
APPLICATION OF POWER NUMERICAL…     Olanrewaju et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 7 No. 2, April, 2023, pp 19 - 24 19 

8 

 

APPLICATION OF POWER NUMERICAL METHOD FOR THE STATIONARY DISTRIBUTION OF MARKOV 

CHAIN 

 
*1Agboola Sunday Olanrewaju and 2Adebiyi Oyeyemi Omodadepo 

 
1Department of Mathematics, Faculty of Natural and Applied Sciences, Nigerian Army University Biu 

P. M. B. 1500 Biu, Borno State, Nigeria 
2Department of Economics, Faculty of Business and Social Sciences, Adeleke University Ede, Osun State, Nigeria 

 

*Corresponding authors’ email: agboolasunday70@gmail.com  

 

ABSTRACT 

The evolution of this model is represented by transitions from one state to the next. Also, the physical or 

mathematical behavior of this system can also be illustrated by identifying all of the possible states and 

explaining how it transitions between them. The iterative solution approaches for the stationary distribution of 

Markov chains, which begin with an initial estimate of the solution vector and it becomes closer and closer to 

the true solution with each iteration are investigated. Our goal is to compute solutions of stationary distribution 

of Markov chain by utilizing the power iterative method which leaves the transition matrices unchanged and 

saves time by considering the discretization effect, and the convergency. Matrices operations such as 

multiplication with one or more vectors, lower, diagonal and upper concepts of matrix, with the help of several 

existing Markov chain laws, theorems, formulas, and the normalization principle are applied. For the 

illustrative examples, the stationary distribution vectors 𝜋𝑖 , 𝑖 = 1, 2, … , 𝑛  and table of convergence are 

obtained.  
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INTRODUCTION 

The best method to determine the stationary distribution of a 

finite, ergodic, discrete-time Markov chain is numerical 

power solution approach, and there are two types of solution 

methods in numerical analysis: iterative solution methods and 

direct solution methods. Iterative techniques begin with a 

rough estimate of the solution vector, which is subsequently 

adjusted until it gets closer to the true solution with each step 

or iteration. It eventually finds the correct solution. If an initial 

approximation is unknown, a guess is made or an arbitrary 

initial vector is utilized instead. When a certain number of 

well-defined steps have been performed, the solution must be 

computed. 

Iterative approaches in one form or another are the most 

extensively used methods for obtaining the stationary 

probability vector from either the stochastic transition 

probability matrix or the infinitesimal generator. 

Conventional iterative procedures indicate that the matrices 

are only used for one operation: multiplication with one or 

more vectors, leaving the transition matrices untouched. 

Compact storage strategies can thus be easily developed, 

reducing the amount of memory required to store the matrix 

while still being well suited to matrix multiplication, such 

approaches can save a lot of time because the matrices 

involved are often large and sparse. When employing direct 

equation solving methods, eliminating one nonzero matrix 

element during the reduction phase often results in the 

generation of numerous nonzero elements in previously zero 

positions.  

This is called fill-in, and it complicates the construction of a 

compact storage system because it requires provisions for 

object deletion and insertion. Furthermore, the amount of fill-

in might frequently be so big that it consumes all available 

memory. Other advantage of iterative approaches is that it is 

possible to utilize good initial approximations to the solution 

vector, which is particularly advantageous when doing a 

sequence of connected test. As a result, it is reasonable to 

expect the new experiment's result to be similar to the old one, 

and it is preferable to use the old result as the new initial 

approximation.  

The new result is computed in a few iterations if the difference 

is not significant. Furthermore, if a pre-specified tolerance 

criterion is met, an iterative process may be suspended, which 

could be a rather lax criterion. For example, if a mathematical 

model contains errors of the order of 5–10 percent, computing 

the solution to full machine accuracy may be inefficient.  

