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ABSTRACT 

Images acquired at different times and from different sensors for multi-temporal assessment usually have 

different amounts of haze and dust in the atmosphere. These differences can mask real changes or make similar 

land cover appears to have changed. Thus, the use NDVI for multi-temporal assessment derived from multi-

sensor satellite images require radiometric normalization. In this study, Landsat TM, ETM+ and ASTER 

products were used. Empirical scene normalization technique was used balancing the radiometric attributes of 

the products after geometric rectification and atmospheric correction. The results showed that empirical 

normalization via PIFs have significance positive influence on the quality of NDVI and it is capable further 

reducing noise in the image. 
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INTRODUCTION 

Vegetation has been identified as an important indicator for 

monitoring changes in the climate-human-natural environment. 

Studies on vegetation changes within the African landscape 

especially the savanna has shown large scale pressure owing to 

deforestation in the last three decades. These disturbances may 

threaten vegetation carbon stock, ecosystem services and global 

change (Brandt et al, 2018). Remote sensing has been very 

handy in handling issues relating to vegetation change, 

especially with the use of optical sensors due to their repetitive 

coverage at a short time interval (Rustamov et al., 2012; Syariz 

et al., 2019). The hypothetic radiometric stability of satellite 

sensors is the main essence for remote sensing applications 

using multi-temporal satellite images, and the radiometric 

consistency of the acquired images (Syariz et al., 2019).   

However, a problem associated with using historical remotely 

sensed data for change detection is that the data are usually from 

non-anniversary dates with varying sun angle, atmospheric, and 

soil moisture conditions (Paolini et al., 2006) and sometimes 

from different sensors. The multiple dates of remotely sensed 

data should be normalized so that these effects can be minimized 

or eliminated (Syariz et al., 2019). 

A number of approaches to radiometric normalization are 

presented in the literature. These include the use of anniversary 

dates (Lambin, 1996), histogram matching (Prakash and Gupta, 

1998), dark area subtraction (Vincent, 1972), improved dark 

area subtraction (Chavez, 1988), radiance to reflectance 

conversion using known targets (Campbell, 1996), atmospheric 

modeling (Kneizys et al., 1988) and linear transformation based  

 

 

on reflectance-invariant objects (Heo and Fitzhugh, 2000, 

McGovern et al., 2002, Du, et al., 2002). No single approach 

has universal application because solutions are location, 

application and image dependent. Analysts must, therefore, be 

aware of existing procedures and be prepared to use or adapt 

these, or develop alternative procedures, as appropriate 

(McGovern, et al., 2002). This study utilizes the indirect 

empirical scene normalization technique because all the 

parameters necessary for computing it were available. 

 

The empirical scene normalization approach (Jensen, et al., 

1995) attempts to make equivalent spectral bands (from the 

different dates) appear as though imaged through the same 

sensor, under similar illumination conditions and the same 

atmosphere for each image (Munyati, 2000). It involves 

selecting a base image (b) and then transforming the spectral 

characteristics of all other images obtained on dates b-1, b-2, 

and/or b+1, b+2, etc. To have approximately the same 

radiometric scale as the base image (Jensen, 2005). It is 

important to remember, however, that the radiometric scale used 

in a relative multiple-date image normalization will most likely 

be simple brightness values (e.g. BV with range from 0-255). 

Hence, DN values were used in this study. The procedure 

involves the selection of pseudo-invariant features (PIFs), 

referred to as radiometric ground control points. These are 

ground targets common to the images, which are considered to 

be constant reflectors over time. Constant reflectors hardly exist, 

hence the concept of false (pseudo) features whose reflectance 

is relatively constant with the background assumption that their 

reflectance is constant. For these PIFs any change in their 
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brightness values (BV) on the multi-temporal image set will be 

attributed to detector calibration, astronomic, atmospheric and 

phase angle differences. The targets used need not be the same 

throughout the multi-temporal image set (Hall, et al., 1991, Du 

et al., 2002; Zhang, et al., 2014). Once the targets have been 

chosen, their brightness values on the respective bands are 

regressed against their corresponding values on the equivalent 

bands. In the resulting regression model, the additive component 

corrects for the difference in atmospheric path radiance between 

dates, and the multiplicative terms corrects for the difference in 

detector calibration, sun angle, earth/sun distance, atmospheric 

attenuation and phase angle between dates (Jensen, et al., 1995). 

After the removal of these variations, changes in brightness 

value could be related to changes in surface conditions. 

