

ISOLATION AND IDENTIFICATION OF FUNGI ASSOCIATED WITH SOILS AND DISEASED TOMATO PLANTS ON FARMERS' FIELDS IN BENUE STATE NIGERIA

*¹Terna, T. P., ²Anyam, R. W., ³Ekefan, E. J., ⁴Bem, A. A., and ³Okoro, J. K.

¹Department of Botany, Federal University Lafia. PMB 146 Lafia, Nasarawa State, Nigeria.
²Department of Biological Sciences, Benue State University Makurdi, Nigeria.
³Department of Crop and Environmental Protection, University of Agriculture, Makurdi, Nigeria.
⁴Department of Biological Sciences, Federal University Dutsin-Ma, Katsina State, Nigeria

Corresponding Author's Email: ternapaul@yahoo.com

ABSTRACT

A study was carried out to isolate and identify fungi associated with infected tomato plants and soils collected from tomato fields in major tomato growing Local Government Areas (LGAs) of Benue State, Nigeria. Fungi isolated from diseased tomato plant tissues and rhizospheric soils using the direct plate and soil dilution techniques respectively were identified through examination of cultural and microscopic features, aided by relevant identification keys and manuals. A total of 46 fungi belonging to 5 divisions and 14 genera were isolated from sampled plant and soil materials. Soil samples gave the highest number of fungal isolates, 31/46(67.39%) compared to plant materials, 15/46(32.61%). Plant and soil samples collected from Buruku LGA yielded the highest number of fungal isolates, 16 followed by Ushongo, 14, Gboko, 10, and lastly Tarka, 06. Fungi belonging to the Division Deuteromycota were the most frequently occurring, 76.09%, followed by Ascomycota, 13.04% and both Oomycota and Basidiomycota with 4.35% respectively. Members of the genus *Aspergillus* were the most frequently occurring in the sampled materials with 2.17%. Fungi belonging to the genus *Aspergillus* were the most frequently occurring fungi were those belonging to the genera *Collectotrichum, Scopulariopsis,* and *Mucor,* all having 2.17% frequencies of occurrence respectively. The study revealed the occurrence of fungi in tissues and rhizosphere of the tomato plant, which included several fungi genera of agricultural importance.

Keywords: Fungi, Identification, Infected Soils, Isolation, Tomato Plants

INTRODUCTION

The tomato plant (*Solanum lycopersicum* L.) native to tropical Central and South America (Cobley and Steele, 1976) is currently regarded one of the most important vegetables in the world, ranking second in importance to potatoes in most countries (Rick *et al.*, 1990). The global importance of the tomato plant and its products are largely due to its rich nutritional content and medicinal properties (Cox, 2000; Feet, 2001; Bjarnadottir, 2019). Today, total annual world production of tomatoes is estimated at about 130 million tons (Eurofresh, 2016).

Soils contain large numbers of microorganisms – usually between one and ten million per gram of soil – with bacteria and fungi being the most prevalent (Bruehl, 1987; SARE, 2012). A good number of soil inhabiting microbes are able to complete their life cycles in the soil while most plant pathogenic microbes undertake certain aspects of their life cycles in the host plants (Bruehl, 1987). Aerial plant surfaces also provide suitable habitats for epiphytic micro-organisms which are influenced by the nutrients present on the leaf surfaces (Pandey *et al.*, 1993).

Fungi account for over 85% of all plant diseases (Raid, 2011) hence, their presence on plant parts and growth soils bear huge implications on total plant health and productivity. Accounts of effects of microbial populations on growth and productivity of the tomato crop have also been documented by several other authors (Rovira, 1963; Kim et al., 1998; Koike et al., 2007; Ncube et al., 2011; Terna et al., 2015; Omolaran et al., 2016). Benue State, Nigeria is known as 'the food basket of the Nation' chiefly due to the vast scale of the production of important food crops including tomatoes by farmers in the State (Uja, 2013; Ososanya, 2018). Although tomatoes remain among the most cultivated crops in the State, there still exist paucity of knowledge on the microbial populations co-existing and interacting with the tomato crop. Not much has been reported on fungi infecting tomato plants and fields in Benue State since the studies on the fungal pathogens of field grown tomatoes in Benue State by Bem (2009). This study shall provide an update on the current status of the fungal diversity in infected tomato plant tissues and soils in tomato fields in selected farming locations in Benue State.

