
BEHAVIOR-BASED DETECTION…Joshua, Adati, Esther and Emmanuel FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 266 - 275

266

BEHAVIOR-BASED DETECTION: AN APPROACH FOR SECURING ANDROID SYSTEMS AGAINST ZERO-DAY

MALWARE ATTACKS

1Joshua Abah, 2Adati Elkanah Chahari, 3Esther Alu Samuel, 4Emmanuel P. Musa

1Department of Computer Engineering, University of Maiduguri, Maiduguri
2Department of General Studies Education, School of General Education, Federal College of Education, Yola

3Department of Computer Science, Nasarawa State University, Shabu-Lafia Campus, Lafia
4Department of Computer Science, Ramat Polytechnic Maiduguri

Corresponding author’s Emails: abah@unimaid.edu.ng

ABSTRACT

We present behaviour-based detection as an approach to mitigating zero-day attacks on Android. This is as a

result of the drawbacks of signature-based approach commonly in use in most antivirus engines. The Signature-

based approach requires the analysis and storage of signature strings of malware with which new attacks are

compared. This makes the detection of new attacks whose signatures have not been gotten impossible. For

these attacks to be detected, patches must be developed for them. This unknown attack is referred to as zero-

day attacks. Moreover, developing patches takes time creating a vulnerability window that could be exploited

hence, there is the need to be able to detect zero-day attacks in real-time. To demonstrate the capability of

detecting zero-day attacks, dynamic analysis of applications was adopted in this research. A detection system

was developed for the Android system and features were extracted from the device and used to analyze the

behaviour of the system. The K-Nearest Neighbour (KNN) classifier was used and results showed that this

approach has 93.75% accuracy and 6.25% error rate. The Area Under Curve (AUC) of the Receiver Operating

Characteristics (ROC) stands at 0.996 out of 1. This result showed that behavioural detection promises a future

for malware detection with respect to zero-day detection. It is recommended that the features be extended to

include features at a lower level of granularity that represents system-wide behaviour. In addition, this approach

should be adopted by other mobile platforms besides Android.

Keywords: Android, Attacks, Behaviour-based detection, Exploit, Malware, Signature-based detection,

Smartphones, Vulnerability, Zero-Day.

INTRODUCTION

Mobile devices have drastically become a ubiquitous computing

and storage platform with increasing capacity, complexity, and

usage.Among these devices, Android holds a large percentage

of the market share with over 220 million mobile devices

running Android this figure corresponds to well over 78% of

Smartphones sold to consumers worldwide (Statista, 2015).

Based on unit shipments of these smart devices, Android holds

the highest percentage of global Smartphone Operating Systems

(OSs).

The availability of Smartphones at relatively low prices has led

to an accelerated migration of feature phone users to

Smartphones; tasks previously carried out on laptops and PCs

are now migrated to Smartphones making the smartphone OS

market to experience fast growth in most emerging countries,

including Nigeria, India, Russia and Mexico (Gartner, 2015).

This trend continued to benefit Android, which saw its market

share grow by 2.2 percentage points in 2014, and 32 percent year

on year. Making Android the most used Smartphone’s

Operating system in the World (Gartner, 2015). Android is open

source with a huge user community and documentation; it

allows any programmer to develop and publish Applications to

both the Official or Unofficial market (Srikanth, 2012). It has a

very huge adoption and market penetration globally. Android

was predicted to be the most used mobile Smartphone platform

by 2014 (You et al., 2014) which has become a reality.

The ubiquity of the Android platform and indeed the

Smartphones, in general, has not gone unnoticed by malware

developers. Rather, this ubiquitous gain of Android carries

along with it some security risks in terms of malware attacks

targeted at this platform. Mobile devices and Android, in

particular, has become a target of attacks. Android’s popularity

came with a cost as it has become a target for attacks for most

malware developers. Although other mobile platforms suffer the

same fate, the Android platform is the worst hit (Denis, 2012).

There are already well-known and documented cases of Android

malware in both official and unofficial markets (Yajinet al.,

2012). With known malware nefarious capabilities and effects,

the detection of malware is an area of major concern not only to

the research community but also to the general public. Malware

attack is a challenging issue among the Android user

community. It, therefore, becomes necessary to make the

platform safe for users by providing defense mechanism

especially against malware (Joshua et al., 2015). Techniques

that researchers develop for malware detections are realized

through the implementation of malware detectors (Nwokedi &

Aditya, 2007). Malware detectors are the primary tools in

defense against malware and the quality of such detectors is

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 3 No. 4, December, 2019, pp 266 –275

mailto:abah@unimaid.edu.ng

BEHAVIOR-BASED DETECTION…Joshua, Adati, Esther and Emmanuel FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 266 - 275

267

determined by the techniques they employed. Intrusion

detection methods can be classified as host-based, cloud-based

or social collaboration (Srikanth, 2012) and the technique

adopted for each of these methods could be signature-based,

anomaly-based or virtual machine-based.