Moreover, using iterative techniques, the accumulation of 

rounding error is almost non-existent because the matrix is 

never modified. For these reasons, iterative procedures have 

generally been recommended to direct ones. In the 

implementation of direct approaches, the data structure 

employed to represent the coefficient matrix is a source of 

concern. Markov models generate matrices that are frequently 

too large to be stored in computer memory using ordinary 

two-dimensional arrays. Because these matrices are often 

sparse, a packing method that saves only the nonzero elements 

and their locations in the matrix is cost-effective, if not 

required. Direct approaches are generally not recommended 

when the transition matrix is large and not banded, because 

the volume of fill-in can quickly surpass available storage 

capacity. 

Romanovsky (1970) pioneered the use and simulation of 

discrete Markov Chains, while Ramaswami and Neuts (1980) 

expressed some explicit formulas and computational methods 

for infinite server queues with phase type arrivals and 

Ramaswami (1988) introduced the stable recursion for the 

steady state vector in Markov chains of M/G/1 type, while 

Philippe and Sidje (1993) introduced the transient solution of 

Markov processes by Krylov Subspaces and this was followed 

by Dayar (1998) that Permuted Markov chains to nearly 

completely decomposable of reducible and irreducible forms. 

Stewart (1994, 2009) expanded the numerical solutions of 

Markov chains, and Pesch et al ((2015) demonstrated the 

Markov chain techniques suitability for wind energy in 

Germany. Uzun and Kiral (2017) utilized the Markov chain 

model of fuzzy state to forecast gold price movement and 
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calculate the probabilistic transition matrix of gold price 

closing returns, whereas Aziza et al. (2019) used the Markov 

chain model of fuzzy state to forecast monthly rainfall data.  

Clement (2019) applied Markov chain to show how Hepatitis 

B became more infectious over time than tuberculosis and 

HIV, whereas Vermeer and Trilling (2020) used Markov 

chain to show how it may be used in journalism. Agboola 

(2021) computed the solutions and algorithms for lower – 

upper triangular matrix approach and the Grassmann–Taksar–

Heyman which is an extension of Gaussian elimination, while 

Agboola and Ayoade (2021) used matrix geometric and 

analytical block numerical iterative approaches. Agboola and 

Ayinde (2021) analysed the performance measure analysis on 

the states classification of Markov chain into reducible, 

irreducible states, and Agboola and Badmus (2021a) 

performed the application of Runge-kutta and backward 

differentiation methods for solving transient distribution in 

Markov chains, while Agboola and Badmus (2021b) analysed 

the distribution function of the renewal process and sequence  
{𝑋𝑛, 𝑛 ≥ 𝑖} using the concept of discrete time Markov chain 

to obtain the probability of exactly 𝑛renewals by time 𝑡. 

Agboola (2022a) considered the left-hand eigenvector 𝑢𝑖  of 

length 𝑛𝑖 corresponding to the eigenvalue 𝜆𝑖1
 closest to 1 in 

each block 𝑖,   1 ≤ 𝑖 ≤ 𝑁 and the weights 𝜉𝑖, an approximate 

solution to the stationary probability vector 𝜋 to computed the 

global solution 𝜋∗ = 𝜉𝑖𝑢𝑖 =
 (𝜉1𝑢1,   𝜉2𝑢2,   𝜉3𝑢3 ,   …,    𝜉𝑁𝑢𝑁) , whereas Agboola 

(2022b) developed the states of the Markov chain with the 

integers 0, ±1, ±2, . ..(the drunkard’s straight line) where the 

only transitions from any state 𝑘 are to neighbouring states 
(𝑘 + 1); a step to the right with probability 𝑝 and (𝑘 − 1)a 

step to the left with probability 𝑞 = (1 − 𝑝) to determining 

whether the gambler is ruined. Agboola and Ayinde (2022) 

demonstrated the use of successive overrelaxation algorithmic 

and block numerical iterative solutions for the stationary 

distribution in Markov chain. 