MATERIALS AND METHODS

Isolation and Identification of Fungi Associated with Diseased Plants

Naturally infected leaves, stems and roots of tomato plants showing various disease symptoms (Plate 1) as well as soil in the infected fields were collected and conveyed in sterile polyethylene bags to the Botany Laboratory of Benue State University, Makurdi, for further studies. Isolation and identification of fungi associated with diseased tomato plants was carried out in accordance with methods reported by Bem (2009) as follows:

Surface Sterilization of Diseased Plant Tissues

Sampled diseased plant tissues were thoroughly washed in flowing tap water and cut into smaller pieces of about $2mm^2 - 4mm^2$ with the aid of a sterile scalpel to expose infected points. Cut pieces of plant tissues were carefully placed in appropriately labelled beakers into which 5% sodium hypochlorite was added

and allowed to stand for a minute to ensure adequate surface sterilization without damaging plant tissues. Pieces of surface sterilized plant tissues were carefully removed from the sterilizing solution with a pair of sterile forceps and thoroughly rinsed in three changes of sterile distilled water.

Isolation of fungi from Stems, Roots and Leaves of Host Plants

Following surface sterilization, stem tissues were blotted dry using sterile Whatman no. 1 filter paper. Thin slices 2mm to 4mm thick of surface sterilized stem (xylem inclusive), root and leaf tissues were plated on solidified sterile Potato Dextrose Agar (PDA) with the aid of sterile forceps, and incubated at 27 °C for 72 hours. Fungal isolates were sub-cultured unto freshly prepared PDA plates impregnated with 0.01mg of streptomycin sulphate to prevent bacterial growth. Repeated sub-culturing was carried out until pure cultures were obtained and preserved on PDA slants for further identification.

Plate 1. Tomato Plants Showing Disease Symptoms in: (A) Ushongo (Leaf necrosis), (B) Buruku (Presence of fungal mycelia and sclerotia on plant stem), (C) Tarka (Leaf yellowing, stem and leaf necrosis), (D) Gboko (Stem rot and whole plant wilt) (Terna, 2012).

Isolation of Fungi from the Soil.

Soil samples from the top 5cm layer of rhizosphere of infected plants were collected and diluted serially. Concentration 10^{-6} was collected with a sterile pipette and gently mixed by swirling with molten sterile PDA at 45°C (pour plate technique), allowed to set and incubated at 27°C for 72 hours.

Identification of Fungal Isolates

Identification of fungal isolates was based on cultural characteristics and microscopic observation of morphological features aided by taxonomic keys of Samson *et al.* (2010).

Data Analysis

Data obtained from the study were analyzed using simple percentages in the form of percentage frequencies and relative frequencies of abundance and presented in charts and tables.

RESULTS

Fungi belonging to different genera were isolated and identified from tomato tissues and infected field soils collected from the studied area. A total of 14 fungi genera were identified through observation of cultural and microscopic morphology of the isolated fungi. The identified fungi genera were; *Fusarium* spp., *Penicillium* spp., *Aspergillus* spp., *Aureobasidium* spp., *Chrysonilia* spp., *Colletotrichum* spp., *Pythium* spp., *Geotrichum* spp., *Saccharomyces* spp., *Trichoderma* spp., Scopulariopsis spp., Alternaria spp., Mucor spp., and Sclerotium spp (Table 1).

