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ABSTRACT 

In this work a relatively simple quantum mechanical model consisting of an electron in a one-dimensional 

periodic potential is presented. This model was first formulated by Kronig and Penney in 1931. Unlike more 

realistic model which requires rigorous numerical calculations, this model allows for a simple analytical 

solutions. Using this model we study the energy band structure of an electron in a one-dimensional periodic 

potential composed of an array of delta-like function. It has been found that, the increase or decrease in the 

energy band gaps depends on the choice of potential strength γ. The lager the strength of the potential the wider 

the energy band gaps and vice versa.  

Keywords: Energy bands, Bloch’s theorem, Periodic potential, Kronig-Penney model 

 

INTRODUCTION  

Energy band structure for phonons and electrons is one of the 

most fundamental concepts in solid state physics. The easiest to 

develop is the phonon structure often introduced before that for 

electrons (John, 1996). This is due to the accuracy of the 

harmonic approximation for small displacement. The concept 

involved is rather abstract and often have some difficulties in 

analyzing the implications of the model. For this reason, a 

simpler model such as the Kronig-Penney model (KP) is needed. 

The KP-model played a unique and important role in our recent 

understanding of the electronic states in one-dimensional 

systems. The model has also been playing an important role in 

approaching solid states physics problems. An interesting aspect 

of this model is not based on the analytical determination of the 

band structure of the crystals but also the nature of all solutions 

(allowed and forbidden energy gaps) can be analytically obtain 

and analyzed. Various calculations were performed with the 

KP-model to determine the electronic band structure of a one-

dimensional crystal (Kronig and Penney, 1931). Unlike more 

sophisticated model (John, 1996, Boyd, 2001) which requires 

rigorous numerical calculations using a high speed computers, 

this model allows for a simple analytical solution. Using this 

model the energy band structure of an electron in a one-

dimensional periodic potential superimposed of an array of 

delta-like function is obtained. The electronic band structure has 

some prominent features of many macroscopic properties of the 

material. Based on this, many researcher’s shows overwhelming 

interest in investigating these materials experimentally. The KP-

model is a relatively simple one-dimensional quantum 

mechanical model of an electron. In spite of the simplifications, 

the energy band structure obtained from this model resembles 

many important features with band structures that result from 

more complicated models (John, 1996).  

 

The concept of Bloch’s theorem was briefly introduced for 

better understanding of the model. Bloch’s theorem explain that 

the interaction of electron with the other particles of the lattice 

may be replaced by approximating the potential in a periodic 

field (Kronig and Penney, 1931). Band theory is based on two 

basic approximations. The first assumes that the electronic and 

nuclear motions can be separated by invoking the adiabatic 

approximation of Born and Oppenheimer, 1927. A second 

simplification is made by using the one-electron approximation. 

In this case each of the electrons is assumed to move under the 

influence of a periodic potential as shown in figure 1of the 

current study (the Kronig-Penney model). Most literatures 

(Hook and Hill, 1991, Kronig and Penney, 1931, Kasap, 2005) 

discussed KP-model in a number of ways for different purpose 

but here we make use of its simplified version for clear 

understanding of the energy band structure of electrons in a one 

dimensional periodic potential. We superimposed our periodic 

potentials with a delta-like functions. The aim is to reduce the 

number of boundary conditions leading to a very big matrix 

(Donald, 1996). The discussion of the methods will be based on 

the one-dimensional electron Schrodinger’s equation given of 

the form (Mandle, 1992, Sprung and Hua, 2000, Charles, 2004) 

𝐻𝜓(𝑥) = − [
ℏ2

2𝑚

𝑑2

𝑑𝑥2 + 𝑉(𝑥)] 𝜓(𝑥) = 𝐸𝜓(𝑥)                 (1) 

with a periodic 

potential

  