Agboola and Ayoade (2022) discussed the computation of the 

elements of the reachability matrix 𝐹  which are separated 

into different categories depending on the classification of the 

initial and terminal states, such as, when both states are 

recurrent and belong to the same closed communicating class, 

when both states are recurrent but belong to different closed 

communicating classes, when state 𝑖 is recurrent and state 𝑗 is 

transient and when both states are transient, while Agboola, 

and Nehad (2022) applied matrix scaling and powering 

methods of small state spaces for solving transient distribution 

in Markov chain. However, in this research, the Power 

technique numerical iteration is used to compute the 

stationary distribution of a Markov chain which involved the 

use of concept of Eigen values and Eigen vectors, matrices 

formulae, discretization effect and the normalization 

principle. Also, for the illustrative examples, the stationary 

distribution vectors 𝜋𝑖 , 𝑖 = 1, 2, … , 𝑛  and table of 

convergence are obtained. 

Notation 

P, the finite irreducible discrete-time Markov chain's 

transition probability matrix; 𝜋 , the left-hand eigenvector 

corresponding to P's dominant (and simple) unit eigenvalue; 

𝑄, the infinitesimal generator; ∆𝑡, time interval; 0(∆𝑡), big 

order of ∆𝑡; 𝑘, number of transition or a normalization factor; 

𝑧 , equation un-known variable; 𝑃𝑇 , the transpose of the 

transition probability matrix; A, Probability matrix; 𝜆𝑖   ∀  𝑖 =
1, 2, … , 𝑛, eigen values;  𝑥𝑖    ∀  𝑖 = 1, 2, … , 𝑛, eigen vectors; 
∑ 𝛼𝑖𝑥𝑖

𝑛
𝑖=1 , linear combination of matrix A;qi∀  𝑖 = 1, 2, … , 𝑛, 

element of the infinitesimal generator 𝑄; 

 

MATERIALS AND METHODS 

This research focused on power solution method analysis for 

stationary Markov chain distributions. This refers to iterative 

methods for solving systems of equations that begin with an 

estimate of the solution, or a guess, and then use numerical 

operations to bring the approximation closer to the true 

solution. Because the coefficient matrix is not modified 

throughout the execution of the algorithm, iterative 

algorithms are well suited to compacted storage methods. 

Iterative techniques rate of convergence, or the rate at which 

the initial approximation approaches the solution, is a 

constant source of concern.We will begin with finite, 

irreducible Markov chains, in which the elements have a 

single stationary probability distribution that is strictly greater 

than zero. When the Markov chain is similarly aperiodic, this 

unique stationary distribution is also the steady-state 

distribution. Let P be the transition probability matrix of a 

finite, irreducible discrete-time Markov chain. Then, 

𝜋normalized to 1, is the left-hand eigenvector corresponding 

to the dominant of P unit eigenvalue. 

𝜋𝑃 =  𝜋     𝑤𝑖𝑡ℎ  𝜋𝑒 = 1 .   (1) 

The system of linear equations can be used to find the 

stationary distribution of a Markov chain that evolves in 

continuous time rather than discrete time and has an 

infinitesimal generator indicated by Q. 

𝜋𝑄 =  0     𝑤𝑖𝑡ℎ  𝜋𝑒 = 1.   (2) 

Both of these equations (1) and (2) can be stated in the same 

manner. The first, 𝜋𝑃 =  𝜋, can be represented as 𝜋(𝑃 − 𝐼) =
0 , which is equivalent to Equation (2). Note that (𝑃 − 𝐼) 

possesses all of the characteristics of an infinitesimal 

generator, including nonnegative off-diagonal elements, zero 

row sums, and diagonal elements equal to the negated sum of 

off-diagonal row elements. On the other hand, a continuous-

time Markov chain can be discretized. 

From Equation (2), we may write 

𝜋(𝑄∆𝑡 + 𝐼) =  𝜋     𝑤𝑖𝑡ℎ  𝜋𝑒 = 1.  (3) 

 

As a result, it is given in the form of an Equation (1). In the 

discretized Markov chain, transitions occur at intervals t, with 

t being short enough that the chance of two transitions 

occurring in time t is trivial, i.e., of order 0(∆𝑡). Taking a 

class is one possibility. 