Recently, Zhou et al. (2016) presented the utilization of 

normalized difference water index (NDWI) to select initial PIFs, 

and several statistical rules are adopted to select final PIFs. 

According to Eckhardt, et al. (1990) the potential PIFs for 

radiometric normalization should have the following 

characteristics for them to be of value in a multiple date image 

normalization process: 

1. The spectral characteristics of the PIFs should change 

very little through time, although it is acknowledged 

that some change is inevitable. Deep non-turbid water 

bodies, bare soil, large rooftops, or other 

homogeneous features are candidates. 

2. The PIFs should be at approximately the same 

elevation as the other land in the scene. Selecting a 

mountaintop PIF would be of little use in estimating 

atmospheric condition near sea level because most 

aerosols in the atmosphere occur within the lowest 

1000m. 

3. The PIF should normally contain only minimal 

amount s of vegetation. Vegetation spectral 

reflectance can change over time as a result of 

environmental stress and plant phenology. However, 

an extremely stable, homogeneous forest canopy 

imaged on near anniversary dates might be 

considered. 

4. The PIF must be in a relatively flat area so that 

incremental changes in sun angle from date to date 

will have the same proportional increase or decrease 

in direct beam sunlight for all normalization targets. 

 

This study examined the influence of multi-sensor and multi-

temporal satellite image radiometric normalization on the 

quality of normalised differential vegetation index (NDVI) 

using a woodland reserve as a case study site to test the 

effectiveness of the technique for sustained monitoring of 

vegetation as an important global change indicator. 

Data 

Study Area 

Falgore Game Reserve (FGR), formerly Kogin Kano Forest 

Reserve is woodland forest located on longitudes 8o 30' to 8o 50' 

East and latitudes 10o 46' to 11o 20' North, some 110 km south 

of Kano on the Jos-Kano road (Figure 1). It has an aerial extent 

of 92,000 ha. The northern boundary is formed by the artificial 

Lake Tiga which, when full, submerges the north-western tip of 

the reserve. To the south-east of Falgore lies Lame Burra Game 

Reserve (205,900 ha) in Bauchi State (BirdLife International, 

2007).  

The present climate of the FGR is tropical wet-and –dry type, 

coded Aw by W. Koppen (Kottek et. al., 2006), mean annual 

rainfall is estimated at 1000mm and this value decreases 

northward (Liman et. al., 2014). The mean annual temperature 

is about 24oC, but the mean monthly values range between 21oC 

in the coolest months (December/ January) and 31oC in the 

hottest months (April/May) (Liman et. al, 2014). The elevation 

of their bases ranges between 700m and 800m. The highest peak 

is about 1230m above sea level. The FGR has a high density tree 

species and high floristic variations found within the open 

Northern Guinea Savanna woodland vegetation type, though 

with elements of the Sudan Savanna in the northern tip 

(Badamasi, 2014). Example includesIsoberliniadoka, 

Khayasenegalensis, Vitexdoniana, Anogeissusleiocarpus, 

Tamarindusindica, Detariummicrocarpum and 

Pterocarpuserinaceus (BirdLife International, 2007). 

Data 

Landsat Thematic Mapper (TM), Enhanced Thematic Mapper 

Plus (ETM+) and Advanced Space-borne Thermal Emission 

and Reflection Radiometer (ASTER) image (Table 1) were used 

in evaluating the radiometric normalization method. For 

simplicity only bands 3 and 4 on board the Landsat series and 

bands 2 and 3 of the ASTER image corresponding to the red and 

near infra-red band respectively were extracted for this study. 
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Fig. 1. Falgore Game Reserve 

 

Table 1: Landsat and ASTER data used 

Note: TM = thematic mapper; ETM+ = enhanced thematic mapper plus; ASTER = Advanced Spaceborne Thermal Emission and 

Reflection Radiometer 

Source: aFree from http://glovis.usgs.gov;bPurchased from http://glovis.usgs.gov,  

Images Used for the study Path/row Resolution Date of acquisition Format Product Type 

(Cloud Cover 

%) 

Landsat 5 TMa 

Band 1 -7 

188/052 30m 

 

19-12-1986 GEOTIFF L1T (0%) 

Landsat 4 TMa 

Band 1 -7 

188/052 30m 22-12-1990 GEOTIFF L1T (0%) 

Landsat 5 TMa 

Band 1 -7 

188/052 30m 18-11-1998 GEOTIFF L1T (0%) 

Landsat 7 ETM+a 

Band 1 -8 

188/052 30 17-12-2000 GEOTIFF L1T (0%) 

