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ABSTRACT 

This paper examines the positions and stability of out-of-plane equilibrium points within the framework of the 

Elliptic Restricted Three-Body Problem (ER3BP) at 𝐽4 of the bigger primary in the field of stellar binary 

systems: HD188753 and Alpha Centauri around their common centre of mass in elliptic orbits. It is found that, 

the positions and stability of the out-of-plane equilibrium points are significantly affected by the oblateness, 

semi-major axis and the eccentricity of their orbits. The positions 𝐿6,7 of the infinitesimal body lie in the 

𝑥𝑧 −plane almost directly above and below the center of the bigger oblate primary. The effects of the perturbed 

parameters on the positions and stability are shown numerically for the aforementioned binary systems. The 

status of the out-of-plane equilibrium points as evidenced in most cases remain the same and are unstable even 

when only the bigger primary is viewed in the out-of-plane.    

Keywords: Out-Of-Plane, Stability, Elliptic Restricted Three-Body Problem), 𝐽4, Bigger primary. 

 

 

INTRODUCTION 

The restricted three-body problem (R3BP) is a problem that 

has continue to be of great theoretical, practical, historical and 

educational importance. The study of this problem have had 

important implications in various scientific fields, some of 

which includes; celestial mechanics, chaos theory, galactic 

dynamics, molecular physics and many others. This problem 

is still a stimulating and active research field that is receiving 

considerable attention of scientists and astronomers due to its 

applications in dynamics of the stellar and solar systems, 

artificial satellites and lunar theory. 

In the general restricted three-body problem, celestial bodies 

are assumed to be spherical, but in nature, several celestial 

bodies have observed the significant effects of oblateness on 

their bodies (Singh and Umar 2012, Tkhai 2012, Singh and 

Leke 2012, 2014, Douskos and Markel-los 2006, SubbaRao 

and Sharma 1975). 

The elliptic restricted three-body problem describes the three-

dimensional motion of an infinitesimal mass under the 

gravitational attraction of two primaries, which revolve on 

elliptic orbits in a plane around their common centre of mass. 

This is exemplified in the motion of an asteroid under the 

gravitational attraction of Sun and Jupiter. 

Over the years, the restricted three-body problem with 

oblateness of the primaries have recorded rapid growth, 

specifically in the two and three-dimensional cases with 

respect to its five co-planar equilibrium points 𝐿𝑖(𝑖 =
1, … ,5): The points 𝐿1, 𝐿2, 𝐿3 lying on the line joining the 

primaries are called collinear equilibrium points, while the 

points 𝐿4, 𝐿5 forming the triangle with the line joining the 

primaries are called triangular points.  

Numerous researches have affirmed the instability of 

collinear points in most cases (Singh and Umar 2012, 2013, 

Ammar 2012, Tsirogiannis et al. 2006, Sharma 1987). Singh 

and Leke (2012) studied the equilibrium points and their 

stability in the R3BP with oblateness and variable masses. 

Their result shows that, the collinear points are stable due to 

k (kappa). However, it remains unstable in the out-of-plane 

equilibrium points despites the introduction of a small 

perturbation in the centrifugal force, radiation pressure, 

oblateness of the first primary and k. Singh and Leke (2014) 

examined the analytic and numerical treatment of motion of 

dust grain particle around triangular equilibrium points with 

post-AGB binary star and disc. They concluded that, the 

triangular points around IRAS 11472-0800-G29-38 system 

are particularly unstable. 

The positions and stability of triangular and collinear 

equilibrium points were seem to be affected by the oblateness 

of the primaries, semi-major axis and eccentricity of their 

orbits, which leads to a decrease in the size of the region of 

stability with an increase in the parameters involved (Singh 

and Umar 2012, 2013; Singh and Tyokyaa 2016, 2017). 

The equation of motion of the three-dimensional restricted 

three-body problem with oblateness of the primaries allows 

the existence of out-of-plane equilibrium points. These points 

lie in the 𝑥𝑧 −plane symmetrically with respect to the 𝑥 −
𝑎𝑥𝑖𝑠 along the curve almost directly above and below the 

centre of each oblate primary. These points are denoted by 

𝐿6,7 (Abouelmagd 2012; Das et al. 2009; Singh and Umar 

2012, 2013; Singh and Amuda 2015).  