Soil samples yielded the highest number of fungal isolates, 31 making up 67.39% compared to tomato plant materials, 15 representing 32.61% of the entire fungal populations obtained in the study (Table 2). Among the isolates collected from plant materials, majority (08) were obtained from leaf samples followed by stem samples (04) and lastly root samples (03), representing 53.30%, 26.67% and 20.00% respectively. Plant and soil samples collected from Buruku LGA yielded the highest number of fungal isolates (16) followed by Ushongo (14), Gboko (10) and lastly Tarka (06).

Members belonging to the Division Deuteromycota were the most occurring with 76.09% frequency of occurence, followed by Ascomycota with 13.04%, and both Oomycota and Basidiomycota with 4.35% respectively. Members of the Zygomycota were the least occurring in the sampled materials having a percentage frequency of occurrence of 2.17 (Fig. 1).

The most represented genus was *Aspergillus* making up 19.57% of the species found followed by *Aureobasidium* constituting 13.04% of the species. The least occurring fungi were those belonging to the genera *Colletotrichum, Scopulariopsis,* and *Mucor* all having 2.17% frequencies of occurrence respectively (Fig. 2).

Table 1. Morphological Characteristics of Fungi Isolated from Infected Tomato Plants and Field Soils in Selected Locations in Benue State, Nigeria.

Cultural Characteristics	Conidia	Phialides	Chlamydospores	Identity
Cottony mycelia, slightly raised circular growth, ranging in colour from whitish, pink, yellow, red to shades of purple.	Macro and micro conidia present	mono and poly phialides present	Present	Fusarium spp.
Slow-growing mycelia in shades of green on PDA, irregular, and slightly raised towards centre.	Elipsoidal conidia in chains	flask-shaped phialides present, consisting of a cylindrical basal part and a distinct neck	Absent	Penicillium spp.
Fast growing circular colonies on PDA, ranging in colour from yellow, yellow-brown, brown to black and shades of green.	Rough walled conidia mostly in long chains and radiate configuration	Mostly flask-shaped phialides present	Absent	<i>Aspergillus</i> spp.
Colonies on PDA are flat, smooth, moist, yeast- like, mucoid to pasty, shiny and leathery in appearance. Surface yellow and turns brown to black with time.	Blastoconidia present	Distinct phialides absent	Absent	Aureobasidium spp.
Fast growing colonies on PDA, pale pink in colour, flat and circular.	Brightly coloured smooth-walled, ovoidal to ellipsoidal conidia arising in chains from inconspicuous conidiophores	Absent	Absent	Chrysonilia spp.

Table 1 (Continued)

Cultural Characteristics	Conidia	Phialides	Chlamydospores	Identity
Circular, woolly or cottony colonies with	Ovoid to oblong, slightly curved or	Cylindrical phialides present	Absent	Colletotrichum spp.
characteristic pale brown or greyish white colour.	dumbbell shaped conidia present			
Whitish circular and flat colony growth on PDA.	Globose oospores present	Absent	Absent	Pythium spp.
Rapidly growing, white, powdery to cottony colonies on PDA which becomes yeast-like or slimy	Conidia arise in chains from fragmentation of hyphae.	Absent	Absent	Geotrichum spp.
Colonies on PDA are flat, smooth, moist, glistening or dull, and cream in colour.	Blastoconidia globose, and ellipsoid to elongate in shape observed	Absent	Absent	Saccharomyces spp.
Colonies on PDA are circular, woolly, whitish in colour, forming scattered blue-green or yellow-green patches of conidia with age.	Smooth-walled conidia, ellipsoidal in shape present	Flask-shaped phialides inflated at the base present	Absent	Trichoderma spp.

Table 1 (Continued)

Cultural Characteristics	Conidia	Phialides	Chlamydospores	Identity
Colonies are irregular, granular to powdery in	Rough-walled, globose conidia	Absent	Absent	Scopulariopsis spp.
texture, whitish but become light brown or buff tan	present			
in time.				
The colony is flat, circular, woolly and covered with	Conidia have both transverse and	Absent	Absent	Alternaria spp.
greyish aerial hyphae.	longitudinal septations			
Colony is fluffy circular raised white and becomes	Sporangiospores are hvaline, grey or	Absent	Present	Mucor spp
grevish brown in time.	brownish, globose to ellipsoidal, and	nosent	resent	mucor spp.
	smooth-walled			
Fan-shaped, rapidly growing, silky-white, slightly	Absent	Absent	Absent	Sclerotium spp.
raised colonies on PDA, producing brownish				
sclerotia with age.				