ASTER 

Band 1-14b 

 15m 29-11-2005 HDF AST_L1B 

(0%) 

N I G E R I A 

http://glovis.usgs.gov/
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Near anniversary images have been suggested to reduce error 

arising from seasonal differences (vegetation phenology cycles) 

when undertaking change detection analyses (Jensen, 2000; 

Munyati, 2000; Lillesand et al., 2004). Although Abubakar 

(1998) suggested the month of May (first week) as a suitable 

period for inclusion in change detection analysis in Sudano-

Sahelian zone, considering the period as having few rain drops 

making permanent vegetation cover to have established and 

crops at this stage have not developed. Accordingly, much of 

the green reflectance from the surface is due to permanent 

vegetation. The problem with such criteria is that the onset of 

rainfall usually fluctuates and this might have introduced some 

noise in form of cloud cover to the image acquired on such date. 

In addition, ground truthing exercise which is usually conducted 

in almost near anniversary with the referenced image might 

create mixed up in terms of classification of spectral signature 

recognition. Hence, the research utilized an alternative month 

that is quite stable and free of the aforementioned short comings. 

November and December images (winter period in the study 

area) were chosen for a number of reasons. At this time of the 

year, rainfall has seized for few months or weeks and other 

cropland at this time have been harvested leaving trees still with 

green leaves. Irrigated areas are yet or about planting their crops. 

This minimizes the conflict in the spectral signatures of green 

trees that may confuse the greenness level for crops during the 

rainy season. Although trees in this area are deciduous in nature, 

but the high soil moisture content still sustains the greenness of 

the leaves. In addition dry season images are largely cloud-free. 

Finally only November/December images were found to be 

consistent in terms of their availability in the archives for both 

ASTER and Landsat data series. Vegetation Index including 

NDVI used for this study is often considered as supervised 

enhancement technique (Liu and Mason, 2009) which have the 

capability of highlighting the red edge (the significant 

difference between red and NIR) for projecting vegetation 

spectra among other spectral features, and suppresses the effects 

of topography and shade (Jensen, 2005). NDVI is well known 

to correlate with vegetation biomass and net primary 

production. This has therefore paved way for using NDVI for 

the current study. 

Data pre-processing 

Images acquired at different times usually have different 

amounts of haze and dust in the atmosphere. This is because the 

radiance recorded at the sensor is a function of surface 

condition, sun angle, earth-sun distance, detector calibration, 

atmospheric condition and sun-target-sensor geometry (Jensen, 

1996). These differences can mask real changes or make similar 

land cover appears to have changed.  Since the multi-temporal 

image dataset used was acquired with different sensor, sun 

angles and most likely different atmospheric composition, they 

had different illumination condition. To overcome this problem 

the images must be geometrically rectified to a common map 

projection and ideally they should be radiometrically 

normalized to remove the effects of non-surface related 

difference in recorded radiance. 

Atmospheric correction 

To correct for atmospheric attenuation in the images the Cost 

model developed by Chavez (1996) was applied to all bands 3 

and 4 of the Landsat series and bands 2 and 3 of the ASTER 

image. The ASTER image was later use as the reference image. 

The Cost model incorporates all of the elements of the Dark 

Object Subtraction model (for haze removal) plus a procedure 

for estimating the effects of absorption by atmospheric gases 

and Rayleigh scattering. It requires no additional parameters 

over the Dark Object Subtraction model and estimates these 

additional elements based on the cosine of the solar zenith angle 

(90 – solar elevation).  

With the Cost model, the down-welling spectral irradiance is 

assumed to be 0.0. However, the atmospheric transmittance is 

estimated as the cosine of the solar zenith angle (90 – solar 

elevation), and path radiance due to haze is estimated by 

specifying the DN of objects that should have a reflectance of 

zero (e.g., deep clear lakes). Spectral diffuse sky irradiance is 

also assumed to be 0.0. The spectral solar irradiance was then 

calculated automatically: based on the wavelength specified, a 

value of mean spectral solar irradiance was interpolated from 

values in a look up table taken from Thekaekara et al. (1969), 

which is then adjusted for annual variations by multiplying the 

interpolated value developed by Cracknell and Hayes (1991). 

The units calculated are in mWcm-2sr-1um-1. The parameters 

used for the Cost model were extracted from the respective 

image Metadata files that accompanied the Landsat image series 

(1986, 1990, 1998, and 2000) as well as the ASTER image of 

2005, summarized in Table 2. This was then implemented using 

the Image Restoration Module (ATMOSC-atmospheric 

correction) in Idrisi Taiga. 