∆𝑡 =
1

𝑀𝑎𝑥𝑖‖𝑞𝑖𝑖‖
    (4) 

The stationary probability vector of the continuous-time 

Markov chain produced from πQ = 0is similar to that of the 

discretized chain obtained from π(Q∆t + I) =  π; however, 

the matrix (Q∆t + I) is stochastic in this instance. As a result, 

numerical methods for determining the stationary 

distributions of discrete-time Markov chains can now be used 

to the stationary distributions of continuous-time Markov 

chains and vice versa. 

Estimating the probability distribution at each time step until 

no further changes are seen is one of the most easy approaches 

for calculating the stationary distribution of a discrete-time 

Markov chain. 

 

The Power Method 

The first approach that comes to mind when we need to 

determine the stationary distribution of a finite, ergodic, 

discrete-time Markov chain is to let the chain evolve over 

time, step by step, until it reaches its stationary distribution. 

Because 𝑧𝑝 = 𝑧  at that point, we can call the probability 
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vector stationary when it does not change while the process 

advances from step 𝑛 to step (𝑛 + 1). 

Let A be a square matrix with 𝑛  dimensions. The power 

approach is described by the iterative procedure. 

𝑧(𝑘+1) =
1

𝜀𝑘
𝐴𝑧(𝑘)    (5) 

Where 𝜀𝑘 = ‖𝐴𝑧(𝑘)‖
∞

,  𝑧(0)  is an arbitrary starting vector 

and k is a normalization factor. Although a normalizing phase 

is included in this version of the power technique at each 

iteration, in which each element of the newly formed iterate 

is divided by 𝜀𝑘. 

 To investigate the rate of convergence of the power approach, 

let A have an eigen solution. 

𝐴𝑥𝑖 = 𝜆𝑖𝑥𝑖 ,     𝑖 = 1, 2, … , 𝑛   (6) 

and suppose that 
|𝜆1| > |𝜆2| ≥ |𝜆3| ≥ ⋯ ≥ |𝜆𝑛|.  (7) 

By Considering the possibility of expressing the initial vector 

as a linear combination of A's eigenvectors, i.e. 

𝑧(0) = ∑ 𝛼𝑖𝑥𝑖 .

𝑛

𝑖=1

 

 

The rate of convergence of the power technique can then be calculated using the relationship. 

𝑧(𝑘) = 𝐴(𝑘)𝑧(0) = 𝐴(𝑘) ∑ 𝛼𝑖𝑥𝑖
𝑛
𝑖=1 = ∑ 𝛼𝑖𝐴(𝑘)𝑥𝑖

𝑛
𝑖=1 = ∑ 𝛼𝑖𝜆𝑖

𝑘𝑥𝑖 = 𝜆1
𝑘 {𝛼1𝑥1 + ∑ 𝛼𝑖 (

𝞴𝒊

𝞴𝟏
)

𝒌
𝑥𝑖

𝑛
𝑖=2 }𝑛

𝑖=1      (8) 

 

It is possible to see how the process converges to the dominant 

eigenvector 𝑥𝑖 . The ratios 
|𝜆𝑖|

|𝜆1|
 determine the rate of 

convergence for 𝑖 =  2, 3, . . . , 𝑛 . The faster the right-hand 

side summation approaches zero, the smaller these ratios get. 

The convergence rate is determined by the magnitude of the 

subdominant eigenvalue𝜆2. The power method will not work 

properly when |𝜆2| ≈ |𝜆1|  is used. There are obviously 

significant challenges when |𝜆2| ≈ |𝜆1|. 
 

RESULTS AND DISCUSSIONS 

This section discusses the derivation of results such as 

probability distribution, stationary distribution, eigen values, 

eigen vectors, rate of convergence of the power technique and 

table of convergence in power method and this is 

demonstrated by the illustrative examples. 