𝑉(𝑥 + 𝑎) = 𝑉(𝑥)                                                            (2) 

where x is a vector in the lattice, i.e. it points from one lattice to 

another. The fundamental theorem regarding the motion of 

electrons in a periodic potential is that of Bloch (Kronig and 

Penney, 1931) which, in its one-dimensional form, is usually 

called the Bloch-Floquet theorem (Charles, 2004, Ashcroft and 

Mermin, 1976). 
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Theory 

Bloch’s Theorem 

The concept of Bloch theorem was briefly introduced here. It 

was first developed by Felix Bloch in 1928 (Kronig and Penney, 

1931, Mike, 2011) to describe the conduction of electrons in 

crystalline solids. Independent mathematical proves was 

provided by (John, 1996, Boyd, 2001). As a result, a variety of 

nomenclatures are common: applied to ordinary deferential 

equations, it’s called Floquet theory. The general form of a one-

dimensional periodic potential equation is Hill’s equation 

(Charles, 2004) 

𝑑2𝑦

𝑑𝑡2 + 𝑓(𝑡)𝑦 = 0                                                                   (3) 

where 𝑓(𝑡) is a periodic potential. Such periodic one-

dimensional equations include the KP-model (Kronig and 

Penney, 1931) and Mathieu’s equation (Charles, 2004). 

Mathematically Bloch’s theorem states that for any periodic 

potential 𝑢(𝑥) all solutions 𝜓𝑛𝑘(𝑥), must fulfill the following 

condition 

𝜓𝑛𝑘(𝑥) = 𝑒𝑖𝑘𝑥𝑢𝑘𝑗(𝑥)                                                     (4)    

with the periodic part 

𝑢𝑘𝑗(𝑥 + 𝑎) = 𝑢𝑘𝑗(𝑥)                                                          (5) 

for all a in the lattice. The indexes k, j are the electron wave 

vector and electron bands respectively. Eq.(4) and Eq.(5) imply 

that 

𝜓𝑘𝑗(𝑥 + 𝑎) = 𝑒𝑖𝑘𝑎𝜓𝑘𝑗(𝑥).                                                       (6) 

Dropping the indexes Bloch’s theorem can be written as a 

product of a plane wave and a periodic function which has the 

same periodicity as a potential 

ψ(𝑥 + 𝑎) = 𝑒𝑖𝑘𝑎ψ(𝑥)                                                          (7) 

such that for every a in the lattice the Eigen states of the 

Hamiltonian H can be chosen so that each ψ is associated with 

a wave vector k. 

 

Kronig-Penney model 

The Kronig-Penney model (KP) was first formulated in 1931 by 

R. de L. Kronig and W. G. Penney (Kronig and Penney, 1931). 

Although the KP-model was discussed in a number of solid-

state physics text books (Hook and Hill, 1991, Ascroft and 

Mermin, 1976, Charles, 2004) using different techniques, it is 

usually developed in such way that it will give a clear 

understanding about the periodic potential. The representation 

of this model is giving by the one-dimensional periodic potential 

shown in fig.1. Unlike most literatures (John, 1996, Donald, 

1996), here we make use of a delta-function potential for its 

simplicity and explicit analytical solvability to show how the 

energy band structures are formed in a one-dimensional periodic 

potential. Another advantage of using delta-function is in order 

to reduce the number of boundary conditions which may require 

a very big matrix (Donald, 1996).

 

 
Figure 1. Sketch of a Kronig-Penney model with δ-function potentials 

Despite being it a one-dimensional model, it is periodicity of the potential will open gaps in the energy dispersion relation. The 

electrons interaction with a given lattice will also lead to energy band gaps (Kasap, 2005, Tanimu and Babaji, 2012).  

We start with a one-dimensional time independent Schrodinger equation Eq.(1). Since the electron moves in a spatially periodic 

potential (John, 1996, Tanimu and Muljarov, 2018) 

𝑉(𝑥) = 𝛾 ∑ 𝛿(𝑥 − 𝑛𝑎)                                                                                                 (8)

∞

𝑛=−∞

 

it’s wave function must satisfy Bloch’s theorem for any choice of potential 

ψ(𝑥 + 𝑎) = 𝑒𝑖𝑘𝑎ψ(𝑥)                                                                                                        (9) 

where 𝛾  is the depth of each potential well, 𝛿(x) is the Dirac delta function, a is the distance between the potentials while k is the 

Eigen wave number associated with the direction of electronic motion. To solve this problem we need to recall the solutions to 

Eq.(1) 

ψ1(x) = Aeiknx + 𝐵e−iknx.                                                                                          (10) 

The second solution can be written in terms of Bloch theorem Eq.(7) 
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ψ2(x) = ψ1(x − a)eiκna = [Aeikn(X−a) + Be−ikn(X−a)]eiκna                         (11) 

Where k = √E and κ = √(γ − E) for 2m = ℏ = 1. Applying the continuity condition to the wave function i.e. 