Most detection and antivirus engines in use today in the fight

against malware intrusion adopt the signature-based approach in

the prevention and detection of malware. While this technique

could be effective for known malware; malware whose

signatures have been obtained, analyzed and stored, it is

practically impossible for signature-based intrusion detection

engines to detect zero-day attacks; attacks that are not known.

This makes zero-day attacks; malicious attacks that identify a

vulnerability and exploits it before it becomes known to the

software vendor and the end-users a difficult strain of malware

to deal with as most antivirus software available today are based

on signatures which cannot detect zero-day attacks. A malicious

attack can use the exploit to downloadmalware, spyware,

adware, phishing software, or any other kind of malicious code

with criminal intent (Spamlaws, 2017).

Similarly, for signature-based detection engines to be able to

detect new attacks, update patches must be developed. Zero-day

threats are released and propagated into the wild before security

vendors can issue protection against them. Malware can attack

by targeting vulnerabilities in Operating systems and

Applications. In the advent of the discovery of a weakness in

commercial Applications, the vendor will have to write a patch

to secure the software against attacks. The problem with this

solution is that it takes time to develop or write patches.

According to Oberheideet al., (2008), it takes approximately 45

days to successfully develop a patch and so systems or devices

can be compromised before the vulnerability is fixed.

Unpatched programs on your system increase your risk of a

successful attack by a zero-day threat.

The limitations of a signature-based approach to intrusion

detection show a major drawback in the capability of signature-

based detection engines to effectively mitigate, detect, and

protect systems against the highly evolving pace of zero-day

malware attacks. It is against this backdrop that this paper

presents a better approach to detecting and preventing zero-day

malware attacks on mobile systems with Android in focus. The

rest of this paper is articulately organized as follows; The

introduction, related literature, research design, the result

evaluation, discussion of result, conclusion and finally,

recommendation for further studies.

RELATED LITERATURE

There have been significant research efforts on the problem of

mobile malware detection. Generally, malware detection

systems employ different approaches: Static analysis

approaches such as (Aubery-Derrick, 2011; Christodorescu &

Jha, 2003; Raymond et al., 1995) are based on comparing

applications to already known malware through a reverse

engineering method that decompiles packaged applications and

looking for signatures or using other heuristics within the

program code. Other approaches like (Bryan et al., 2011;

Hahnsanget al., 2008; Lei et al., 2009) monitor the power usage

of applications, and report anomalous consumption.

(Tchakounté, & Dayang, 2013; Burguera et al., 2011; Liang et

al., 2010) used a dynamic analysis by monitoring system calls

and attempt to detect unusual system call patterns. Some others

like (Yajinet al., 2012; Abhijitet al., 2018) used the universal

signature-based approaches that compare applications with

known malware or other heuristics.

 Burguera et al., (2011) presented Crowdroid a machine

learning-based framework that recognizes Trojan-like malware

on Android Smartphones, by analyzing the number of times

each system call has been issued by an application during the

execution of an action that requires user interaction. A genuine

application differs from its trojanized version, since it issues

different types and a different number of system calls.

Crowdroid builds a vector of m features (where m is the number

of the Android system calls). Crowdroid used about 100 system

calls with only two trojanized applications tested. Mutzet al.

(2006), presented a similar approach which also considered the

system call parameters to discern between normal system calls

and malicious ones. Asafet al., (2011) presented Andromaly that

relies on machine learning techniques which monitors both the

Smartphone and user's behaviours by observing several

parameters, spanning from sensor activities to CPU usage.

Andromaly used 88 features to describe applications

behaviours; the features are then pre-processed by feature

selection algorithms. The authors developed four malicious

applications to evaluate the ability to detect anomalies. Other

approaches only monitor anomalies on a limited set of

functionalities such as incoming/outgoing traffic (Damopoulos

et al., 2011), SMS, Bluetooth and instant messaging (Abhijit&

Shin, 2006), or power consumption (Jacobym et al., 2006), and

therefore, their detection accuracy is high.