Das et al. (2009) observed that, in the photo-gravitational 

circular restricted three-body problem, the out-of-plane 

equilibrium points are of a passive micro size particle when 

their stability in the field of radiating binary systems are 

considered. Singh and Amuda (2015) studied the out-of-plane 

equilibrium points with Poynting-Robertson (P-R) drag, they 

found that due to the ratio of radiation to the gravitational 

force of the smaller primary and the expression of 𝑦𝑜 

coordinate with oblateness of the bigger primary. The out-of-

plane equilibrium points exist but its stability analysis remain 

the same and are unstable. 

Singh and Umar (2012) examined the motion of a particle 

under the influence of an oblate dark degenerate primary, a 

luminous secondary and the stability of triangular points 

when both oblate primaries emit light energy simultaneously 

in the elliptic restricted three-body problem respectively. 

They found that, in the stellar systems, a planet moving in the 

field of a binary star system effectively constitutes a three-

body system. 

Our study focuses on the stability of out-of-plane equilibrium 

points within the framework of the Elliptic Restricted Three-

Body Problem (ER3BP) at 𝐽4 of the bigger primary in the field 
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of stellar binary systems: HD188753 and Alpha Centauri 

around their common center of mass in elliptic orbits. 

The paper is organized as follows: Sections 2 presents the 

equations of motion; section 3 locates the positions of out-of-

plane equilibrium points; sections 4 examines their stability; 

section 5 explores numerical application; the discussions and 

conclusions are provided in section 6. 

 

 

EQUATION OF MOTION 

The equations of motion of an infinitesimal mass in the elliptic restricted three-body problem under the influence of the oblate 

bigger primary at 𝐽4 are adopted from Tyokyaa and Bichi (2016) and are presented in dimensionless-pulsating coordinate 

system (𝜉, 𝜂, 𝜁) as follows; 

𝜉′′ − 2𝜂′ =
𝛿Ω

𝛿𝜉
 ,               𝜂′′ + 2𝜉′ =

𝛿Ω

𝛿𝜂
,                𝜁′′ =

𝛿Ω

𝛿𝜁
                                                               (1)  

given the force function as 

Ω = (1 − 𝑒2)−
1

2 [
1

2
(𝜉2 + 𝜂2) +

1

𝑛2
{

(1−𝜇)

𝑟1
+

(1−𝜇)𝐴1

2𝑟1
3

−
3(1−𝜇)𝐴2

8𝑟1
5

−
3(1−𝜇)𝐴1𝑍2

2𝑟1
5

+
9(1−𝜇)𝐴2𝑍2

8𝑟1
7

+
𝜇

𝑟2
}]          (2) 

The mean motion, 𝑛, is given as 

𝑛2 =
(1+𝑒2)

1
2

𝑎(1−𝑒2)
[1 +

3

2
𝐴1 −

15

8
𝐴2]                                                                                                 (3)                                                                  

 𝑟𝑖
2 = (𝜉 − 𝜉𝑖)2 + 𝜂2 + 𝜁2, (𝑖 = 1, 2)    𝜉1 = −𝜇,   𝜉2 = 1 − 𝜇 ,   𝜇 =

𝑚2

𝑚1+𝑚2
          (4)                                    

where, 𝑚1, 𝑚2 are the masses of the bigger and smaller primaries positioned at the points (𝜉𝑖 , 0, 0), 𝑖 = 1,2; 𝐴𝑖 = 𝐽2𝑖𝑅1
2    

characterize zonal harmonic oblateness of the bigger primary whose mean radiiis 𝑅1 . 𝜇 =
𝑚2

𝑚1+𝑚2
 is the mass ratio, while 𝑎 and 

𝑒 are the semi-major axis and eccentricity of the orbits, respectively. 