ψ1(a) = ψ2(a)                                                                                                             (12) 

which gives 

(A − B)eiκna = Aeiκna + Be−iκna.                                                                           (13) 

Therefore, 

A(eiκna − eiκna) = B(e−iκna − eiκna).                                                                   (14) 

The continuity of the first derivative is not satisfied when 𝑉(𝑥) is a δ-function. Using the expression for ψ2(a), we can derive the 

equation relating the coefficients A and B 

[ikneiκna − ikneikna − γeiκna]A = [ikneiκna − ikne−ikna + γeiκna]B.                                         (15) 

Expressing Eq.(14) and Eq.(15) leads to the following final expression (Mike, 2011) 

cos(κna) = γa
sin(kna)

kna
+ cos(kna).                                                                                 (16) 

Eq.(16) gives the relationship between the energy and wave-vector kn. The importance of this equation is that it provides a 

restriction on the allowed values of kn (Kasap, 2005) in the periodic potential. The left hand side of this equation is bounded in the 

region of (−1, 1) which leads to that restrictions. For detailed calculation of Eq.(16) see (Mike, 2011). There are many numerical 

methods for solving equation (16) but here we make use of Newton-Raphson procedure in MATLAB because of its arbitrarily high 

precision and a good convergence factor. 

 

RESULT AND DISCUSSION 

 

Figure 2 shows the energy band structures calculated for different strengths of the potential well and barrier. These structures are 

the allowed and forbidden band gaps. The allowed bands are those that lie between −1 ≤ cos(κna) ≤ 1 as shown by plotting the 

right hand side of Eq.(16). This is shown for γ = −1 and γ = 1 in the current study and also in figure 5 of (Mike, 2011) using 

different parameters. This is the region in which kn is real and thus the particle can propagate. The sinusoidal curve out of this 

range corresponds to an energy band gap (forbidden band). This can be seen by plotting the graphs for γ = −5, −10, and  γ = 5, 10 

for barrier and well respectively. For the electron in a metal the energy gap is missing because bands overlap the energy gaps 

(Bayoumi and Rafat, 2014). However, overlapping of the energy gaps doesn’t affect the energy gap in a semiconductor. It has been 

found that the greater the strength of the potential well or barrier γ  the wider the energy gap and vice versa. It can be seen that 

there is a wider gap for lower wave number kn and becomes smaller for increasing kn. The boundary between the wave numbers 

for barrier and well starts in the middle of a band gap, therefore half of the band gap will be in the positive and negative regions of 

the dispersion curve (see for e.g. Mike, 2011). 
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Figure 2. Plot of the function cos(κna) = γa
sin(kna)

kna
+ cos(kna) for barrier and well. Forbarrier we use the parameter γ =

−1, −5, , and −10 while for the well we use the parameter γ = 1, 5, and 10 

 

SUMMARY AND CONCLUSION 

In this work we study the energy band structure of an electron 

in a one-dimensional periodic potential. We revisit the 

application of KP-model in an electron superimposed with an 

array of delta-like function. This is done by introducing the 

concept of Bloch’s theorem to calculate the wave functions of 

an electron in a periodic potential. These wave functions were 

substituted in to the boundary conditions that define the delta-

like function potential to derive the overall equation. This 

equation were solved numerically in MATLAB. Once this is 

achieved, the energy band structures for different potential 

strengths could be analyzed, these were calculated for γ =

−1, −5,  and−10 for barrier and γ = 1, 5, and 10 for the well. It 

has been shown using the KP-model that a one-dimensional 

periodic potential composed of a delta-like potential yields 

energy bands and energy gaps. Similar results (Kasap, 2005, 

Bayoumi and Rafat, 2014) were shown that the interaction of 

the electrons with the lattice lead to the energy gaps. It was 

found that the increase or decrease of energy bands gaps 

depends on the choice of the potential strength γ. The lager the 

strength of the potential the wider the energy band gaps and vice 

versa. 
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