearing k, times
and so on.

Let M and N be two msets drawn from a set X. Then

M S Niff Cy(x) < Cy(x) forall x € X.

M = N if Cyy(x) = Cy(x) forall x € X.

M UN = max{Cy(x), Cy(x)} forall x € X.

M N N = min{Cy(x),Cy(x)} forall x € X.

M — N = max{Cy(x) — Cy(x), 0} forall x € X.

Let M be a multiset drawn from a set X. The support set of
Mdenoted by M*, is defined as M* = {x € X: Cj;(x) > 0}.

The power multiset of a given mset M, denoted by P(M) is the
multiset of all submultisets of M, and the power set of a multiset
M is the support set of P(M), denoted by P*(M).

Let {M; : i € I} be a nonempty family of msets drawn from a set
X. Then
(i) Their Intersection, denoted by N;¢; M; is defined as

Criam;(X) = Cy, (x),Vx € X,

i€l
where Ais the minimum operation.
(ii) Their Union, denoted by U;¢; M; is defined as
Coem@=\/ _cu @ vrex,
i€l

where V is the maximum operation.

Let U be a universal multiset, E be a set of parameters and A< E.Then a pair (F, A) is called a soft multiset where F is amapping
givenby F : A — P*(U). Forall e € A, the mset F (e) is represented by a count function Cp(y: U™ — N.
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Let (F,A) and (G, B) be two soft multisets over U. Then

(@) (F, A) is a soft submultiset of (G, B) written (F,A) E (G, B) if
i.LACSB

ii.Cp(e)(X) < CG(e)(X),VX e U*, Ve € A.

(b)(F,A) = (G,B) & (F,A) C (G,B) and (G,B) C (F,A).

Also, if (F,A) = (G, B) and (F, A) # (G, B) then (F, A) is called a proper soft submset of (G, B) and (F, A) is a whole soft submset
of (G,B) if Cp(e) (x) = Cg(e) (x),vx € F(e).

(c) Union:

(F,A)u (G,B) = (H,C) where C = AU B and Cy(ey(x) = max{Cr(e)(x), Coey(x)}, Ve € C,Vx € U".

(d) Intersection:

(F,A)n (G,B) = (H,C) where C = AN B and Cy(e)(x) = min{Cr(e)(x), Coey(x)}, Ve € C,Vx € U".

(e) Difference:

(F,E)\(G,E) = (H,E) where Cy()(x) = max{Cp(e)(x) = Cgey(), 0},\7’x € U*.

(e) Null:

A soft multiset (F, A) is called a Null soft multiset denoted by @, if Ve € A F(e) = @.

(f) Complement:

The complement of a soft multiset (F, A), denoted by (F, A)¢, is defined by (F, A)¢ = (F€, A) where F¢: A — P*(U)is a mapping
given byF¢(e) = U\F(e), Ve € A where Cree)(x) = Cy(x) — Creey(x), Vx € U™,

Definition 4 n-Level Soft Set (Isah, 2019)
Let (F,A) be a Soft multiset over a universal multiset U and a set of parameters E. Then, we define the n-level soft set of (F, A),
denoted (F, A),, as

(F,A), = {(e, {x})|CF(e)(x) >nn€N,Ve €A Vx € U*}.

Definition 5 (Isah, 2019) Let (F, A),,be the n-level soft set of (F, A), then
Fy(e) = {x € U*|Crey(x) = n,n € N, Ve € A}.

Theorem 1 (Isah, 2019) Let (F, A) and (G, B) be Soft multisets over U and E, suppose m,n € N. Then,
0] ((F,A) u (G, B))y = (F,A), U (G, By,
(if) ((F,A)n (G,B))y = (F,A)n N (G, B)y,
(iii) IF(G, B) E (F,A) then (G, B),, E (F,A),,
(iv) IFm < nthen (F,A), E (F, A)n,
(v) (G,B) =(F,A) = (G,B), = (F,A),,Ve € A,vx € U*

Definition 6 (Isah, 2019) Let S(U, E) be the class of all Soft multisets over U and E i.e. S(U,A) = {F: A — P*(U), A € E}. Let
Q < U*, then, we define a soft multiset ,(F,A) € S(U, A) as
n(F,A) = {(e,nQ)|Cno(x) =n,Ve € A,¥n € N.

Theorem 2 (First Decomposition Theorem) (Isah, 2019)

Let (F,A), be a n-level soft set of a soft multiset (F, A), over U and E. Then,

Ciray)(x) = Crey(x),Ve €A =Y pen X (Fu(e))(x),Ve € A = X,en X (F, A)y (x) where X (F,(e)) is the characteristic function
of (F,(e)), Ve € Aand X (F, A),, is the characteristic function of (F, A),,.