 Positions of out-of-plane equilibrium points  

To locate the positions of the out-of-plane equilibrium points denoted by 𝐿6,7, we solve for the solutions of Ω𝜉 = Ω𝜂 = Ω𝜁 =

0 but; 

Ω𝜉 = (1 − 𝑒2)−
1

2 [𝜉 −
1

𝑛2
(

(1−𝜇)(𝜉+𝜇)

𝑟1
3

+
3(1−𝜇)(𝜉+𝜇)𝐴1

2𝑟1
5

−
15(1−𝜇)(𝜉+𝜇)𝐴2

8𝑟1
7

−
15(1−𝜇)(𝜉+𝜇)𝐴1𝑍2

2𝑟1
7

+
63(1−𝜇)(𝜉+𝜇)𝐴2𝑍2

8𝑟1
9

+
𝜇(𝜉+𝜇−1)

𝑟2
3

)]                                                                                                  

(5)                                                                                                                                                                                                                           

Ω𝜂 = (1 − 𝑒2)−
1

2 [𝜂 (1 −
1

𝑛2
(

(1−𝜇)

𝑟1
3

+
3(1−𝜇)𝐴1

2𝑟1
5

−
15(1−𝜇)𝐴2

8𝑟1
7

−
15(1−𝜇)𝐴1𝑍2

2𝑟1
7

+
63(1−𝜇)𝐴2𝑍2

8𝑟1
9

+
𝜇

𝑟2
3
))]                                                                                                                                       

(6)                                                                                             

Ω𝜁 =
(1−𝑒2)−

1
2

𝑛2
[−𝜁 (

(1−𝜇)

𝑟1
3

+
3(1−𝜇)𝐴1

2𝑟1
5

−
15(1−𝜇)𝐴2

8𝑟1
7

−
15(1−𝜇)𝐴1𝑍2

2𝑟1
7

+
63(1−𝜇)𝐴2𝑍2

8𝑟1
9

+
𝜇

𝑟2
3
)]          (7)                                                                                                       

then; 

𝜉 −
1

𝑛2 (
(1−𝜇)(𝜉+𝜇)

𝑟1
3 +

3(1−𝜇)(𝜉+𝜇)𝐴1

2𝑟1
5 −

15(1−𝜇)(𝜉+𝜇)𝐴2

8𝑟1
7 −

15(1−𝜇)(𝜉+𝜇)𝐴1𝑍2

2𝑟1
7 +

63(1−𝜇)(𝜉+𝜇)𝐴2𝑍2

8𝑟1
9 +

𝜇(𝜉+𝜇−1)

𝑟2
3 ) = 0                                                                                                                               

(8)                                                                      

𝜂 (1 −
1

𝑛2 (
(1−𝜇)

𝑟1
3 +

3(1−𝜇)𝐴1

2𝑟1
5 −

15(1−𝜇)𝐴2

8𝑟1
7 −

15(1−𝜇)𝐴1𝑍2

2𝑟1
7 +

63(1−𝜇)𝐴2𝑍2

8𝑟1
9 +

𝜇

𝑟2
3)) = 0                     (9)                                                                                                                    

−𝜁 (
(1−𝜇)

𝑟1
3 +

3(1−𝜇)𝐴1

2𝑟1
5 −

15(1−𝜇)𝐴2

8𝑟1
7 −

15(1−𝜇)𝐴1𝑍2

2𝑟1
7 +

63(1−𝜇)𝐴2𝑍2

8𝑟1
9 +

𝜇

𝑟2
3) = 0                               (10)                                                                                                                                                          

for the solutions of equations (8) and (10) with 𝜂 = 0 and 𝜁 ≠ 0 equation (10) becomes 
−(1−𝜇)

𝑛2𝑟1
3 −

3(1−𝜇)𝐴1

2𝑛2𝑟1
5 +

15(1−𝜇)𝐴2

8𝑛2𝑟1
7 +

15(1−𝜇)𝐴1𝑍2

2𝑛2𝑟1
7 −

63(1−𝜇)𝐴2𝑍2

8𝑛2𝑟1
9 −

𝜇

𝑛2𝑟2
3 = 0                                       (11)                                                                                                                                                   

Multiplying equation (11) by 𝜉 − 𝜉1 and 𝜉 − 𝜉2 where 𝜉1 = −𝜇 and 𝜉2 = 1 − 𝜇 we have respectively; 
−(1−𝜇)(𝜉+𝜇)

𝑛2𝑟1
3 −

3(1−𝜇)(𝜉+𝜇)𝐴1

2𝑛2𝑟1
5 +

15(1−𝜇)(𝜉+𝜇)𝐴2

8𝑛2𝑟1
7 +

15(1−𝜇)(𝜉+𝜇)𝐴1𝑍2

2𝑛2𝑟1
7 −

63(1−𝜇)(𝜉+𝜇)𝐴2𝑍2

8𝑛2𝑟1
9 −

𝜇(𝜉+𝜇)

