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ABSTRACT 

We present behaviour-based detection as an approach to mitigating zero-day attacks on Android. This is as a 

result of the drawbacks of signature-based approach commonly in use in most antivirus engines. The Signature-

based approach requires the analysis and storage of signature strings of malware with which new attacks are 

compared. This makes the detection of new attacks whose signatures have not been gotten impossible. For 

these attacks to be detected, patches must be developed for them. This unknown attack is referred to as zero-

day attacks. Moreover, developing patches takes time creating a vulnerability window that could be exploited 

hence, there is the need to be able to detect zero-day attacks in real-time. To demonstrate the capability of 

detecting zero-day attacks, dynamic analysis of applications was adopted in this research. A detection system 

was developed for the Android system and features were extracted from the device and used to analyze the 

behaviour of the system. The K-Nearest Neighbour (KNN) classifier was used and results showed that this 

approach has 93.75% accuracy and 6.25% error rate. The Area Under Curve (AUC) of the Receiver Operating 

Characteristics (ROC) stands at 0.996 out of 1. This result showed that behavioural detection promises a future 

for malware detection with respect to zero-day detection. It is recommended that the features be extended to 

include features at a lower level of granularity that represents system-wide behaviour. In addition, this approach 

should be adopted by other mobile platforms besides Android.     

Keywords: Android, Attacks, Behaviour-based detection, Exploit, Malware, Signature-based detection, 

Smartphones, Vulnerability, Zero-Day. 

 

INTRODUCTION 

Mobile devices have drastically become a ubiquitous computing 

and storage platform with increasing capacity, complexity, and 

usage.Among these devices, Android holds a large percentage 

of the market share with over 220 million mobile devices 

running Android this figure corresponds to well over 78% of 

Smartphones sold to consumers worldwide (Statista, 2015).  

Based on unit shipments of these smart devices, Android holds 

the highest percentage of global Smartphone Operating Systems 

(OSs).  

The availability of Smartphones at relatively low prices has led 

to an accelerated migration of feature phone users to 

Smartphones; tasks previously carried out on laptops and PCs 

are now migrated to Smartphones making the smartphone OS 

market to experience fast growth in most emerging countries, 

including Nigeria, India, Russia and Mexico (Gartner, 2015). 

This trend continued to benefit Android, which saw its market 

share grow by 2.2 percentage points in 2014, and 32 percent year 

on year. Making Android the most used Smartphone’s 

Operating system in the World (Gartner, 2015). Android is open 

source with a huge user community and documentation; it 

allows any programmer to develop and publish Applications to 

both the Official or Unofficial market (Srikanth, 2012). It has a 

very huge adoption and market penetration globally. Android 

was predicted to be the most used mobile Smartphone platform 

by 2014 (You et al., 2014) which has become a reality. 

The ubiquity of the Android platform and indeed the 

Smartphones, in general, has not gone unnoticed by malware 

developers. Rather, this ubiquitous gain of Android carries 

along with it some security risks in terms of malware attacks 

targeted at this platform. Mobile devices and Android, in 

particular, has become a target of attacks. Android’s popularity 

came with a cost as it has become a target for attacks for most 

malware developers. Although other mobile platforms suffer the 

same fate, the Android platform is the worst hit (Denis, 2012).  

There are already well-known and documented cases of Android 

malware in both official and unofficial markets (Yajinet al., 

2012). With known malware nefarious capabilities and effects, 

the detection of malware is an area of major concern not only to 

the research community but also to the general public. Malware 

attack is a challenging issue among the Android user 

community. It, therefore, becomes necessary to make the 

platform safe for users by providing defense mechanism 

especially against malware (Joshua et al., 2015). Techniques 

that researchers develop for malware detections are realized 

through the implementation of malware detectors (Nwokedi & 

Aditya, 2007). Malware detectors are the primary tools in 

defense against malware and the quality of such detectors is 
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determined by the techniques they employed. Intrusion 

detection methods can be classified as host-based, cloud-based 

or social collaboration (Srikanth, 2012) and the technique 

adopted for each of these methods could be signature-based, 

anomaly-based or virtual machine-based.  

Most detection and antivirus engines in use today in the fight 

against malware intrusion adopt the signature-based approach in 

the prevention and detection of malware. While this technique 

could be effective for known malware; malware whose 

signatures have been obtained, analyzed and stored, it is 

practically impossible for signature-based intrusion detection 

engines to detect zero-day attacks; attacks that are not known. 