Proof
Letx € E.(e),Ve € A, = 14,1y, ..., Ty, m = cad(A) for x € U*. Observe that x ¢ F,,,(e),n € N. Then
Cra)(x) = Cp(ey(x) = 7,Ve € A. Now
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D XEA @ = ) XEE)I® Ve d= Y X))+ ) X(Frin(€))(X), Ve € 4
n=1

nenN neN neN
=[1+1+--rtimes]+[0+0+--]=rVe€A.

Hence, C(p.a)(x) = Xnen X (F, A)n ().

Theorem 3 (Second Decomposition Theorem) (Isah, 2019)
Let (F, A), be the n-level soft set of a soft multiset (F, A) over U and E. Then
(F,A) = Inen n(F, A), where L is the soft multiset union.

Proof

Let x € U™ and C(r 4y(x) = t,Ve € A. Thisimply that x € (F,A),, forn=1,2,...,tandx & (F,A),,Vn=>t+1, Ve € A.

Now,

Clnen nra)) ) = ]_LEN n(F, Ay (x)

= 1(F,A).U,(F,A.U..U (F, AU (F, A)prq U ...
=U{1,2,..,t,0,0,..} =t, Ve € A.
= Ca(x),Ve €A VX € U*
= (F,A).
Therefore, (F, A) = ey n(F, A)p-

In the next section, we introduce the concept of n-upper level Soft set and show that some properties of n-level Soft set do not hold

in n-upper level Soft set.
n-Upper Level Soft Set

Definition 7 Let (F, A)be a Soft multiset over a universal multiset U and a set of parameters E. Then, we define the n-upper level

soft set of (F, A), denoted (F, A)™ as
(F, A" = {(e, {x})|CF(e)(x) <nné€eN,Ve EAVx€E U*}.

Example 1 Let E = {eq, 5, 3, €4, €5, 86,7}, A = {e1,e,,e3}, B ={e;,e3}, U ={9/x,5/y,4/z},
(F,A) = {(e1,{3/x,2/y,1/2}), (e2,{2/x,4/¥}), (e3,{1/x,2/2})} and

(G,B) = {(e1,{3/x,1/¥}), (e5,{1/x,2/2})}. Then,

(F,A)1 = {(el,{z}), (63, {x})}
(F,A)% = {(e1, {y, 2}), (e, {x}), (e3, {x, 2})}
(F,A)* = {(e, {x,y,2}), (e, {x}), (e3, {x, 2})}
(F' A)4 = {(91, {x' Y, Z})/ (eZI {x' y})! (63! {x' Z})}
(F, A" = (F,A)*n=5.

and
(G, B)" = {(er, (¥}, (e3, {x})}
(G, B)? = {(er, (¥}, (e3,{x,2})}
(G, 3)3 = {(81, {x, y})' (63, {x! Z})}
(G,B)™ = (G,B)3,n = 4.
Definition 8 Let (F, A)™be the n-upper level soft set of (F, 4), then
F(e) = {x € U*|Cre)(x) <n,n € N, Ve € 4}.

Example 2 Let (F,A) = {(e1,{3/x,2/y,1/2z}), (€2, {2/x,4/y}), (e3,{1/x,2/2z})}, then
(F'A)1 = {(61,{2}), (631 {X})}
and Fl(el) = {Z}! Fl(ez) = Qr Fl(e3) = {x}

Remark 1 Theorem 1 (iii) of n-level Soft set in (Isah, 2019) above, fails for n-upper level Soft set.

Counter Example
Let (F,A) = {(81, {3/)6, Z/y! 1/2})! (62' {Z/X, 4/}’})! (63! {1/x' 2/2})} and
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(G! B) = {(61, {3/%, 1/}’})! (63' {l/x, 2/2})} Then,
(F, A" = {(e1,{z}), (e3, {x})}

and

(G, B)' ={(e1, Iy}, (s, {xP}.
Observe that, (G, B) E (F, A) but neither (G,B)* = (F,A)! nor (F,A)! £ (G, B)*.

Theorem 4 Let (F, A) and (G, B)be Soft multisets over U and E, suppose m,n € N. Then,

(M) ((F,A)u(G,B)"E (F,A"u(G,B)"
(i) (F,A)" N (G,B)" £ ((F,A) n (G,B)"
(iii) If m < nthen (F,A)™ & (F,A)"