𝑛2𝑟2
3 = 0            (12)                                                                                                                                                                                      

−(1−𝜇)(𝜉+𝜇−1)

𝑛2𝑟1
3 −

3(1−𝜇)(𝜉+𝜇−1)𝐴1

2𝑛2𝑟1
5 +

15(1−𝜇)(𝜉+𝜇−1)𝐴2

8𝑛2𝑟1
7 +

15(1−𝜇)(𝜉+𝜇−1)𝐴1𝑍2

2𝑛2𝑟1
7 −

63(1−𝜇)(𝜉+𝜇−1)𝐴2𝑍2

8𝑛2𝑟1
9 −

𝜇(𝜉+𝜇−1)

𝑛2𝑟2
3 = 0                                                                                                                                 

(13) 

Subtracting equation (12) from (8) and substituting the value of 𝑛2 =
1

𝑎
[1 +

3

2
𝐴1 −

15

8
𝐴2 +

3𝑒2

2
] yields; 

𝜉 = −𝜇 [1 +
3𝐴1

2
−

15𝐴2

8
]                                                                                                                 (14) 

From (4) we have 

𝜁2 = 𝑟1
2 − (𝜉 + 𝜇)2, (𝑖 = 1, 2)    𝜉1 = −𝜇,   𝜉2 = 1 − 𝜇 ,   𝜇 =

𝑚2

𝑚1+𝑚2
                                         (15) 

but from Singh and Tyokyaa (2016) we have; 

 𝑟1
2 = 𝑎

2
3⁄ (1 − 𝑒2 − 𝐴1 +

5𝐴2

4
+ 𝐴1𝑎

−2
3⁄ −

5𝐴2𝑎
−4

3⁄

4
),𝑟2

2 = 𝑎
2

3⁄ (1 − 𝑒2 − 𝐴1 +
5𝐴2

4
)           (16)                                                                                    

Considering equations (15) and (16) yields 

𝜁2 = [𝑎
2

3⁄ (1 − 𝑒2 − 𝐴1 +
5𝐴2

4
+ 𝐴1𝑎

−2
3⁄ −

5𝐴2𝑎
−4

3⁄

4
) − 𝜇2(1 + 3𝐴1 −

15𝐴2

4
)]  

𝜁 = [𝑎
2

3⁄ (1 − 𝑒2 − 𝐴1 +
5𝐴2

4
+ 𝐴1𝑎

−2
3⁄ −

5𝐴2𝑎
−4

3⁄

4
) − 𝜇2(1 + 3𝐴1 −

15𝐴2

4
)]

1
2⁄

                    (17)                                     

Equations (14) and (17) are the positions of the out-of-plane equilibrium points denoted by 𝐿6,7 for the study under review. 
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Stability of out-of-plane equilibrium points 

The stability of the motion of a body in the vicinity of any of the out-of-plane points is obtained by establishing the 

characteristics equation of the study under review. 

Let the location of any of the equilibrium point be denoted by (𝜉𝑜, 𝜂𝑜 , 𝜁𝑜) and suppose the small displacement of the location 

are (𝜎, 𝛽, 𝛼), then  

𝜉 = 𝜉𝑜 + 𝜎,  𝜂 =  𝜂𝑜 and  𝜁 = 𝜁𝑜 + 𝛼 

Taking derivatives, we have 

𝜉′ = 𝜎′ , 𝜉′′ = 𝜎′′ , 𝜂′ = 𝛽′ , 𝜂′′ = 𝛽′′  and 𝜁′ = 𝛼′ , 𝜁′′ = 𝛼′′                                                      (18)                                                                                                                       

Given the equations of motion of the infinitesimal mass by Tyokyaa and Bichi (2016) as; 

𝜉′′ − 2𝜂′ =
𝜕Ω

𝜕𝜉
 , 𝜂′′ − 2𝜉′ =

𝜕Ω

𝜕𝜂
 and  𝜁′′ =

𝜕Ω

𝜕𝜁
                                                                           (19) 

We obtain the characteristics equation of the system as; 

𝜆6 + (4 − Ω𝜉𝜉
0 − Ω𝜂𝜂

0 − Ω𝜁𝜁
0 )𝜆4 + (Ω𝜉𝜉

0 Ω𝜂𝜂
0 + Ω𝜂𝜂

0 Ω𝜁𝜁
0 + Ω𝜉𝜉

0 Ω𝜁𝜁
0 − 4Ω𝜁𝜁

0 − (Ω𝜉𝜁
0 )