 

Illustrative example 1: Consider a Markov chain in discrete 

time with a transition probability matrix, and if the system 

starts in state 1, the initial probability vector is 

𝑃 = (
0.0 0.8 0.2
0.0 0.9 0.1
0.6 0.0 0.4

) 

If the system starts in state 1, the initial probability vector is 

𝜋(0) = (1 0 0) 

After the initial transition, the system will be in state 2 with a 

probability of.8, or state 3 with a probability of.2. The vector 

𝜋(1) denotes the probability distribution after one transition 

(or step), and this result can be obtained by creating the 

product 𝜋(0)𝑃. The probability of being in state 1 after two 

time steps is calculated by multiplying the likelihood of being 

in state 𝑖 after one step (given by 𝜋𝑖
1) by the probability of 

making a transition from state 𝑖to state 1. We have 

∑ 𝜋𝑖
1𝑃𝑖1

3
𝑖=1 = (𝜋1

1 × 0) + (𝜋2
1 × 0) + (𝜋1

1 × 0.6) = 0.12. 

Similarly, after two steps, the system will be in state 2 with a 

probability of 

0.08 = (0.0 × 0.8) + (0.8 × .1) + (0.2 × .0), 
and in state 3 with a probability of  

0.8 =  (0.0 × 0.2) + (0.8 × 0.9) + (0.2 × 0.4). 

After two steps, we have the following probability 

distribution, given that the system starts in state 1: 

𝜋(2) = (0.12 0.08 0.8) 

Also, 𝜋(2)can be obtained by multiplying 𝜋(1)and 𝑃 together. 

𝜋(2) = (0.12 0.08 0.8)

= (0 0.8 0.2) (
0.0 0.8 0.2
0.0 0.9 0.1
0.6 0.0 0.4

)

= 𝜋(1)𝑃. 

Therefore, for any integer k, multiply the probability vector 

acquired after (k − 1) transitions by P to get the state of the 

system after k transitions. Thus 

𝜋(𝑘) = 𝜋(𝑘−1)𝑃 = 𝜋(𝑘−2)𝑃2 = ⋯ = 𝜋(𝑂)𝑃 (9) 

At step k = 25, we find the probability distribution to be 

𝜋 = (0.2813 0.2500 0.4688) 

Correct to four decimal places after that. 

(0.2813 0.2500 0.4688) (
0.0 0.8 0.2
0.0 0.9 0.1
0.6 0.0 0.4

)

= (0.2813 0.2500 0.4688) 

which is now thought to be the stationary distribution (correct 

to four decimal places). When the Markov chain is finite, 

aperiodic, and irreducible (as in Example 1), the vectors 𝜋(𝑘) 

converge to the stationary probability vector, regardless of the 

starting vector. Thus 

lim
𝑘→∞

𝜋(𝑘) = 𝜋    (10) 

The stationary probability vector is obtained using the power 

method, also known as power iteration. The convergence 

aspects of the power techniqueis then looked at in the context 

of determining the right-hand eigenvector corresponding to a 

dominating eigenvalue of a matrix, A. In a Markov chain 

setting, however, the matrix A must be substituted by 𝑃𝑇, the 

transpose of the transition probability matrix, because the left-

hand eigenvector produces the stationary distribution of a 

Markov chain.  

 

Illustrative example 2: Returning to the 3x3 matrix from 

illustrative example 1, The eigenvalues of P in the 3x3 matrix 

from illustrative example 1 are 𝜆1 = 1  and 𝜆2,3 = −0.25 ±

 .5979𝑖 . As a result, |𝜆2| ≈ 0.65 is obtained. It is worth 

noticing that 0. 6510 ≈  .01,0. 6525 ≈ 2 × 10−5  and 

0. 65100 ≈ 2 × 10−19 . Table 1 displays the probability 

distribution of the states of this example at defined steps for 

each of three alternative starting configurations. After 25 

cycles, no further changes in the first four values are detected 

for either of the starting settings. 