 Xie et al., (2010) presented pBMDS; Propose Behaviour-

based Malware Detection System (pBMDS) that correlates

user's inputs with system calls to detect anomalous activities

related to SMS/MMS sending. Abhijit et al., (2018) propose

behavioural detection framework to detect mobile malware,

instead of common signature-based solution currently available

for use in mobile devices. They represent malware behaviours

based on a key observation that the logical ordering of

application actions over time often reveals the malicious intent

even when each action alone may appear harmless. Also, they

propose a two-stage mapping technique that constructs

malicious behaviour signatures at run-time from the monitored

system events and API calls while studying 25 distinct families

of mobile malware in Symbian OS. They discriminate the

malicious behaviour of malware from the normal behaviour of

applications by training a classifier based on Support Vector

Machines (SVM). Detection rates from simulated and real

malware samples were stated to be 96%.

BEHAVIOR-BASED DETECTION…Joshua, Adati, Esther and Emmanuel FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 266 - 275

268

Finally, Shabtai et al., (2010) presented a methodology to detect

suspicious temporal patterns as malicious behaviour, known as

knowledge-based temporal abstraction. Although their

approach is recommended for detecting continuous attacks (e.g.

DoS and worm infection), it lacks the ability to detect Trojan

Horses the most frequently seen attacks nowadays. According

to Christodorescu, (2007), Anomaly or Behaviour-based

approaches are better in detecting ‘zero-day’ attacks compared

to signature based approaches hence, he opined that Signature-

based scanning must be supplemented with powerful host-based

agent that employs behavioural analysis. While intrusion

detection models with host-based data collection provide more

accurate and reliable results than other approaches (Markus et

al., 2006). And a host-based architecture have access to private

information on the mobile device that is useful to detect

intrusions as the information collected from the mobile device

will reflect the device behaviour accurately.

Table 1 shows the list of monitored features used in this work.

To generate a good feature vector that represents typical

Android applications behaviour the design of the system

utilized features that represents behaviours when the device is

active and when it is inactive.

Table 1: List of Monitored Features

S / N o . F e a t u r e s

1 I n / O u t S M S s (t w o f e a t u r e s) .

2 I n / O u t C a l l s (t w o f e a t u r e s) .

3 D e v i c e S t a t u s (o n e f e a t u r e) .

4 R u n n i n g A p p l i c a t i o n s / P r o c e s s e s (o n e f e a t u r e) .

5 . D a t e / T i m e S t a m p (o n e f e a t u r e) .

RESEARCH DESIGN

The Anomaly Android Malware Detection System is composed of six modules which work together to provide the resources and

mechanisms needed to detect malware on the Android platform. Each module has a specific functionality within the system. The

integration of all the modules forms the System. Figure 1 shows an elaborate research design.

Fig. 1: System Design

In order to collect the data required for analysis, three monitor

modules are implemented at the applications layer namely the

call monitor module which will record all outgoing and

incoming calls initiated by the device over a period of time T

and forward the collected data to the collector module. The SMS

monitor module also records all sent and received SMSs over a

period of time T and forward the monitored data to the collector

module. The Statusmonitor module monitors and records the

device status. The device operates in two modes; Idle

(hibernated or device screen in OFF) mode or active (device

screen in ON) mode. The collector modules which is described

in detail in subsequent subsection is responsible for collecting

data from all the monitor modules and parse them into sets of

feature vectors. In essence, the collector module will be

Mobile

User

Output

Info

Traces

Mobile

device

Android apps

Database

Feature

vector

for app 1

Feature

vector

for app 2

Feature

vector for

app N

.

.

.

Output Info

Analyzer

System calls,

Sent SMSes,

User Status,

Out-going calls

etc.

Java Code

(Collector

Module)

Parse data

for creating

Feature

Vectors

Data Collection

Data Processing

K-NN

Classifier

App Report

(Normal/

Malware)

Database

Malware Analysis &

Detection

BEHAVIOR-BASED DETECTION…Joshua, Adati, Esther and Emmanuel FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 266 - 275

269

responsible for creating feature vectors from the monitored data

and storing these vectors in the logger module. The logger

module will receive the sets of feature vectors from the collector

module and store them as local files in folder on the SD memory

card for the classifier to finally classify as either normal or

malicious application using the K-NN algorithm. The results of

classification or labelling by the classifier module are also

stored in the logger module which can be easily accessed or

retrieved.