S/No.	Isolate Code	Name of Organism	Division	Source	Location
1.	UshSL1	Penicillium spp.	Deuteromycota	Soil	Ushongo
2.	UshSL2	Aspergillus spp.	Deuteromycota	Soil	Ushongo
3.	UshSL3	Aspergillus spp.	Deuteromycota	Soil	Ushongo
4.	UshSL4	Aureobasidium spp.	Deuteromycota	Soil	Ushongo
5.	UshSL5	Aspergillus spp.	Deuteromycota	Soil	Ushongo
6.	UshSL6	Aspergillus spp.	Deuteromycota	Soil	Ushongo
7.	UshSL7	Penicillium spp.	Deuteromycota	Soil	Ushongo
8.	UshSL8	Chrysonilia spp.	Deuteromycota	Soil	Ushongo
9.	UshSL9	Fusarium spp.	Deuteromycota	Soil	Ushongo
10.	UshSL10	Colletotrichum spp.	Ascomycota	Soil	Ushongo
11.	UshSL11	Pythium spp.	Oomycota	Soil	Ushongo
12.	UshSL12	Geotrichum spp.	Deuteromycota	Soil	Ushongo
13.	UshSL13	Aspergillus spp.	Deuteromycota	Soil	Ushongo
14.	UshL1	Saccharomyces spp.	Ascomycota	Leaves	Ushongo
15.	TkR1	Trichoderma spp.	Deuteromycota	Roots	Tarka
16.	TkL1	Aureobasidium spp.	Deuteromycota	Leaves	Tarka
17.	TkSL1	Scopulariopsis spp.	Deuteromycota	Soil	Tarka
18.	TkL2	Aspergillus spp.	Deuteromycota	Leaves	Tarka
19.	TkSL3	Saccharomyces spp.	Ascomycota	Soil	Tarka
20.	TkL3	Saccharomyces spp.	Ascomycota	Leaves	Tarka
21.	GbkSL1	Alternaria spp.	Deuteromycota	Soil	Gboko
22.	GbkST1	Alternaria spp.	Deuteromycota	Stem	Gboko
23.	GbkSL2	Penicillium spp.	Deuteromycota	Soil	Gboko
24.	GbkSL3	Alternaria spp.	Deuteromycota	Soil	Gboko
25.	GbkST2	Fusarium spp.	Deuteromycota	Stem	Gboko
26.	GbkR1	Pythium spp.	Oomycota	Root	Gboko
27.	GbkSL4	Aspergillus spp.	Deuteromycota	Soil	Gboko
28.	GbkSL5	Aureobasidium spp.	Deuteromycota	Soil	Gboko
29.	GbkSL6	Mucor spp.	Zygomycota	Soil	Gboko
30.	GbkSL7	Saccharomyces spp.	Ascomycota	Soil	Gboko
31.	BkbR1	Trichoderma spp.	Deuteromycota	Root	Buruku
32.	BkbL1	Chrysonillia spp.	Deuteromycota	Leaf	Buruku
33.	BkbL2	Alternaria spp.	Deuteromycota	Leaf	Buruku
34.	BkbST1	Sclerotium spp.	Basidiomycota	Stem	Buruku
35.	BkbL3	Aureobasidium spp.	Deuteromycota	Leaf	Buruku
36.	BkbSL8	Aureobasidium spp.	Deuteromycota	Soil	Buruku
37.	BkbSL9	Fusarium spp.	Deuteromycota	Soil	Buruku

Table 2. Fungi Associated with Soils and Tomato Plants in Major Tomato Growing LGAs in Benue State Nigeria