The table shows that two decimal places of accuracy were 

acquired after 10 iterations and four decimal places were 

obtained after 25 iterations, which matches to convergence 

criterion calculated from the subdominant eigenvalue. 

Furthermore, for 25 iterations, the solution is confirmed to be 

correct to full machine accuracy, as represented by the value 

of 0. 6525  and, the magnitude of |𝜆2|𝑘 does not ensure a 

definite number of decimal places of accuracy in the answer. 

A relative error norm of 10−𝑗 yields approximately j decimal 

places of accuracy; and because both matrices and vectors 

have unit 1-norms, the Markov chain context allows for a lot 

of flexibility. 
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Table 1: Table of Convergence in Power Method 

Step Initial state  Initial state  Initial state 

1.0 0 0  0 1 0  0 0 1 

1 0.0 0.8 0.2  0.0 0.9 0.1  0.6 0.0 0.4 

2 0.12 0.08 0.8  0.54 0.01 0.45  0.24 0.48 0.28 

3 0.48 0.104 0.416  0.27 0.443 0.297  0.168 0.24 0.592 

4 0.2496 0.3944 0.356  0.1782 0.26930 0.5626  0.3552 0.1584 0.4864 

⋮ ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  ⋮ ⋮ ⋮ 

10 0.2860 0.2555 0.4584  0.2731 0.2573 0.4696  0.2827 0.2428 0.4745 

⋮ ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  ⋮ ⋮ ⋮ 

25 0.2813 0.2500 0.4688  0.2813 0.2500 0.4688  0.2813 0.2500 0.4688 

 

In the general formulation of the power technique, it is 

frequently necessary to normalize following iterates, because 

otherwise the term 𝜆1
𝐾 may cause succeeding approximations 

to become too high (if 𝜆1 > 1)  or too small (if 𝜆1 < 1 ), 

resulting in overflow or underflow. This normalization is also 

necessary for providing a standardized vector for convergence 

testing. However, in Markov chain problems, the coefficient 

matrix has 1 as the dominating eigenvalue (𝜆1 = 1), thus the 

power method's requirement for periodic normalization of 

iterates disappears. If the first approximation is a probability 

vector, all subsequent approximations will be probability 

vectors. When utilizing the power approach in the context of 

a Markov chain, the left-hand eigenvector corresponding to a 

unit eigenvalue is required, therefore the matrix to which the 

method is applied is 𝑃𝑇, and the above iteration takes the form 

𝑧(𝑘+1) = 𝑃𝑇𝑧(𝑘)    (11) 

A stochastic matrix's unit eigenvalue is a dominating 

eigenvalue, and if the matrix is irreducible, there are no 

additional unit eigenvalues. Other eigenvalues on the unit 

circle that are not 1, but have the same modulus as 1, exist 

when the matrix is periodic. A straightforward application of 

the power approach will fail in this case. This difficulty can 

be avoided by making a little adjustment to the unit 

eigenvalue and its associated eigenvector. The connection 
|𝜆2| ≈ |𝜆1| is commonly used to obtain the matrix P from the 

infinitesimal generator 𝑄 such that 

𝑃 = (𝑄∆𝑇 + 𝐼),    (12) 

Where ∆𝑇 ≤
1

𝑀𝑎𝑥|𝑞𝑖𝑖|
 is used. If T is set in such a way 

that∆𝑇 <
1

𝑀𝑎𝑥|𝑞𝑖𝑖|
, the resulting stochastic matrix has diagonal 

elements 𝑃𝑖𝑖 < 0  and so cannot be periodic. Under these 

conditions, the power technique is certain to converge 

(irreducible and aperiodic). The rate of convergence is 

determined by the ratio 
|𝜆2|

|𝜆1|
,  i.e. |𝜆2|. Unfortunately, there 

may be a large disconnect between theoretical convergence 

criteria for iterative methods and observed behavior in 

practice. What will converge in principle may require so many 

iterations that the method should be considered unfeasible in 

all practical applications. The power method occurs when the 

modulus of the subdominant eigenvalue, |𝜆2|, is near to unity. 