The Malware Detection Process

The malware detection processes are divided into three major

activities namely;

i. Data Collection: This activity will allow for

the collection of applications data from device

through the implementation of the different monitors

described in Figure 1.

ii. Data Processing: This activity comprises of

managing and parsing all of the data collected from

Android device into feature vectors. The data analyser

code implemented in the collector module of the

detection system collects the extracted data by the

monitors for the monitored application and analyse

them by converting them into the desired format

which is the .arff.

iii. Malware Analysis and Detection: This is

the final activity that is carried out by the detection

system and it consists of analysing and classifying the

feature vectors of applications obtained in data

processing phase in order to create the test feature

vectors which are then analysed for anomaly

behaviours to detect malicious or anomalous

behaviour in the Android applications. The feature

vectors are classified into two different classes of

“Normal” or “Malicious” using the K-NN classifier in

Weka. This algorithm will create two classes after it

is trained using the normality model. All feature

vectors belonging to good applications are classified

into the “Normal” class while feature vectors

belonging to malware applications are classified into

and the malicious class.

The Normality Model

In order to efficiently develop a machine learning model, it is

important to train the model on the normal and abnormal

behaviour of the system. To do this, a normality model is

required to describe to the classifier the pattern of behaviours.

Hence a normality model is designed based on the fact that

malware requires user interaction to activate its payload on the

target device. For malware that uses SMS and calls as its

propagation vector, it becomes evident that user interaction is

necessary for such malware to propagate. SMSs and calls

require user interaction with the device to compose and send

SMSs or to initiate calls. Therefore, a normal SMS and call

activity is one that has active user interaction. In this work, five

(5) features were used to describe a normality model for the K-

NN model, these features include:

i. The out-going call

ii. The In-coming call

iii. The Out-going SMS

iv. The In-coming SMS and

v. The device Status.

These features were used as follows;

i. If the device is active or inactive at the point of any

activity;

ii. If any SMS is being sent or received when the phone

is inactive and

iii. If any call is being made or received when the phone

is inactive.

The classification task involved in this work is a binary

classification in the sense that there are two classes; Normal and

Malicious class. Using a binary representation for the features,

the number of probable permutations of these 5 features is

obtained by the expression given as

Where n is the number of features to be represented.

Since in this case n = 5; the expression yields

instances of the features as given in Table 2. The value of 1

represents the presence of the feature while the value of 0

represents the absence of that feature. The numeric count of how

many occurrence of the feature is immaterial because even a

single presence is enough to describe the entire behaviour. For

the device status, 1 represents an active user interaction where

the device screen is ‘ON’ and 0 represents no interaction with

the device with the screen turned ‘OFF’ or hibernated. The

combination of the behaviour features gives thirteen (13) normal

instances and nineteen (19) malicious instances based on the

condition that certain activity do not occur at the same time and

at certain device state. For example Table 2 gives the instances

and possible classification result.

Table 2: Instance Classification

S / N O u t C a l l I n C a l l O u t S M S I n S M S D e v i c e S t a t u s C l a s s

1 0 0 1 0 0 M a l i c i o u s

2 0 0 1 0 1 N o r m a l

BEHAVIOR-BASED DETECTION…Joshua, Adati, Esther and Emmanuel FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 266 - 275

270

The first instance signifies the occurrence of an out-going SMS

while the device screen is in an inactive (OFF/hibernated) state.

The application behaviour represented by this instance is

suspicious; the reason is that sending SMS requires active

interaction with the device; to compose the text message and

then send it by pressing the send button. This activity would not

have been made by a valid user when the device is idle hence; it

is classified as a malicious behaviour. In the second instance,

the out-going SMS occurred while the device screen state is

active signifying that there is active interaction with the device

which keeps the screen light ‘ON’ hence, the activity is

classified as a normal activity. This normality model is parsed

and converted into arff with the date/time stamp and application

and or services features appended to each instance and then used

to train the K-NN classifier.

System Design

This subsection presents the designs for the various components

of the system which includes; interface design, input and output

design and other related subsystems.

Input/Output Designs

The input to the classifier is the result of monitoring extracted

from the applications by the various monitors. This forms the

test set for the classifier function. The data extracted by the

monitors from the applications during execution are logged in a

file in csv format. This file is the first output from the monitoring

modules which in turn serves as the input to the collector

module. When this file gets to the collector module, it is

processed into arff hence; the output of the collector module is

an unclassified arff file. This unclassified arff file is the input to

the logger module as well as the classifier module. For the

logger module, its inputs are two; first the unclassified arff file

from the collector module and secondly, the classified arff file

which is the result of classification from the classifier module is

sent to the logger for storage. The classified arff file is therefore

the output of the classifier module.