This makes zero-day attacks; malicious attacks that identify a 

vulnerability and exploits it before it becomes known to the 

software vendor and the end-users a difficult strain of malware 

to deal with as most antivirus software available today are based 

on signatures which cannot detect zero-day attacks. A malicious 

attack can use the exploit to downloadmalware, spyware, 

adware, phishing software, or any other kind of malicious code 

with criminal intent (Spamlaws, 2017). 

Similarly, for signature-based detection engines to be able to 

detect new attacks, update patches must be developed. Zero-day 

threats are released and propagated into the wild before security 

vendors can issue protection against them. Malware can attack 

by targeting vulnerabilities in Operating systems and 

Applications. In the advent of the discovery of a weakness in 

commercial Applications, the vendor will have to write a patch 

to secure the software against attacks. The problem with this 

solution is that it takes time to develop or write patches. 

According to Oberheideet al., (2008), it takes approximately 45 

days to successfully develop a patch and so systems or devices 

can be compromised before the vulnerability is fixed. 

Unpatched programs on your system increase your risk of a 

successful attack by a zero-day threat.  

The limitations of a signature-based approach to intrusion 

detection show a major drawback in the capability of signature-

based detection engines to effectively mitigate, detect, and 

protect systems against the highly evolving pace of zero-day 

malware attacks. It is against this backdrop that this paper 

presents a better approach to detecting and preventing zero-day 

malware attacks on mobile systems with Android in focus. The 

rest of this paper is articulately organized as follows; The 

introduction, related literature, research design, the result 

evaluation, discussion of result, conclusion and finally, 

recommendation for further studies.  

 

RELATED LITERATURE 

There have been significant research efforts on the problem of 

mobile malware detection. Generally, malware detection 

systems employ different approaches: Static analysis 

approaches such as (Aubery-Derrick, 2011; Christodorescu & 

Jha, 2003; Raymond et al., 1995) are based on comparing 

applications to already known malware through a reverse 

engineering method that decompiles packaged applications and 

looking for signatures or using other heuristics within the 

program code. Other approaches like (Bryan et al., 2011; 

Hahnsanget al., 2008; Lei et al., 2009) monitor the power usage 

of applications, and report anomalous consumption. 

(Tchakounté, & Dayang, 2013; Burguera et al., 2011; Liang et 

al., 2010) used a dynamic analysis by monitoring system calls 

and attempt to detect unusual system call patterns. Some others 

like (Yajinet al., 2012; Abhijitet al., 2018) used the universal 

signature-based approaches that compare applications with 

known malware or other heuristics.  

  Burguera et al., (2011) presented Crowdroid a machine 

learning-based framework that recognizes Trojan-like malware 

on Android Smartphones, by analyzing the number of times 

each system call has been issued by an application during the 

execution of an action that requires user interaction. A genuine 

application differs from its trojanized version, since it issues 

different types and a different number of system calls. 

Crowdroid builds a vector of m features (where m is the number 

of the Android system calls). Crowdroid used about 100 system 

calls with only two trojanized applications tested. Mutzet al. 

(2006), presented a similar approach which also considered the 

system call parameters to discern between normal system calls 

and malicious ones. Asafet al., (2011) presented Andromaly that 

relies on machine learning techniques which monitors both the 

Smartphone and user's behaviours by observing several 

parameters, spanning from sensor activities to CPU usage. 

Andromaly used 88 features to describe applications 

behaviours; the features are then pre-processed by feature 

selection algorithms. The authors developed four malicious 

applications to evaluate the ability to detect anomalies. Other 

approaches only monitor anomalies on a limited set of 

functionalities such as incoming/outgoing traffic (Damopoulos 

et al., 2011),  SMS, Bluetooth and instant messaging (Abhijit& 

Shin, 2006), or power consumption (Jacobym et al., 2006), and 

therefore, their detection accuracy is high.  