(iv) (G,B) = (F,A) = (G,B)" = (F,A)™

Proof
(i) Let x € (F, A u(G,B)*=x € (F,A) U (G,B), Cre)(x) 2n,Ceiey(x) = n
= x € (F,4), CF(e)(X) >nor x € (G,B), CG(e)(x) >n
=x€ (F,A"or x € (G,B)"
=x € (F,A"uU (G,B)"
ie, ((F,A)u(G,B)rc (F,A"u(G,B"
Conversely, let x € (F,A)™ U (G,B)™
=x € (F,A)" or x € (G,B)"
= Crey(x) <n,Ve € Aor Cqey(x) <n,Ve €B
= X € (F,A),Cp(e)(x) <nor x € (G,B), CG(e)(x) =n
=x€e(F,Aor x € (G,B), CF(E)(X) >n, CG(e)(x) <n
= x € (F,A) u(G,B), Cre)(®) <, Ceey(x) <n
= x € ((F,A) u (G,B)"
ie, (F,A"U (G B)"c ((F,Au(,B)H"

(ii) Let x € (F,A)" N (G,B)" = x € (F,A) N (G,B), Cre)(x) <nand Cqey(x) <n
= x € (F,A),Crey(x) <nandx € (G,B), Cgey(x) <n
=x € (F,A)"and x € (G,B)"
= x € ((F,A)n(G,B)"
ie, (F,A"n(G,B)"c ((F,A)n(G,B)H"

(iii) Let m < n and suppose x € (F,A)™
= Cpey(x) <m,Ve € A
= Creey(x) <n,ve€ A
=x € (F, A"
ie., (F,A)™C (F,A)™

(iv) Let (G,B) = (F,A)

= A =Band Cp(e)(x) = CG(e)(x),Ve €A VxeU”

= Vn €N, if Cpeey(x) < nitimply Cg)(x) < n,Ve € A, Vx € U™ and vice versa
Thus, (G,B)" = (F,A)™.

Remark 2 The converse of (iv) above is not always true.
Counter example
Let (F,A) = {(e1,{3/x,2/y,1/z}), (e3,{1/x,2/z})} and
(G,B) = {(e1,{3/x,1/y,1/2}), (3, {1/x,2/2})}. Then,
(F, A" = {(e1, {23, (es, {x})}
(F,4)? = {(e1,{y, 2}), (e3, {x,2})}
(F,4)% = {(e1, {x,,2]), (es, {x, 2})}
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(F,A)" = (F,A)3,n > 4.

and
G, B! = {(e1, {9, 2}), (3, {x}}
(G,B)* = {(e1, (¥, 2}), (e3, {x, 2})}
(G,B)® = {(e1, {x,y,2}), (e3, {x, 2})}
(G,B)™ = (G,B)3,n = 4.
However, (F,A)? = (G,B)? and (F,A)® = (G, B)3, but (G,B) # (F,A).

Theorem 5 The First and Second Decomposition Theorems fails for n-upper level Soft set.

Proof
Counter example (First Decomposition Theorem)
Let (F,A) = {(e,{3/x,2/y,1/2}), (e3,{1/x,2/2})}, then
(F, )" = {(e1, {z}), (e3, {x})}
(F,4)% = {(e1, {y, 2}), (e3, {x, 2})}
(F,4)% = {(ey, {x,,2]), (e, {x, 2})}
(F, A" = (F,A)3n =4

Now,
Cra)(2) = Cre)(2),Ve €A
= Crep)(@) + Cpep(@) =1+2=3.
However,
X(F'(en)@ = 1,X(F?(e) (@) = 1, X(F3(e)(@) = 1,X(F(e)(2) = O,n = 4,
X(F'(e3))(2) = 0,X(F?(e3))(2) = 1, X(F3(e3))(2) = 1, X(F"(e3))(2) = 0,n = 4.
and thus,
Z X(F,A"2) = Z X(F™(e))(2),Ve e A= Z x(Fn(el))(Z) + Z X(Fn(e3))(z)
neN neN

= X(F'(e)))(2) + x(FZ(el))(z) + x(F3(e1))(z) + (F(e3))(2) + X (F?(e3))(2) + X (F3(e3))(2)
=1+1+1+0+1+1=5%#Cpylz) =3

Counter example (Second Decomposition Theorem)
Let (F,A) = {(e1,{3/x,2/y,1/z}), (e3,{1/x,2/2z})}, and

(F, )t = {(e1,{z}), (e3, {x})}

(F,A)? = {(e, v, 2]), (e3, {x, 2})}
(F,A)* = {(e1, {x, 7,2}, (e3, {x, 2})}
(F,A)" = (F,A)3,n = 4.

Then,

1(F, )t = {(e1,{z}), (e3, {x})}

2(F, A)? = {(e1,{2/y,2/2}), (e3,{2/x,2/2})}
3(F,A)* = {(e1,{3/x,3/y,3/2}), (e3,{3/x,3/2})}

and 1(F,A)'U »(F,A)?U 5(F, A)° = {(e1, {3/x,3/v,3/2}), (e3,{3/x,3/z})} # (F, A).
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