For example, nearly completely decomposable (NCD) 

stochastic matrices are often used in the modeling of physical 

and mathematical systems; such matrices must have 

subdominant eigenvalues close to 1. In these situations, the 

power technique will converge very slowly. Given that 

convergence frequently necessitates multiple iterations, it 

may be assumed that squaring the matrix P repeatedly is a 

more cost effective technique. Let 𝑐 =  2𝑚 for some integer 

𝜋(𝑘) = 𝜋(𝑘−1)𝑃 ),the basic iterative formula is P which 

requires 𝑘 iterations to get 𝜋(𝑘) with each iteration involving 

a matrix-vector product. 𝑃2𝑚  can be quickly computed by 

iteratively squaring the matrix with only 𝑚 matrix products, 

resulting in 𝜋(𝑐) = 𝜋(0)𝑃𝑐. Because a matrix vector product 

requires 𝑛(2)  multiplications and a matrix product requires 

𝑛(3) , the squaring approach should be employed when 

𝑚𝑛(3) < 2𝑚𝑛(2), i.e. when 𝑛𝑚 < 2𝑚.Unfortunately, in this 

approach, the fact that the matrix 𝑃  is typically large and 

sparse is simply ignored. As a result, a matrix-vector product 

requires only 𝑛𝑍 multiplications, where 𝑛𝑍 is the number of 

nonzero items in 𝑃. The number of nonzero members in the 

matrix will be increased by the matrix-squaring procedure. In 

reality, for an irreducible matrix, convergence will not be 

achieved until all of the elements are nonzero, which will 

increase both the number of multiplications and the amount 

of memory required. Memory constraints, rather than 

temporal constraints, may limit the application of matrix 

powering and the effect of discretization may be find when 

the values of ∆t > 0  for which the matrix P = Q∆t + I is 

stochastic. 

 

Illustrative example 3: Consider a two-state Markov chain 

whose infinitesimal generator is 

Q = (
−q1 q1

q2 −q2
), 

with q1, q2 ≥ 0. The transition probability matrix is then 

P = Q∆t + I = (
1 − q1∆t q1∆t

q2∆t 1 − q2∆t
). 

The row sums are obviously equal to one. We need 

0 ≤ q1∆t ≤ 1  and 0 ≤ q2∆t ≤ 1  to verify that 0 ≤ ∆t ≤
q1

−1 and 0 ≤ ∆t ≤ q2
−1.Assuming that q1  ≥ q2. Then 0 ≤

∆t ≤ q1
−1fulfills both requirements. To ensure that 0 ≤ 1 −

q1∆t ≤ 1 and 0 ≤ 1 − q2∆t ≤ 1 are same, ∆t ≤ q1
−1  must 

be equal. As a result, the highest value may be given to under 

the assumption that P  is stochastic and ∆t = 1/Maxi|q1| |. 

Given that Q is an infinitesimal generator, same results hold 

for a general stochastic matrix P = Q∆t + Ito be stochastic. 

The row sums of P are unity for any value of t, andsince the 

row sums of Q are 0 by definition, as a result, we must be 

concerned with the values of t that ensure that the members 

of P fall within the interval [0,1]. Let q be the biggest off 

diagonal element size: 

𝑞 = 𝑚𝑎𝑥𝑖,𝑗  𝑖≠𝑗(𝑞𝑖𝑗)  and  𝑞𝑖𝑗 ≥ 0   for all i, j  (13) 

0 ≤ 𝑝𝑖𝑗 ≤ 1 holds if  0 ≤ 𝑞𝑖𝑗∆t ≤ 1, which is true if ∆t =

q1
−1. 