 Xie et al., (2010) presented pBMDS; Propose Behaviour-

based Malware Detection System (pBMDS) that correlates 

user's inputs with system calls to detect anomalous activities 

related to SMS/MMS sending. Abhijit et al., (2018) propose 

behavioural detection framework to detect mobile malware, 

instead of common signature-based solution currently available 

for use in mobile devices. They represent malware behaviours 

based on a key observation that the logical ordering of 

application actions over time often reveals the malicious intent 

even when each action alone may appear harmless. Also, they 

propose a two-stage mapping technique that constructs 

malicious behaviour signatures at run-time from the monitored 

system events and API calls while studying 25 distinct families 

of mobile malware in Symbian OS. They discriminate the 

malicious behaviour of malware from the normal behaviour of 

applications by training a classifier based on Support Vector 

Machines (SVM). Detection rates from simulated and real 

malware samples were stated to be 96%.  
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Finally, Shabtai et al., (2010) presented a methodology to detect 

suspicious temporal patterns as malicious behaviour, known as 

knowledge-based temporal abstraction. Although their 

approach is recommended for detecting continuous attacks (e.g. 

DoS and worm infection), it lacks the ability to detect Trojan 

Horses the most frequently seen attacks nowadays. According 

to Christodorescu, (2007), Anomaly or Behaviour-based 

approaches are better in detecting ‘zero-day’ attacks compared 

to signature based approaches hence, he opined that Signature-

based scanning must be supplemented with powerful host-based 

agent that employs behavioural analysis. While intrusion 

detection models with host-based data collection provide more 

accurate and reliable results than other approaches (Markus et 

al., 2006). And a host-based architecture have access to private 

information on the mobile device that is useful to detect 

intrusions as the information collected from the mobile device 

will reflect the device behaviour accurately. 

Table 1 shows the list of monitored features used in this work. 

To generate a good feature vector that represents typical 

Android applications behaviour the design of the system 

utilized features that represents behaviours when the device is 

active and when it is inactive.  

 

 

Table 1: List of Monitored Features 

S / N o . F e a t u r e s 

1 I n / O u t  S M S s  ( t w o  f e a t u r e s ) .  

2 I n / O u t  C a l l s  ( t w o  f e a t u r e s ) .  

3 D e v i c e  S t a t u s  ( o n e  f e a t u r e ) . 

4 R u n n i n g  A p p l i c a t i o n s / P r o c e s s e s  ( o n e  f e a t u r e ) .  

5 . D a t e / T i m e  S t a m p  ( o n e  f e a t u r e ) . 

 

RESEARCH DESIGN  

The Anomaly Android Malware Detection System is composed of six modules which work together to provide the resources and 

mechanisms needed to detect malware on the Android platform. Each module has a specific functionality within the system. The 

integration of all the modules forms the System. Figure 1 shows an elaborate research design.  

 
Fig. 1: System Design 

In order to collect the data required for analysis, three monitor 

modules are implemented at the applications layer namely the 

call monitor module which will record all outgoing and 

incoming calls initiated by the device over a period of time T 

and forward the collected data to the collector module. The SMS 

monitor module also records all sent and received SMSs over a 

period of time T and forward the monitored data to the collector 

module. The Statusmonitor module monitors and records the 

device status. The device operates in two modes; Idle 

(hibernated or device screen in OFF) mode or active (device 

screen in ON) mode. The collector modules which is described 

in detail in subsequent subsection is responsible for collecting 

data from all the monitor modules and parse them into sets of 

feature vectors. In essence, the collector module will be 
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responsible for creating feature vectors from the monitored data 

and storing these vectors in the logger module. The logger 

module will receive the sets of feature vectors from the collector 

module and store them as local files in folder on the SD memory 

card for the classifier to finally classify as either normal or 

malicious application using the K-NN algorithm. The results of 

classification or labelling by the classifier module are also 

stored in the logger module which can be easily accessed or 

retrieved. 

The Malware Detection Process 

The malware detection processes are divided into three major 

activities namely; 

i. Data Collection: This activity will allow for 

the collection of applications data from device 

through the implementation of the different monitors 

described in Figure 1. 

ii. Data Processing: This activity comprises of 

managing and parsing all of the data collected from 

Android device into feature vectors. The data analyser 

code implemented in the collector module of the 

detection system collects the extracted data by the 

monitors for the monitored application and analyse 

them by converting them into the desired format 

which is the .arff.  

iii. Malware Analysis and Detection: This is 

the final activity that is carried out by the detection 

system and it consists of analysing and classifying the 

feature vectors of applications obtained in data 

processing phase in order to create the test feature 

vectors which are then analysed for anomaly 

behaviours to detect malicious or anomalous 

behaviour in the Android applications. The feature 

vectors are classified into two different classes of 

“Normal” or “Malicious” using the K-NN classifier in 

Weka. This algorithm will create two classes after it 

is trained using the normality model. All feature 

vectors belonging to good applications are classified 

into the “Normal” class while feature vectors 

belonging to malware applications are classified into 

and the malicious class.  