Interfaces Design

The interfaces are the Graphical user Interface (GUI) which

presents visual display of the system to the users. Figure 2

presents the interface for the malware detection system. Other

interfaces representing the subsystems are not given here for

lack of space.

Fig. 2: Screen Capture of the Malware Detection System Interface.

MATERIALS USED

The detection framework was implemented on a laptop machine

with the Intel Core-i3-370M Processor, 3GB of available

memory and 500GB Hard Disk Drive (HDD). This machine

runs Windows 7 Operating System and tests werecarried out on

a TECNO P5 with build number P5-G255-20140313, Android

Jelly Bean version 4.2.2 OS, and Linux kernel version 3.4.5. The

implementation does not require rooting or jail breaking of the

device since the monitored features are all carried out at the

application layer. The component of the system framework

includes an Android Application in Java implemented using the

Android Studio version 1.3.2 Integrated Development

Environment (IDE) as the Software Development Kit (SDK).

This tool runs Dalvik which is a virtual machine for Android.

Android Studio is a java based development tool that provides

a professional-grade development environment for building

Android applications. It is a full Java IDE with advanced

features to help build, test, debug, and package Android

applications with a background Dalvik virtual machine. In

order to realise the classification model of the K-NN classifier,

Weka version 3.7.3; an open source library in Java that includes

several classification tools was used by adding the Weka.jar file

as an external library to the Android Studio project from where

the available features were invoked programmatically using sets

of available Java APIs.

BEHAVIOR-BASED DETECTION…Joshua, Adati, Esther and Emmanuel FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 266 - 275

271

RESULT EVALUATION

The results obtained from the test are shown in Figure 3, Figure 4 and clearly tabulated and summarized in Table 3. These results

were obtained from a single run of the detection model and are discussed based on the evaluation measures discussed here.

Figure 3: Detailed Results of the Test Performed

Figure 4: The Confusion Matrix

The confusion matrix is of the form:

This is a 2 x 2 matrix representing the two classes (a = Normal and b = Malicious) where the entries w = nNN; x = nNM; y =

nMN and z = nMM.

The Confusion matrix of Figure 4 shows the misclassified malicious samples and the correctly classified samples from the

experiment, the incorrectly classified cases were due to the malicious class samples misclassified as being of the Normal class. It

should be noted from Figure 3 that the time taken to build the model is less than a second, this execution time parameter shows that

the K-NN classification model and the current dataset yields very promising results for its applicability on real-time monitoring of

malware infections on real Android devices.

BEHAVIOR-BASED DETECTION…Joshua, Adati, Esther and Emmanuel FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 266 - 275

272

Table 3: Summary of Results

C l a s s Accuracy Error Rate TPR TNR FPR F N R

A U C Recall Sensitivity Specificity

N o r m a l 0 . 9 3 7 5 0 . 0 6 2 5 1 . 0 0 0 1 . 0 0 0 0 . 1 5 4 0 . 1 5 4 0 . 9 0 5 0 . 9 9 6 1 . 0 0 0 0 . 9 0 4 8 1 . 0 0 0

M a l i c i o u s 0 . 9 3 7 5 0 . 0 6 2 5 0 . 8 4 6 0 . 8 4 6 0 . 0 0 0 0 . 0 0 0 1 . 0 0 0 0 . 9 9 6 0 . 8 4 6 0 . 9 0 4 8 1 . 0 0 0

DISCUSSION OF RESULTS

Based on the output of the test carried out, it is obvious that the

K-NN classification model provides a very high accuracy of

0.9375 representing 93.75 percent (≈ 94 percent) of the samples

correctly classified with error rate of as low as 0.0625

representing 6.25 (≈ 6) percent as shown in the output of Figure

4 and summarized in Table 3. The TPR of the Normal and

Malicious samples which are the same as the Recall are 1.000

and 0.846 while the precisions are 0.905 and 1.000 respectively.

The precision of the samples classified as Normal and the

samples classified as Malicious did not vary much from each

other meaning that the predictive capacity of the K-NN classifier

is almost equal in both cases.

Fig. 5: The Receiver Operating Characteristic (ROC) Curve

 The Area Under Curve (AUC) of the ROC is 0.996. The AUC

has a standard range of , which mean that

the obtained value of 0.996 is a good indication of the

performance of the K-NN classifier as a model for malware

detection. As earlier stated, a perfect classifier will have an AUC

of 1. Thus, the closer the AUC is to 1, the greater the classifier’s

predictive strength and hence the performance. Figure 6 shows

the ROC curve which is a plot of FPR on the X-axis against TPR

on the Y-axis. The ROC curve could also be represented as a

plot of (1 – Sensitivity) against Specificity. The sensitivity and

specificity measure of K-NN algorithm based on equations (4.9)

and (4.10) are 0.9048 (90.48 percent) and 1.000 (100 percent)

respectively and are the same for both classes. The sensitivity

and specificity of the K-NN algorithm is very high as indicated.