Now consider a diagonal element 𝑝𝑖𝑖 = 𝑞𝑖𝑖∆t + 1. We have 

0 ≤ 𝑞𝑖𝑖∆t + 1 ≤ 1     (14) 

Or 

−1 ≤ 𝑞𝑖𝑖∆t ≤ 0    (15) 
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Because 𝑞𝑖𝑖  is negative, the right-hand inequality holds for 

every ∆t ≥ 0 , ∆t ≤ −qii
−1 , i.e., the left-hand inequality 

𝑞𝑖𝑖∆t ≥ −1  is true,as a result, if 0 ≤ ∆t ≤ (Maxi|qii|)
−1 , 

then the matrix P is stochastic. We have Maxi|qii| ≥

𝑚𝑎𝑥𝑖,𝑗  𝑖≠𝑗(𝑞𝑖𝑗) because the diagonal elements of Q equal the 

negated sum of the off-diagonal elements in a row,as a result, 

∆t must be less than or equal to the reciprocal of the absolute 

value of Q 's largest diagonal element andsome iterative 

approaches for calculating the stationary probability vector 

from Equation (3) is used. The magnitude of the eigenvalues 

of P is intimately connected to the velocity of convergence, 

therefore choosing an appropriate value for ∆t is critical.The 

magnitudes of the subdominant eigenvalues are closer to 1 as 

the convergence rate slows.As a result, we seek to maximize 

the distance between𝜆1 = 1 and the subdominant eigenvalue 

(the eigenvalue that in modulus is closest to 1). As ∆t →
0approaches, all of P's eigenvalues converge to unity. This 

indicates that we set t to the largest possible value, with the 

restriction that P  must be a stochastic matrix. Using ∆t =
(Maxi|qii|)

−1  does not ensure that the dominant and 

subdominant eigenvalues are separated as much as feasible.  

 

Illustrative example 4: Consider the (2 × 2) case as an 

example. The eigenvalues of P are the roots of the 

characteristic equation  |P − 𝜆I| = 0, i.e., 

|
1 − q1∆t − 𝜆 q1∆t

q2∆t 1 − q2∆t − 𝜆
| = 0. 

These roots are 𝜆1 = 1  and 𝜆2 = 1 − ∆t(q1 + q2),  as  ∆t →
0, 𝜆1 → 𝜆2 = 1.  

Also notice that theleft-hand eigenvector corresponding to 

the unit eigenvalue 𝜆1 is independent of the choice of ∆t. 
We have 

q2

(q1 + q2)

q2

(q1 + q2)
(

1 − q1∆t q1∆t
q2∆t 1 − q2∆t

)

=
q2

(q1 + q2)

q2

(q1 + q2)
 

This eigenvector is the stationary probability vector of the 

Markov chain, and as such, it must be independent of ∆t. The 

parameter ∆taffects only the pace at which matrix iterative 

algorithms converge to this vector. With the exception that the 

matrix P must be a stochastic matrix, it is generally 

advantageous to pick t to be as large as possible. On the 

surface, it appears like selecting a large value for ∆t will get 

us closer to the stationary distribution.  

 

CONCLUSION 

Iterative solution approaches for the stationary distribution of 

Markov chains that start with an initial estimate of the solution 

vector and then adjust it so that it gets closer and closer to the 

true solution with each step or iteration,  which leaves the 

transition matrices unaltered and saves time, have been 

researched in attempt to provide some insight into the 

solutions of stationary Markov chain distributions which are 

investigated in this work, in order to provide some insight into 

the solutions of stationary distribution of Markov chain. Our 

goal is to compute the answers utilizing the Power iterative 

method which leaves the transition matrices unchanged and 

saves time, by considering the discretization effect, and the 

convergency. Matrices operations such as multiplication with 

one or more vectors, lower, diagonal and upper concepts of 

matrix, with the help of several existing Markov chain laws, 

theorems, and formulas, the normalization principle are 

applied. For the illustrative examples, the stationary 

distribution vectors 𝜋𝑖 , 𝑖 = 1, 2, … , 𝑛  and table of 

convergence are obtained. 
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