The Normality Model 

In order to efficiently develop a machine learning model, it is 

important to train the model on the normal and abnormal 

behaviour of the system. To do this, a normality model is 

required to describe to the classifier the pattern of behaviours. 

Hence a normality model is designed based on the fact that 

malware requires user interaction to activate its payload on the 

target device. For malware that uses SMS and calls as its 

propagation vector, it becomes evident that user interaction is 

necessary for such malware to propagate. SMSs and calls 

require user interaction with the device to compose and send 

SMSs or to initiate calls. Therefore, a normal SMS and call 

activity is one that has active user interaction. In this work, five 

(5) features were used to describe a normality model for the K-

NN model, these features include: 

i. The out-going call 

ii. The In-coming call 

iii. The Out-going SMS 

iv. The In-coming SMS and  

v. The device Status. 

These features were used as follows; 

i. If the device is active or inactive at the point of any 

activity;  

ii. If any SMS is being sent or received when the phone 

is inactive and  

iii. If any call is being made or received when the phone 

is inactive. 

The classification task involved in this work is a binary 

classification in the sense that there are two classes; Normal and 

Malicious class. Using a binary representation for the features, 

the number of probable permutations of these 5 features is 

obtained by the expression given as  

 

Where n is the number of features to be represented. 

Since in this case n = 5; the expression yields  

instances of the features as given in Table 2. The value of 1 

represents the presence of the feature while the value of 0 

represents the absence of that feature. The numeric count of how 

many occurrence of the feature is immaterial because even a 

single presence is enough to describe the entire behaviour. For 

the device status, 1 represents an active user interaction where 

the device screen is ‘ON’ and 0 represents no interaction with 

the device with the screen turned ‘OFF’ or hibernated. The 

combination of the behaviour features gives thirteen (13) normal 

instances and nineteen (19) malicious instances based on the 

condition that certain activity do not occur at the same time and 

at certain device state. For example Table 2 gives the instances 

and possible classification result. 

 

Table 2: Instance Classification  

S / N O u t C a l l I n C a l l O u t S M S I n S M S D e v i c e  S t a t u s C l a s s 

1 0 0 1 0 0 M a l i c i o u s 

2 0 0 1 0 1 N o r m a l 
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The first instance signifies the occurrence of an out-going SMS 

while the device screen is in an inactive (OFF/hibernated) state. 

The application behaviour represented by this instance is 

suspicious; the reason is that sending SMS requires active 

interaction with the device; to compose the text message and 

then send it by pressing the send button. This activity would not 

have been made by a valid user when the device is idle hence; it 

is classified as a malicious behaviour. In the second instance, 

the out-going SMS occurred while the device screen state is 

active signifying that there is active interaction with the device 

which keeps the screen light ‘ON’ hence, the activity is 

classified as a normal activity. This normality model is parsed 

and converted into arff with the date/time stamp and application 

and or services features appended to each instance and then used 

to train the K-NN classifier. 

 

System Design 

This subsection presents the designs for the various components 

of the system which includes; interface design, input and output 

design and other related subsystems.  

 

 

 

Input/Output Designs 

The input to the classifier is the result of monitoring extracted 

from the applications by the various monitors. This forms the 

test set for the classifier function. The data extracted by the 

monitors from the applications during execution are logged in a 

file in csv format. This file is the first output from the monitoring 

modules which in turn serves as the input to the collector 

module. When this file gets to the collector module, it is 

processed into arff hence; the output of the collector module is 

an unclassified arff file. This unclassified arff file is the input to 

the logger module as well as the classifier module. For the 

logger module, its inputs are two; first the unclassified arff file 

from the collector module and secondly, the classified arff file 

which is the result of classification from the classifier module is 

sent to the logger for storage. The classified arff file is therefore 

the output of the classifier module.   