Sensitivity is the proportion of actual positive cases which are

correctly identified while Specificity is the proportion of actual

negative cases which are correctly identified.

These results were in conformity with results obtained by

previous researchers in their works for instance, Su, et al, (2012)

in their work using J48 decision trees and Random forest

classifiers produced accuracies of 91.6% and 96.7%

respectively. Similarly, Ali, et al., (2013) in their study of

machine learning classifiers for anomaly-based mobile botnet

detection using K-NN produced 99.9% accuracy. While the

researchers take cognizance of the differences in platforms,

datasets, approaches and dimensions of their works to theirs, the

performance results obtained in all cases bear close resemblance

to each other without much difference and in some cases, the K-

NN model performs better than other classifiers like the J48

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

ROC Curve
TPR

FPR

BEHAVIOR-BASED DETECTION…Joshua, Adati, Esther and Emmanuel FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 266 - 275

273

decision trees attesting to the inherent high performance of the

K-NN classification model. As earlier noted the performance of

the classifier depends largely on the training set; the better the

training set supplied to a classifier, the better the performance

of that classifier.

CONCLUSION

This research presents a behaviour-based approach rather than a

signature-based technique, this makes it possible to detect new

and unknown malware based on their behaviours rather than

their signature string which are not yet discovered. Hence, in

this work, we have developed an intrusion detection system

which was able to detect new and unknown attacks using

Behavioural approach. This strengthens and re-affirm the

assertion by Christodorescu, (2007) that Behaviour-based

approaches are better in detecting zero-day attacks compared to

signature based approaches. He further opined that signature-

based scanning must be supplemented with a powerful host-

based agent that employs behavioural analysis. Confirming the

capability of anomaly or behaviour-based detection approach to

detect unknown malware which signature-based system cannot

detect. Our experiment also demonstrated the possibility of

capturing Android system activities which served as

behavioural features used for behavioural analysis. This implies

that more fine-grain features can be derived even at a much

lower level of system granularity to define system behaviours

for behavioural analysis. A well-reviewed literature that adds to

the available body of knowledge was also presented by this

paper.

This paper has also by every means provided a novel approach

to malware detection specifically, zero day attacks. The results

obtained shows a very high accuracy of 0.9375 representing

93.75% of the samples correctly classified with error rate of as

low as 0.0625 representing 6.25%. The TPR of the Normal and

Malicious samples which are the same as the Recall are 1.000

and 0.846 representing 100% and 84.6% respectively while the

precisions are 0.905 and 1.000 representing 90.5% and 100%

respectively. The precision of the samples classified as Normal

and the samples classified as Malicious did not vary much from

each other meaning that the predictive capacity of the K-NN

classifier is almost equal in both cases. The Area under Curve

(AUC) of the ROC is 0.996 representing 99.6%.These shows

that behavioural approach with KNN is capable of malware

detection with a very high degree of accuracy.

RECOMMENDATIONS FOR FURTHER STUDIES

System behaviours such as Mobile device activities can be

extracted at low level of granularity for the purpose of

behavioural detection. Currently, access to kernel layer data is

deprecated on modern versions of Android hence, accessing

kernel layer data is not possible without routing the device.

Hence, the following are recommended for further studies; the

dataset which is the set of monitored features need to be

expanded beyond SMSs, calls and device status to incorporate

more features that could give a more general and system wide

representation of the behaviour of the system; access to low

level information like system calls, network traffic and other

system level information which are presently deprecated in

Android system should be allowed access by Google in some

way that would not require rooting, and this framework should

be extended beyond Android to include other mobile devices

Operating Systems (iOS, RIM, Symbian, Java and Windows).

REFERENCES

Abhijit, B. & Shin, K.G. (2006). Proactive Security for Mobile

Messaging Networks. In ACM Workshop on Wireless Security,

WiSe '06, pp. 95-104.

Abhijit, B., Xin H., Kang, G.S., & Taejoon, P. (2008).

Behavioural Detection of Malware on Mobile Handsets. In

Proceedings of the 6th International Conference on Mobile

Systems, Applications, and Services, MobiSys ’08, pp. 225–

238.