This procedure was used to correct bands 3 and 4 of the whole 

Landsat TM and ETM+, and bands 2 and 3 of the Aster 

imageries which were later used in deriving NDVI images. Most 

studies have shown that failure to correct for atmospheric effects 

influences classification results and NDVI values (Kaufman, 

1989). The process produced a reflectance value for all the 

images. Furthermore, the Cost model is known to remove haze 

and correct for the effect of atmospheric gases and Rayleigh 

scattering (Berberoglu and Akin, 2009). 
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Table 2: Parameters used for implementing COST model 

Year Sun elevation Satellite viewing 

angle              (90o 

– Satellite angle at 

near nadir) 

Time (GMT) Band Wavelength of 

band center 

(microns) 

Lmin Lmax DN 

haze^ 

1986 41.8871600 8.2 14.03527 2- G 0.56325 -0.284 33.30 44 

    3- R 0.66 -1.17 26.40 39 

    4- NIR 0.825 -1.51 22.10 15 

1990 41.9485738 8.2 14.13593 2- G 0.56325 -2.84 33.60 3 

    3- R 0.66 -1.17 25.40 4 

    4- NIR 0.825 -1.51 22.10 17 

1998 49.4725366 8.2 14.37061 2- G 0.56325 -2.84 36.50 22 

    3- R 0.66 -1.17 26.40 19 

    4- NIR 0.825 -1.51 22.10 10 

2000 46.3704704 8.2 14.56031 2- G 0.56325 -6.4 19.65 44 

    3- R 0.66 -5.0 15.29 39 

    4- NIR 0.825 -5.1 24.11 15 

2005 52.6019760 0.019 14.99700 1- G 0.556 0* 1* Nil 

    2- R 0.661 0* 1* Nil 

        3N- NIR 0.807 0* 1*  Nil 

^ = this is path radiance due to haze and it is estimated by specifying the DN of objects that should have a reflectance of zero (e.g., 

deep clear lakes) as such DN minimum is usually specified to account for Dark object subtraction (Jense, 1996: p116); * = the 

values are offset and gain respectively; the bold DN values represents DN haze. Note that atmospheric correction can be performed 

on images that have already been converted into radiance by choosing the offset/gain option and entering an offset of 0 and a gain 

of 1 (Idrisi Taiga, help). 

 

Geometric correction 

All the five satellite images used for this study including the 

Landsat image series and the ASTER image have been geo-

referenced upon acquisition to UTM Zone 32 North, WGS-84 

datum. However, geometric corrections were made to adjust 

distortions in the images for optimum positional accuracy. This 

is because when comparing two or more images that were 

collected at different times or from different sources, changes 

over time can be accomplished by examining the differences in 

the values of the corresponding cells in multiple images 

(Eastman, et al., 2007). This process only makes sense, 

however, if the corresponding pixels of each image actually 

describe the same location on the ground.  

Prior to geometric correction, the two granules of ASTER 

images for 2005 that covered the study area were mosaicked 

using “georeference based mosaicking techniques” with a 

feathering of 10 pixels as implemented in ENVI 5.3 software. 

The resulting image is henceforth referred to as the reference 

image (Figure 2). Was rectified using 18 ground control points 

(GCPs) collected interactively on an already rectified SPOT 5 

satellite image of 4/05/2005 obtained from the National Space 

Research and Development Agency (NASRDA), Abuja 
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Fig. 2: Mosaicked ASTER image of Falgore Game Reserve in false colour composite 

 

 

The process yielded a root mean square error (RMSE) of 0.00197 after deleting 10 GCPs indicating that the image was less than 

one meter error (Table 3). This is within the acceptable range according to Jensen (2005). ). These were then used in rectifying the 

ASTER image using 1st order polynomial transformation method and nearest neighbour resampling algorithm for intensity 

interpolation of the brightness values (BV) with a UTM projection and 15 x15m pixel. 