2
) 𝜆2 − (Ω𝜉𝜉

0 Ω𝜂𝜂
0 Ω𝜁𝜁

0 − (Ω𝜉𝜁
0 )

2
Ω𝜂𝜂

0 ) = 0                                                                                                        

(20) 

The superscripts o shows that the partial derivatives are evaluated at the out-of-plane points under consideration. At the points 

under consideration ignoring products and higher order terms of very small parameters we have; 

Ω𝜉𝜉
0 = (1 − 𝑒2)−1

2⁄ [1 −
3(1−𝜇)

4𝑎
2

3⁄
−

3𝜇

4𝑎
2

3⁄
−

3(1−𝜇)𝐴1

8𝑎
2

3⁄
+

21𝜇𝐴1

8𝑎
2

3⁄
−

3(1−𝜇)𝑒2

4𝑎
2

3⁄
−

3𝜇𝑒2

4𝑎
2

3⁄
+

105(1−𝜇)𝐴2

32𝑎2
+

105(1−𝜇)𝐴1𝑍2

8𝑎2
−

45(1−𝜇)𝐴2

32𝑎
2

3⁄
−

45𝜇𝐴2

32𝑎
2

3⁄
]                                                                                            (21)                                                                                                                                             

Ω𝜂𝜂
0 = (1 − 𝑒2)−1

2⁄ [
9(1−𝜇)

4𝑎
2

3⁄
+

9𝜇

4𝑎
2

3⁄
−

39(1−𝜇)𝐴1

8𝑎
2

3⁄
−

39𝜇𝐴1

8𝑎
2

3⁄
−

3(1−𝜇)𝑒2

4𝑎
2

3⁄
−

3𝜇𝑒2

4𝑎
2

3⁄
+

195(1−𝜇)𝐴2

32𝑎
2

3⁄
+

195𝜇𝐴2

32𝑎
2

3⁄
−

315(1−𝜇)𝐴2

32𝑎2
−

315(1−𝜇)𝐴1𝑍2

8𝑎2
]                                                                                                  (22)                                                                                                                              

Ω𝜁𝜁
0 = (1 − 𝑒2)−1

2⁄ [
3𝜇

2𝑎
2

3⁄
−

3(1−𝜇)

2𝑎
2

3⁄
+

21(1−𝜇)𝐴1

4𝑎
2

3⁄
−

9𝜇𝐴1

4𝑎
2

3⁄
−

45(1−𝜇)𝐴2

16𝑎
2

3⁄
+

45𝜇𝐴2

16𝑎
2

3⁄
+

105(1−𝜇)𝐴2

16𝑎2
−

3(1−𝜇)𝑒2

2𝑎
2

3⁄
+

3𝜇𝑒2

2𝑎
2

3⁄
+

105(1−𝜇)𝐴1𝑍2

4𝑎2
]                                                                                                  

(23)                                                         

Ω𝜉𝜁
0 = (1 − 𝑒2)−1

2⁄ [−
3(1−𝜇)

8𝑎
2

3⁄
−

3𝜇

8𝑎
2

3⁄
+

51(1−𝜇)𝐴1

16𝑎
2

3⁄
+

15𝜇𝐴1

16𝑎
2

3⁄
−

45(1−𝜇)𝐴2

64𝑎
2

3⁄
−

45𝜇𝐴2

64𝑎
2

3⁄
+

105(1−𝜇)𝐴2

64𝑎2
−

3(1−𝜇)𝑒2

8𝑎
2

3⁄
−

3𝜇𝑒2

8𝑎
2

3⁄
+

105(1−𝜇)𝐴1𝑍2

16𝑎2 ]                                                                                      (24)                                                                                

Substituting equations (21)-(24) and neglecting higher order terms of very small parameters we have; 

𝜆6 + 𝑃𝜆4 + 𝑄𝜆2 − 𝑅 = 0                                                                                                                   (25) 

Where; 

𝑃 =
11

2
+ 2𝜇 + 3𝜇𝛼 + {

3

2
−

45𝜇

4
} 𝐴1 + {−

3

4
+ 4𝜇} 𝑒2 + {

135

16
+

15𝜇

8
} 𝐴2 + {−

105

4
+

105𝜇

4
} 𝐴1𝑍2                                                                                                                                           

(26) 