Ali, F., Nor, B.A., Rosli, S., Fairuz, A., Rauf, R.M., &

Shahaboddin, S. (2013). A Study of Machine Learning

Classifiers for Anomaly-based Mobile Botnet Detection.

Malaysian Journal of Computer Science, 26(4), pp. 251-265.

Asaf S., Uri K., Yuval E., Chanan G., & Yael W. (2011).

Andromaly: A Behavioural Malware Detection Framework for

Android Devices. Journal of Intelligent Information Systems,

pp 1-30. DOI: 10.1007/s10844-010-0148-x.

Aswathy, D. (2013). An Analysis of Mobile Malware and

Detection Techniques. pp 1- 13. Retrieved from

http://www.cs.tufts.edu/comp/116/.../adinesh.pdf visited 10th

March, 2014.

Aubery-Derrick S. (2011). “Detection of Smart Phone

Malware”, Electronic and Information Technology University

Berlin Unpublished PhD. Thesis. PP. 1-211.

Bryan, D, Yifei, J., Abhishek, J. & Shivakant, M. (2011).

Location Based Power Analysis to Detect Malicious Code in

Smartphones. In Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile devices, SPSM

’11, pp. 27–32.

Burguera, I., Zurutuza, U. & Nadjm-Tehrani, S. (2011).

Crowdroid: Behavior-based Malware Detection System for

Android. In Proceedings of the 1st ACM workshop on Security

and Privacy in Smartphones and Mobile Devices, pp. 15-26.

Christodorescu, M. (2007). Behaviour-based Malware

Detection. Unpublished Ph.D Thesis, Computer Science and

Engineering, University of Wisconsin-Madison, August 2007,

1-54.

Christodorescu, M. & Jha, S. (2003). Testing Malware

Detectors. In Proceedings of the ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA’04), July

http://www.cs.tufts.edu/comp/116/.../adinesh.pdf

BEHAVIOR-BASED DETECTION…Joshua, Adati, Esther and Emmanuel FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 266 - 275

274

11-14, 2004, Boston, Massachusetts, USA. 34-44. doi:

10.1145/1007512.1007518.

Damopoulos, D., Menesidou, S.A., Kambourakis, G., Papadaki,

M., Clarke, N. and Gritzalis, S. (2011). Evaluation of

Anomaly-based IDS for Mobile Devices Using Machine

Learning Classifiers. John Wiley & Sons, Ltd. Security and

Communication Networks 2011; 00:1-9. doi:10.1002/sec

Denis, M. (February, 2012). Mobile Malware Evolution, Part 5.

Securedlist, pp. 1. Retrieved from

http://www.securelist.com/en/analysis/204792222/Mobile_Mal

ware_Evolution_ Part_5

Gartner, (November 2015). Worldwide Smartphone Sales to

End Users by Operating System in 3Q15. Gartner Report

Retrieved from

http://www.smartphonemarketresearch.com/emerging-

markets-drove-worldwide-smartphone-sales-to-15-5-percent-

growth-in-third-quarter-of-2015/ visited 20th January, 2016.

Hahnsang, K., Joshua, S. & Kang, G.S., (2008). Detecting

Energy Greedy Anomalies and Mobile Malware Variants. In

Proceedings of the 6th international Conference on Mobile

Systems, Applications, and Services, MobiSys ’08, pp. 239–

252.

Joshua, A., Waziri, O.V., Abdullahi, M.B., Ume, U.A. &

Adewale, O.S., (2015). Extracting Android Applications Data

for Anomaly-based Malware Detection. Global Journal of

Computer Science and Technology (E) Network, Web and

Security (GJCST-E), 15(5): Version I, pp. 1-8.

Jacobym G.A., Marchany R., Davis N.J. IV (2006). How

Mobile Host Batteries Can Improve Network Security. IEEE

Security and Privacy Vol. 4 PP. 40-49.

Lei, L., Guanhua, Y., Xinwen, Z. & Songqing C. (2009).

Virusmeter: Preventing your Cell Phone from Spies. In

Proceedings of the 12th International Symposium on Recent

Advances in Intrusion Detection, RAID ’09, pp. 244–264.

Liang Xie, Xinwen Zhang, Jean-Pierre Seifert, and Sencun Zhu,

(2010). PBMDS: A Behavior-based Malware Detection System

for Cell Phone Devices. In Proceedings of the third ACM

conference on Wireless network security, WiSec ’10, pp. 37–

48.