 

Table 3: Characteristics of 8 ground control points used to rectify the ASTER 2005 scene 

Point 

Number 

Base X Base Y Warp X Warp Y Predicted X Predicted Y Error X Error Y RMS 

1 2539.46 6224.31 183.60 3530.80 183.60 3 3530.80 0.00 0.00 0.00 

2 3186.25 6162.00 1477.25 3404.88 1477.25 3404.88 0.00 0.00 0.00 

3 3313.60 5207.20 1734.09 1493.36 1734.09 1493.36 0.00 0.00 0.00 

4 2949.40 4728.50 1002.66 535.96 1002.66 535.96 0.00 0.00 0.00 

5 2689.00 5524.00 480.93 2128.81 480.93 2128.81 0.00 0.00 0.00 

10 2611.50 5281.33 324.78 1643.26 324.78 1643.26 0.00 0.00 0.00 

11 2636.50 4854.33 373.72 788.54 373.72 788.54 0.00 0.00 0.00 

18 3233.86 5796.71 1573.07 2673.58 1573.07 2673.58 0.00 0.00 0.00 

Total RMSerror  with the 8 GCPs used in resampling is 0.00197 

Finally, an interactive image to image registration was performed to rectify the four Landsat images (1986, 1990, 1998 and 2000) 

with reference to the 2005 ASTER as the base year image. They were all resampled to 15x15m pixels using nearest neighbor 

resampling and registered to base image for change detection. It is important to note that the accuracy of geometric rectification 

can have a direct bearing on the accuracy of a subsequent radiometric normalization. Table 4 presents the summary of the overall 

RMSE statistics for all the images used, while appendix VI detailed out the geometric rectification process. 
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Table 4: Characteristics of the remotely sensed satellite data used for exploring changes in vegetation cover in FGR. 

Date Type of Imagery Nominal instantaneous 

Field of View (m) 

Resampled Pixel 

resolution 

No of GCPs 

used 

Rectification 

RMSE 

19/12/1986 Landsat 5 TM 30 x 30 15 x 15 11 0.496 

22/12/1990 Landsat 4 TM 30 x 30 15 x 15 15 0.260 

18/11/1998 Landsat 5 TM 30 x 30 15 x 15 12 0.486 

17/12/2000 Landsat 7 ETM+ 30 x 30 15 x 15 12 0.396 

29/11/2005 ASTER 15 x 15 15 x 15 8 0.002 

 

The geographic dynamic link module in ENVI 5.3 was further used to evaluate the accuracy of the geometric correction using 40% 

transparency dynamic overlay function. 

Radiometric normalisation  

Using the technique of image normalization (Du, et al., 2002) 

the four Landsat series were then indirectly normalized for 

atmospheric absorption with the ASTER image as the reference 

image. Radiometric normalization of the Images was achieved 

by applying regression equations to the 1986, 1990, 1998, and 

2000 image data set to predict what a given BV would be if it 

had been acquired under the same conditions as the 2005 

reference scene. These regression equations were developed by 

correlating the brightness of PIFs present in both the scene being 

normalized and the reference (2005) scene (see Figure 3). A 

total of 3 reservoirs, 2 rock outcrop (the surface of the selected 

rocky area was smooth and have not vegetation cover) and 2 

bare sites were used to normalize the 1986, 1990, 1998 and 2000 

data. The 3 PIFs were digitized, rasterized and converted into 

Boolean images (a value of 1 for the PIFs pixels and 0 for other 

areas: see Figure 4). The Boolean image was then used as a mask 

image for regressing all the earlier images against the 2005 

ASTER image. 

  

 

 
 

Fig. 3: Implementation of Empirical Regression Scene normalization in Idrisi Using the Image Calculator. This is an example of 

normalization process for TM1986 band 3 using the coefficients. 
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Fig. 4: Boolean Image used as Mask Isolating the PIFs Reflectance Value. Note that the pixels selected were very small in 

dimension and hence it is difficult to visualize them within the entire image map. The insert to the right is a zoomed section of the 

image of 10  x 10. 

 

Computing NDVI 

The Normalized Difference vegetation Index (NDVI) developed 

by Rouse et al. (1974) which is the ratio of Red and NIR bands 

was used: .  

  

 

RNIR

RNIR
NDVI




   

     

 (3.1) 

 

Where NIR is the near infra-red band and R is the red band.  

  

Image regression change detection 

The regression technique accounts for differences in mean and 

variance between pixel values for different dates and it is 

assumed that time two is a function of time one. The earlier 

NDVI was considered as the independent variable and the more 

recent one was taken to be the dependent variable. A linear 

relationship was established between these two images. The 

predicted image and the base image (i.e. time one image) were 

subtracted from each other after applying the linear regression 

function. 