𝑄 =
27

4
− 9𝜇 + {

9

2
− 6𝜇} 𝛼 + {−

563

32
+

623𝜇

32
} 𝐴1 + {

15

2
− 12𝜇} 𝑒2 + {−

585

32
+

510𝜇

32
} 𝐴2 + {−

945

8
+

945𝜇

8
} 𝐴1𝑍2                                                                                                                   

(27) 

𝑄 = −
81

256
+ {−

81

128
} 𝛼 + {

3,105

512
−

243𝜇

64
} 𝐴1 + {−

513

512
+

540𝜇3

256
} 𝑒2 + {−

4,185

2,048
} 𝐴2                     (28)                                                                                                     

Now, equation (25) becomes; 

𝜆6 + [
11

2
+ 2𝜇 + 3𝜇𝛼 + {

3

2
−

45𝜇

4
} 𝐴1 + {−

3

4
+ 4𝜇} 𝑒2 + {

135

16
+

15𝜇

8
} 𝐴2 + {−

105

4
+

105𝜇

4
} 𝐴1𝑍2] 𝜆4 + [

27

4
− 9𝜇 + {

9

2
−

6𝜇} 𝛼 + {−
563

32
+

623𝜇

32
} 𝐴1 + {

15

2
− 12𝜇} 𝑒2 + {−

585

32
+

510𝜇

32
} 𝐴2 + {−

945

8
+

945𝜇

8
} 𝐴1𝑍2] 𝜆2 − [−

81

256
+ {−

81

128
} 𝛼 + {

3,105

512
−

243𝜇

64
} 𝐴1 + {−

513

512
+

540𝜇3

256
} 𝑒2 + {−

4,185

2,048
} 𝐴2] = 0                                                                                                         (29) 

 

NUMERICAL APPLICATIONS 

Considering (14), (17) and (29), the positions and stability of 

the out-of-plane equilibrium points are computed numerically 

using the software package MATHEMATICA for the 

systems HD188753 and Alpha Centauri. The positions and 

stability of the out-of-plane equilibrium points for varying 

oblateness are given in Tables 2 and 3 to show the effects of 

the oblateness up to zonal harmonic 𝐽4  of bigger primary, 

mass ratio, eccentricity of the orbits and the semi-major axis. 

We considered 𝑎 = 1 − 𝛼 and 𝛼 ≪ 1 in the computation. 

These effects are also demonstrated graphically in Figures 1-

4. The effects of the parameters on the positions and the 

stability region of the study under review are shown in Tables 

2 and 3 for the systems: HD188753 and Alpha Centauri. As it 

is evidenced from Tables 2 and 3, for each set of values at 

least one root is a complex root with positive real part, hence 

in the Lyapunov sense, the stationary points are unstable. This 

agrees with the work of Douskos and Markellos (2006), Das 

et al. (2009), Singh and Umar (2012, 2013), Singh and Amuda 

(2015), Singh and Tyokyaa (2016, 2017), Tyokyaa and Bichi 

(2016), Tyokyaa et al (2017).
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Table 1: Numerical data for the binary systems 

 

Table 2: Positions and Stability of out-of-plane points for HD188753 for 𝝁 = 𝟎. 𝟒𝟕𝟗𝟔, 𝒂 = 𝟎. 𝟗𝟖𝟑𝟕, 𝒆 = 𝟎. 𝟓 𝒂𝒏𝒅 𝒁 =
𝟎. 𝟎𝟏 

Oblateness Positions of out-of-plane 

points 

Stability of out-of-plane points 

𝐴1 𝐴2 𝜉 ±𝜁 ±𝜆1,2 ±𝜆3,4 ±𝜆5,6 

0.00 0.00 −0.4796 0.71541 −0.179065 ± 0.504331𝑖 0 ± 2.51599𝑖 0.179065 ± 0.504331𝑖 
0.01 −0.005 −0.49129 0.707703 −0.157739 ± 0.498537𝑖 0 ± 2.49836𝑖 0.157739 ± 0.498537𝑖 
0.02 −0.01 −0.502981 0.699912 −0.130937 ± 0.492174𝑖 0 ± 2.48058𝑖 0.130937 ± 0.492174𝑖 
0.03 −0.015 −0.514671 0.692033 −0.0935419 ± 0.485117𝑖 0 ± 2.46264𝑖 0.0935419 ± 0.485117𝑖 
0.04 −0.02 −0.526361 0.684063 0 ± 0.456212𝑖 0 ± 0.498178𝑖 0 ± 2.44455𝑖 
0.05 −0.025 −0.538051 0.675999 0 ± 0.365073𝑖 0 ± 0.571237𝑖 0 ± 2.42629𝑖 