Lovi D. & Divya, B. (2014). Taxonomy: Mobile Malware

Threats and Detection Techniques. Dhinaharan Nagamalai

(Eds) : ACITY, WiMoN, CSIA, AIAA, DPPR, NECO,

InWeS2014 pp. 213–221.

Markus, M., Perttu, H. & Kimmo, H. (2006). Host-Based

Intrusion Detection for Advanced Mobile Devices, In

IEEE 20th International Conference on Advanced Information

Networking and Applications, 2006. AINA 2006. 2, 72-

76, doi:10.1109/AINA.2006.192

Mutz, D., Valeur, F., Vigna, G. (2006). Anomalous System Call

Detection. ACM Transactions on Information and System

Security 9(1), 61-93.

Nwokedi, I. & Aditya, P.M. (2007). A Survey of Malware

Detection Techniques. Unpublished Predoctoral Fellowship and

Purdue Doctoral Fellowship Research Report, Department of

Computer Science, Purdue University, West Lafayette IN

47907. pp. 1-48.

Oberheide, J., Evan, C. & Farnam, J. (2008). CloudAV: N-

version Antivirus in the Network Cloud. In Proceedings of the

17th USENIX Security Symposium (Security ’08), San Jose,

CA, July 2008.

Raymond, W.L, Karl, N.L. & Ronald, A.O. (1995). MCF: A

Malicious Code Filter. Computers and Security, 14(6),

pp. 541 – 566.

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C. & Weiss, Y.

(2010). Andromaly: A Behavioural Malware Detection

Framework for Android Devices. Journal of Intelligent

Information Systems, pp. 1-30, doi: 10.1007/s10844-010-0148-

x.

Spamlaws, (2017). Zero Day Attacks and How to Prevent Them.

 http://www.spamlaws.com/zero-day-attacks.html

visited 21st June, 2017.

Srikanth, R. (2012). Mobile Malware Evolution, Detection and

Defense, EECE 571B Unpublished Term Survey Paper,

Institute for Computing, Information and Cognitive Systems,

University of British Columbia, Vancouver, Canada, April,

2012, pp. 1-4. Retrieved from

http://www.cs.tufts.edu/../adinesh.pdf visited 2nd April, 2014.

Statista, (2015). Global Smartphone Sales 2009-2014, by OS.

Retrieved from http://www.statista.com visited 11th November,

2015.

Su, S., Chuah, M. & Tan G., (2012). Smartphone Dual Defense

Protection Framework: Detecting Malicious Applications in

Android Markets, Proceedings of the 2012 8th International

Conference on Mobile Ad hoc and Sensor Networks, Chengdu,

China, pp. 153-160.

Tchakounté, F. & Dayang, P. (2013). System Calls Analysis of

Malwares on Android. International Journal of Science and

Technology 2(9), pp. 669-674.

Xie, L., Zhang, X., Seifert, J.P. & Zhu, S. (2010). pBMDS: A

Behavior-based Malware Detection System for Cell Phone

Devices. In: Proceedings of the Third ACM Conference on

Wireless Network Security, WISEC 2010, Hoboken, New

Jersey, USA, March 22-24, 2010, pp. 37-48.

Yajin, Z., Zhi, W., Wu, Z. & Xuxian, J. (2012). Hey, you, get

off of my Market: Detecting malicious Apps in Official and

Alternative Android Markets. In Proceedings of the 19th

http://www.securelist.com/en/analysis/204792222/Mobile_Malware_Evolution_%09Part_5
http://www.securelist.com/en/analysis/204792222/Mobile_Malware_Evolution_%09Part_5
http://www.smartphonemarketresearch.com/emerging-
http://www.smartphonemarketresearch.com/emerging-
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10777
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10777
http://dx.doi.org/10.1109/AINA.2006.192
http://www.spamlaws.com/zero-day-attacks.html
http://www.cs.tufts.edu/adinesh.pdf
http://www.statista.com/

BEHAVIOR-BASED DETECTION…Joshua, Adati, Esther and Emmanuel FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 4, December, 2019, pp 266 - 275

275

Network and Distributed System Security Symposium, 2012,

pp. 44.

You, J.H., Daeyeol, M., Hyung-Woo, L., Jae, D.L. & Jeong,

N.K. (2014). Android Mobile Application System Call Event

Pattern Analysis for Determination of Malicious Attack.

International Journal of Security and Its Applications 8(1), pp.

231-246. http://dx.doi.org/10.14257/ijsia.2014.8.1.22 Visited

9th February, 2015.

http://dx.doi.org/10.14257/ijsia.2014.8.1.22