 

 

 

 

RESULTS AND DISCUSSIONS 

Empirical radiometric normalization using regression 

coefficient 

It is important to note that significant radiometric differences 

still exist due to residual mismatch of data obtained on different 

dates by different satellites (Hall et al., 1991; Guo et al., 2008) 

and the dynamic environmental structure of the study area. As a 

result of the empirical radiometric normalization procedure 

employed, the bands 3 and 4 of Landsat products for 1986, 1990, 

1998 and 2000 image data were adjusted to a common reference 

image of bands 2 and 3of ASTER 2005 respectively, using the 

regression coefficient of the pseudo invariant features (PIFs). 

The resulting regression models are as shown in Table 5. The 

reflectance value of the early image targets/PIFs (eg. 1986) were 

regressed against the reflectance values of the referenced image 

PIFs (e.g 2005) for band 3 and 4 in the case of Landsat products 

(1986,1990,1998 and 2000) and bands 2 and 3 for 2005 ASTER 

product respectively (Figure 5).  Only PIFs with a linear 

coefficient => 0.90 were considered appropriate for the analysis. 

In this case, the results fulfilled the assumptions and all the 

models estimated by the regression procedure are significant at 

an α-level of 0.05, except for the TM_3 1990 which had an r2 

value of 0.10 (Table 5). This showed that the PIFs coefficients 

are really not good estimators. Because the TM_3 was used for 

computing NDVI algorithm, it was felt that the error will be 

shifted to NDVI values for 1990 which could affect the quality 

of the NDVI product as earlier observed by Kaufmann (1989).  

Hence, the 1990 image was dropped from further analysis.
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Table 5: Image normalization regression models developed for the FGR 

Image normalized with the 

29 Nov 2005 Aster reference 

image Regression models r2 (%) 

19 Dec 1986 TM 2005ASTER_2 = 0.110432 + 0.813615(TM_3 1986) 90.1 

 2005ASTER_3 = 0.09636 + 1.006432(TM_4 1986) 93.2 

22 Dec 1990 TM 2005ASTER_2 = -0.052744 + 1.036475(TM_3 1990) 10.7 

 2005ASTER_3 = 0.049232 + 0.919091(TM_4 1990) 90.0 

18 Nov 1998 TM 2005ASTER_2 = 0.100110 + 0.704082(TM_3 1998) 94.1 

 2005ASTER_3 = 0.121362 + 0.702687(TM_4 1998) 95.2 

17 Dec 2000 ETM+ 2005ASTER_2 = 0.087655 + 0.642297(TM_3 2000) 92.7 

  2005ASTER_3 = 0.123989 + 0.669437(TM_4 2000) 94.9 

a-level of 0.05. Note that the 1990 TM_3 Red band had a very low r2 value, hence the 1990 dataset was dropped in the analysis.  

 

 
a) 1986 TM_3 (Red)   b) 1986 TM_4 (NIR) 

 
c) 1990 TM_3 (Red)   d) 1990 TM_4 (NIR) 
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e) 1998 TM_3 (Red)   f) 1998 TM_4 (NIR) 

 
g) 2000 ETM+_3 (Red)   h) 2000 ETM+_4 (NIR) 

Fig. 5: Linear regression diagram of the different image pairs with PIFs. This shows the relationship between the same PIFs selected 

(dry and wet areas) found in both images. 

 

The assumption that transformed data that are meant to be corrected for exogenous abnormality usually have their standard 

deviation reduced. This assertion was examined by comparing the standard deviation of the atmospherically corrected images and 

the spectrally normalized images (Table 6).  

 

Table 6: Descriptive Statistics of Atmospherically corrected bands 

Year Band Min Max Mean SD 

a)  The atmospherically corrected band images after COST-model was applied.  

1986 3 0 0.392 0.085 0.045 

 4 0 0.523 0.293 0.076 

1990 3 0 1 0.257 0.052 

 4 0 1 0.358 0.069 

1998 3 0 0.444 0.113 0.044 

 4 0 0.558 0.288 0.061 

2000 3 0 0.478 0.157 0.053 

 4 0 0.573 0.31 0.068 

2005 2 0 0.594 0.143 0.107 

 3 0 0.956 0.227 0.159 
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b) The radiometrically normalized images using empirical regression. 