 

Interfaces Design 

The interfaces are the Graphical user Interface (GUI) which 

presents visual display of the system to the users. Figure 2 

presents the interface for the malware detection system. Other 

interfaces representing the subsystems are not given here for 

lack of space.

 

 

 
Fig. 2: Screen Capture of the Malware Detection System Interface. 

 

MATERIALS USED 

The detection framework was implemented on a laptop machine 

with the Intel Core-i3-370M Processor, 3GB of available 

memory and 500GB Hard Disk Drive (HDD). This machine 

runs Windows 7 Operating System and tests werecarried out on 

a TECNO P5 with build number P5-G255-20140313, Android 

Jelly Bean version 4.2.2 OS, and Linux kernel version 3.4.5. The 

implementation does not require rooting or jail breaking of the 

device since the monitored features are all carried out at the 

application layer. The component of the system framework 

includes an Android Application in Java implemented using the 

Android Studio version 1.3.2 Integrated Development 

Environment (IDE) as the Software Development Kit (SDK). 

This tool runs Dalvik which is a virtual machine for Android. 

Android Studio is a java based development tool that provides 

a professional-grade development environment for building 

Android applications. It is a full Java IDE with advanced 

features to help build, test, debug, and package Android 

applications with a background Dalvik virtual machine. In 

order to realise the classification model of the K-NN classifier, 

Weka version 3.7.3; an open source library in Java that includes 

several classification tools was used by adding the Weka.jar file 

as an external library to the Android Studio project from where 

the available features were invoked programmatically using sets 

of available Java APIs. 
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RESULT EVALUATION 

The results obtained from the test are shown in Figure 3, Figure 4 and clearly tabulated and summarized in Table 3. These results 

were obtained from a single run of the detection model and are discussed based on the evaluation measures  discussed here. 

 

Figure 3: Detailed Results of the Test Performed 

 

Figure 4: The Confusion Matrix 

The confusion matrix is of the form:  

 

This is a 2 x 2 matrix representing the two classes (a = Normal and b = Malicious) where the entries w = nNN; x = nNM; y = 

nMN and z = nMM. 

The Confusion matrix of Figure 4 shows the misclassified malicious samples and the correctly classified samples from the 

experiment, the incorrectly classified cases were due to the malicious class samples misclassified as being of the Normal class. It 

should be noted from Figure 3 that the time taken to build the model is less than a second, this execution time parameter shows that 

the K-NN classification model and the current dataset yields very promising results for its applicability on real-time monitoring of 

malware infections on real Android devices. 
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Table 3: Summary of Results 

C l a s s Accuracy Error Rate TPR TNR FPR F N R 
 

A U C Recall Sensitivity Specificity 

N o r m a l 0 . 9 3 7 5 0 . 0 6 2 5 1 . 0 0 0 1 . 0 0 0 0 . 1 5 4 0 . 1 5 4 0 . 9 0 5 0 . 9 9 6 1 . 0 0 0 0 . 9 0 4 8 1 . 0 0 0 

M a l i c i o u s 0 . 9 3 7 5 0 . 0 6 2 5 0 . 8 4 6 0 . 8 4 6 0 . 0 0 0 0 . 0 0 0 1 . 0 0 0 0 . 9 9 6 0 . 8 4 6 0 . 9 0 4 8 1 . 0 0 0 

 

DISCUSSION OF RESULTS 

Based on the output of the test carried out, it is obvious that the 

K-NN classification model provides a very high accuracy of 

0.9375 representing 93.75 percent (≈ 94 percent) of the samples 

correctly classified with error rate of as low as 0.0625 

representing 6.25 (≈ 6) percent as shown in the output of Figure 

4 and summarized in Table 3. The TPR of the Normal and 

Malicious samples which are the same as the Recall are 1.000 

and 0.846 while the precisions are 0.905 and 1.000 respectively. 

The precision of the samples classified as Normal and the 

samples classified as Malicious did not vary much from each 

other meaning that the predictive capacity of the K-NN classifier 

is almost equal in both cases. 