 

Table 3: Positions and Stability of out-of-plane points for Alpha Centauri for 𝝁 = 𝟎. 𝟒𝟓𝟏𝟗, 𝒂 = 𝟏𝟑. 𝟏𝟐𝟑𝟔, 𝒆 =
𝟎. 𝟓𝟏𝟖𝟔𝟔 𝒂𝒏𝒅 𝒁 = 𝟎. 𝟎𝟏 

Oblateness Positions of out-of-plane 

points 

Stability of out-of-plane points 

𝐴1 𝐴2 𝜉 ±𝜁 ±𝜆1,2 ±𝜆3,4 ±𝜆5,6 

0.00 0.00 −0.4519 1.96541 ±3.37919 0 ± 0.77257𝑖 0 ± 1.03653𝑖 
0.01 −0.005 −0.462915 1.94258 ±3.39017 0 ± 0.77996𝑖 0 ± 1.02713𝑖 
0.02 −0.01 −0.47393 1.91947 ±3.40113 0 ± 0.787859𝑖 0 ± 1.01723𝑖 
0.03 −0.015 −0.484945 1.89608 ±3.41207 0 ± 0.796397𝑖 0 ± 1.00672𝑖 
0.04 −0.02 −0.49596 1.8724 ±3.42299 0 ± 0.805767𝑖 0 ± 0.995393𝑖 
0.05 −0.025 −0.506975 1.84841 ±3.43388 0 ± 0.816275𝑖 0 ± 0.982945𝑖 

 

Graphs showing the effect of oblateness at 𝐽4, the eccentricity and semi-major axis on the out-of-plane points for HD188753 

system 

          

         
Fig. 1: Effects of oblateness at 𝐽4 on 𝐿6 for HD188753 system   
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Binary system Masses Mass ratio (𝜇) 

 

Semi-major axis (𝑎) Eccentricity (𝑒) 

𝑚1 𝑚2 

HD188753 1.13 1.01 0.4796 0.9837 0.5 

Alpha Centauri 1.1000 0.907 0.4519 13.1236 0.51866 
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Fig 2: Effects of oblateness at 𝐽4 on 𝐿7 for HD188753 system 

 

Graphs showing the effect of oblateness at 𝐽4, the eccentricity and semi-major axis on the out-of-plane points for Alpha 

Centauri system 

   
Fig 3: Effects of oblateness at 𝐽4 on 𝐿6 for Alpha Centauri system 

 

   
Fig. 4: Effects of oblateness at 𝐽4 on 𝐿7 for Alpha Centauri system 

 

DISCUSSION AND CONCLUSION 

The motion of the infinitesimal mass in the out-of-plane 

equilibrium points within the framework of the Elliptic 

Restricted Three-Body Problem (ER3BP) at 𝐽4 of the bigger 

primary in the field of stellar binary systems: HD188753 and 

Alpha Centauri around their common center of mass in 

elliptic orbits is described in Equations 1-4. Equations 14 and 

17 locate the positions of the out-of-plane equilibrium points 

of the bigger primary denoted by 𝐿6,7. Our results coincides 

with Douskos and Markellos (2006) in the absence of 

eccentricity of the orbits, Zonal harmonics up to 𝐽4 oblateness. 

As evidenced in the Tables 2 and 3 and Figures 1-4, the 

positions of the out-of-plane equilibrium points are affected 

by the eccentricity of the orbits, semi-major axis and 

oblateness of the bigger primary up to zonal harmonics 𝐽4. 

This agrees with the result of Das et al. (2009), Singh and 
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Umar (2013), Singh and Amuda (2015). However, the 

perturbed oblateness does not change the nature of its 

stability. As shown in Tables 2 and 3, the status of the out-of-

plane equilibrium points as evidenced in most cases remain 

the same and are unstable even when only the bigger primary 

is viewed in the out-of-plane. 
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