1986 3 0.11 0.429 0.180 0.037 

 4 0.085 0.524 0.331 0.063 

1990 3     

 4     

1998 3 0.1 0.413 0.180 0.031 

 4 0.121 0.513 0.324 0.043 

2000 3 0.088 0.395 0.189 0.034 

 4 0.124 0.507 0.332 0.046 

2005 2 0 0.594 0.143 0.107 

 3 0 0.956 0.227 0.159 

 

 

From the descriptive statistics presented in Table 6 it can be 

observed that there was a reduction in the standard deviations 

indicating that relative contributions of residual mismatch have 

reduced greatly. In addition, the result shows that the mean 

reflectance values have increased and this might not be 

unconnected with the smoothening effects that had normalized 

the spikes in the reflectance values (outliers) and removed the 

additives residual effect of the atmosphere which may have 

masked some areas thereby increasing those pixel reflectance 

values. The result is therefore a slight increase in the overall 

mean reflectance value. This observed pattern testify the fact 

that the data is fit for onward analysis.  

Effect of radiometric normalization on NDVI 

The NDVI images were derived using regression models in 

Table 5 from all the image dates excluding the 1990. Although 

studies have shown that ratio imagery (NDVI inclusive) 

especially those produce using Landsat 7 ETM+ data are of 

excellent quality (Vogelmannet al., 2001). It is important to 

examine the quality of the NDVI images generated for 

radiometric normalization as compared to non-normalized 

products. 

The effect of empirical normalization on the NDVI images 

generated for this study was examined by comparison of 

derived NDVI images from the three different processing 

levels (i.e derived NDVI from (a) uncorrected raw DN image 

data, (b) atmospherically corrected image, and (c) 

radiometrically normalized image). The essence is to examine 

the influence of atmospheric correction and radiometric 

normalization on the quality of NDVI data. Table 7 illustrates 

the summary of the descriptive statistic of NDVI resulting 

from the three different levels processing. From the generated 

statistics, it appears that after applying the atmospheric 

correction the minimum and maximum values were stretched 

between -1 and 1 which is the extreme values for NDVI. The 

implication of having 1 as the maximum value is that the 

vegetation is very dense and perhaps as dense as those found in 

irrigated agricultural plots or within the tropical rain forest 

zone as against the guinea savanna vegetation zone where FGR 

is situated. This indicates that though there was correction on 

the images but there still exist some residual mismatch on the 

scenes creating a saturation of the NDVI values in areas that 

are known to be savanna. Meanwhile, a closer look at Table 7c 

reveals that there was decrease in the deviation for all the 

NDVI images after the radiometric normalization.  

To appreciate the impact of radiometric normalization a visual 

display of the NDVI produced by the three different processing 

levels is presented in Figure 6. Figure 6a, b and c is a visual 

display of 1986 NDVI for unprocessed (raw DN value), 

atmospherically corrected and radiometrically corrected dataset 

respectively. Visual examination of all the three images shows 

that anomalies observed within the uncorrected raw and 

atmospherically corrected images were normalized in Figure 6c. 

For instance, the clear yellow patches observed in the south 

eastern part of the study area (Figure 6a) and the corresponding 

dark green colour in same location (Figure 6b) signifies 

anomalies in the data, and Figure 6c illustrate the corrective 

effect on same. In addition, the sharpened boundary of the water 

bodies (the Tiga dam and other minor reservoirs) spectra in 

Figure 6c as against those in Figure 6a and 6b support the 

influence of radiometric normalization on images meant for 

multi-date comparison. Figure 6d, e and f exemplifies the same 

effect on 1998 ndvi, and 2000 ndvi image illustrated in Figure 

6g, h and j. In all the images (1986, 1998 and 2000) the normal 

Figure 6k is the base image of ASTER derived-NDVI for 2005 

before atmospheric correction, while Figure 6l is the same ndvi 

–derived image after the application of COST atmospheric 

correction model. 
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Table 7: Descriptive Statistics of the NDVI images generated 

Year Min Max Mean SD 

a)      The ndvi images generated from the raw DN values.  

1986 -1 0.348 0.078 0.073 

1990 -0.864 1 0.06 0.073 

1998 -1 0.688 0.209 0.131 

2000 -1 0.319 -0.167 0.086 

2005 -1 0.581 0.063 0.081 

b)      The ndvi images generated after applying  the COST-model  

1986 -1 1 0.574 0.164 

1990     

1998 -1 1 0.438 0.194 

2000 -1 1 0.328 0.172 

2005 -1 0.671 0.16 0.131 

c)      The ndvi images derived from the normalized band combination 

1986 -0.377 0.555 0.293 0.078 

1990     

1998 -0.265 0.62 0.285 0.081 

2000 -0.255 0.597 0.276 0.066 

2005 -1 0.671 0.16 0.131 
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        1986 

a  b  c  

        1998 

d   e f  

Fig. 6: Effect of radiometric normalization on the NDVI images 

[1986 (a) NDVI generated from raw DN values (b) NDVI from atmospherically corrected image (c) radiometrically corrected NDVI] 