 

 

Fig. 5: The Receiver Operating Characteristic (ROC) Curve 

 

 The Area Under Curve (AUC) of the ROC is 0.996. The AUC 

has a standard range of , which mean that 

the obtained value of 0.996 is a good indication of the 

performance of the K-NN classifier as a model for malware 

detection. As earlier stated, a perfect classifier will have an AUC 

of 1. Thus, the closer the AUC is to 1, the greater the classifier’s 

predictive strength and hence the performance. Figure 6 shows 

the ROC curve which is a plot of FPR on the X-axis against TPR 

on the Y-axis. The ROC curve could also be represented as a 

plot of (1 – Sensitivity) against Specificity. The sensitivity and 

specificity measure of K-NN algorithm based on equations (4.9) 

and (4.10) are 0.9048 (90.48 percent) and 1.000 (100 percent) 

respectively and are the same for both classes. The sensitivity 

and specificity of the K-NN algorithm is very high as indicated. 

Sensitivity is the proportion of actual positive cases which are 

correctly identified while Specificity is the proportion of actual 

negative cases which are correctly identified.  

These results were in conformity with results obtained by 

previous researchers in their works for instance, Su, et al, (2012) 

in their work using J48 decision trees and Random forest 

classifiers produced accuracies of 91.6% and 96.7% 

respectively. Similarly, Ali, et al., (2013) in their study of 

machine learning classifiers for anomaly-based mobile botnet 

detection using K-NN produced 99.9% accuracy. While the 

researchers take cognizance of the differences in platforms, 

datasets, approaches and dimensions of their works to theirs, the 

performance results obtained in all cases bear close resemblance 

to each other without much difference and in some cases, the K-

NN model performs better than other classifiers like the J48 
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decision trees attesting to the inherent high performance of the 

K-NN classification model. As earlier noted the performance of 

the classifier depends largely on the training set; the better the 

training set supplied to a classifier, the better the performance 

of that classifier. 

 

CONCLUSION 

This research presents a behaviour-based approach rather than a 

signature-based technique, this makes it possible to detect new 

and unknown malware based on their behaviours rather than 

their signature string which are not yet discovered. Hence, in 

this work, we have developed an intrusion detection system 

which was able to detect new and unknown attacks using 

Behavioural approach. This strengthens and re-affirm the 

assertion by Christodorescu, (2007) that Behaviour-based 

approaches are better in detecting zero-day attacks compared to 

signature based approaches. He further opined that signature-

based scanning must be supplemented with a powerful host-

based agent that employs behavioural analysis. Confirming the 

capability of anomaly or behaviour-based detection approach to 

detect unknown malware which signature-based system cannot 

detect. Our experiment also demonstrated the possibility of 

capturing Android system activities which served as 

behavioural features used for behavioural analysis. This implies 

that more fine-grain features can be derived even at a much 

lower level of system granularity to define system behaviours 

for behavioural analysis. A well-reviewed literature that adds to 

the available body of knowledge was also presented by this 

paper. 

This paper has also by every means provided a novel approach 

to malware detection specifically, zero day attacks. The results 

obtained shows a very high accuracy of 0.9375 representing 

93.75% of the samples correctly classified with error rate of as 

low as 0.0625 representing 6.25%. The TPR of the Normal and 

Malicious samples which are the same as the Recall are 1.000 

and 0.846 representing 100% and 84.6% respectively while the 

precisions are 0.905 and 1.000 representing 90.5% and 100% 

respectively. The precision of the samples classified as Normal 

and the samples classified as Malicious did not vary much from 

each other meaning that the predictive capacity of the K-NN 

classifier is almost equal in both cases. The Area under Curve 

(AUC) of the ROC is 0.996 representing 99.6%.These shows 

that behavioural approach with KNN is capable of malware 

detection with a very high degree of accuracy.  

RECOMMENDATIONS FOR FURTHER STUDIES 

System behaviours such as Mobile device activities can be 

extracted at low level of granularity for the purpose of 

behavioural detection. Currently, access to kernel layer data is 

deprecated on modern versions of Android hence, accessing 

kernel layer data is not possible without routing the device. 

Hence, the following are recommended for further studies; the 

dataset which is the set of monitored features need to be 

expanded beyond SMSs, calls and device status to incorporate 

more features that could give a more general and system wide 

representation of the behaviour of the system; access to low 

level information like system calls, network traffic and other 

system level information which are presently deprecated in 

Android system should be allowed access by Google in some 

way that would not require rooting, and this framework should 

be extended beyond Android to include other mobile devices 

Operating Systems (iOS, RIM, Symbian, Java and Windows). 
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