[1998 (d) NDVI generated from raw DN values (e) NDVI from atmospherically corrected image (f) radiometrically corrected NDVI] 
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        2000 

g h  j  

       2005 

k  l  

Fig. 6 (Cont.): Effect of radiometric normalization on the images 

[2000 (g) NDVI generated from raw DN values (h) NDVI from atmospherically corrected image (j) radiometrically corrected NDVI] 

[2005 (k) NDVI generated from  raw DN values (l) NDVI from atmospherically corrected image which was then used as base image for correcting the remaining images]
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Further verification of the NDVI using histogram plots 

The assertion that scene normalization reduces atmospheric 

attenuations in multi-date comparison images (Munyati, 

2000; Jensen, 2005; Berberoglu and Akin, 2009) was further 

investigated. A subset of the NDVI 1986 image that 

represents the forested area was used for this purpose (Figure 

7). This was done in order to avoid a bimodal histogram plot 

due to the two main features found within the whole scene i.e 

water and vegetation. It was therefore felt that the vegetated 

area will produce a unimodal histogram plot. Figure 8a and b 

illustrate the histogram of the subset scene of 1986 NDVI 

before and after radiometric normalization. It can be clear 

from the two graphs that the effect of spikes in Figure 8a has 

diminished in 8b and there was a shrink in the spread of the 

data which is similar to graphs produced during and image 

enhancement using histogram equalization technique. Table 8 

presents a correlation matrix for the three different procedures 

employed in correcting the image. 

 

 
Fig. 7: Windowed Image of the Study area. This subset area was used in the entire analysis. 

 

      1986 

   ( a )      ( b ) 

 
Fig. 8: Histogram plots of NDVI images for the years 1986, 1998, 2000 and 2005 after windowing.  

Histogram (a) shows the pattern of NDVI value after conversion of DN values to reflectance values, while (b) shows the 

pattern of NDVI values of the same image after radiometric normalization with the NDVI values of 2005 as reference image 

for all the respective years. 
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Table 8: Correlation matrix for the subset NDVI images 

NDVI Bands  

 1986 NDVI 1998 NDVI 2000 NDVI 2005 NDVI 

a) Raw DN images     

1986 NDVI 1.00    

1998 NDVI 0.34 1.00   

2000 NDVI 0.24 0.66 1.00  

2005 NDVI 0.13 0.53 0.74 1.00 

b) Atmospherically corrected image   

1986 NDVI 1.00    

1998 NDVI 0.49 1.00   

2000 NDVI 0.64 0.76 1.00  

2005 NDVI 0.57 0.64 0.76 1.00 

c) Normalised image    

1986 NDVI 1.00    

1998 NDVI 0.52 1.00   

2000 NDVI 0.55 0.67 1.00  

2005 NDVI 0.40 0.51 0.73 1.00 

Note that (a) represent NDVI value for the unprocessed images (raw), (b) NDVI after atmospheric correction, and (c) NDVI 

after radiometric normalization.  

 

In the last stage, the large water body (edge of the Tiga dam) found around the extreme northwestern part of the windowed 

image was masked. The descriptive statistics of the output NDVI image is presented in Table 9. 

 

Table 9: Descriptive statistics from the masked windowed NDVI images 

Year Min Max Mean SD 

1986 0 0.537 0.318 0.041 

1998 -0.089 0.620 0.312 0.045 

2000 -0.036 0.597 0.309 0.047 

2005 -0.175 0.671 0.266 0.074 

 

Given the above level of data quality control, it is convincing 

that the normalised NDVI derived data is of higher quality 

compared with those derived from raw data and 

atmospherically corrected data alone. And hence, the NDVI 

data as a new product can be used for further earth process 

investigation. 

 

CONCLUSION  

Radiometric normalization of ASTER data with the Landsat 

TM and ETM+ using regression of PIFs methods described 

above produces acceptable results that can be used to examine 

the NDVI-based spectral variability and surface composition 

across vegetation woodland. The technique addresses the 

need to compare multi-date and multi-sensor data acquired for 

temporal analysis over continues landscape.  Although there 

are challenges to the efficacy of extracting the PIFs, the 

technique exemplifies a process that seems effective for the 

woodland terrain. This technique should easily be transferable 

to other landscapes for effective monitoring especially where 

NDVI-based change assessment that are associated with 

saturation owing to poor data handling exist. 
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