38.	BkbST2	Trichoderma spp.	Deuteromycota	Stem	Buruku
39.	BkbSL10	Geotrichum spp.	Deuteromycota	Soil	Buruku
40.	BkbSL11	Aspergillus spp.	Deuteromycota	Soil	Buruku
41.	BkbL4	Aspergillus spp.	Deuteromycota	Leaf	Buruku
42.	BkbSL12	Aureobasidium spp.	Deuteromycota	Soil	Buruku
43.	BkbSL13	Penicillium spp.	Deuteromycota	Soil	Buruku
44.	BkbSL14	Sclerotium spp.	Basidiomycota	Soil	Buruku
45.	BkbSL15	Saccharomyces spp.	Ascomycota	Soil	Buruku
46.	BkbSL16	Alternaria spp.	Deuteromycota	Soil	Buruku

Table 2 (Continued)

g. 1. Relative Frequency of Occurrence of Members of Different Fun Divisions in Sampled Plant and Soil Materials

Fig. 2. Relative Frequency of Occurence of Different Fungi Genera on Sampled Soil and

DISCUSSION

The comparatively higher fungal populations and diversity observed in soil samples as opposed to plant materials reported in the study could be linked to the more heterogenous material composition of soil which supports a more diverse population of fungi as opposed to the relatively more homogenous plant tissues. This is supported by the report of Bollen (1959) who stated that soil is a colloidal complex of organic and inorganic materials more or less saturated with water and supported by mainly mineral grains which serves as a preferred culture medium for a number of microbes. Bruehl (1987) also reported that soils contain large numbers of microorganisms – usually between one and ten million per gram of soil – with bacteria and fungi being the most prevalent. Brady and Weil (2002) also mentioned that fungi comprise the greatest fraction of the soil biomass.

Fungi belonging to the Division Deuteromycota were the most frequently isolated from soil and plant materials in the reported study. Similarly, in a study by Swer et al. (2011) on fungal population and diversity in organically amended agricultural soils of Meghalaya, India, it was also reported that members of the Deuteromycotina were the most occurring of all fungi isolated. The success of members of the Division Deuteromycota in efficient colonization of soil and plant substrates is due in part to their evolved ability to undertake efficient asexual reproduction which ensures their continual multiplication in the absence of compatible mating structures as is the case with other sexually reproducing fungi. This is supported by the report of Muiz (2012), that a possible mechanism that provides an answer to the question of the success of the Deuteromycota in their environment is the parasexual cycle. This is a process in which plasmogamy, karyogamy and haploidization takes place, but not in any particular place in the thallus nor at any specific period during its lifecycle. Lifeofplant (2011) attributed the success of the Deuteromycota in soil colonization to their ability to produce antibiotic substances which inhibit microbial competition by soil bacteria and other fungi.

The comparatively higher occurrence of fungi belonging to the *Aspergillus* genus observed in the study can be attributed to their ease of adaptability and the presence of a wide range of substrates capable of supporting appreciable growth and

reproduction of most member of the genus. DeVries *et al.* (2016) also reported that most *Aspergillus* species are adapted for the degradation of complex plant polymers as well as a diverse range of organic and synthetic substrates. According to Chehri (2013), in addition to growth on carbon sources, many species of *Aspergillus* demonstrate oligotrophy where they are capable of growing in nutrient-depleted environments, or environments with a complete lack of key nutrients.

Buruku had the highest fungal diversity compared to other sampled locations. This could be largely as a result of the high humidity characteristic of Buruku LGA as a result of its proximity to the River Buruku, a prominent river linking to the River Benue. High relative humidity is a requirement for optimum growth and reproduction by most fungi. This is in agreement with works of several researchers (Huber and Gillespie, 1993; Cooke and Whipps, 1993; Harrison *et al.*, 1994; Ibrahim *et al.*, 2011) in which it was stated that high relative humidity and several hours of free surface water are critical for both spore germination, growth and the successful completion of the life cycles of most fungi.

CONCLUSION

The study revealed a comparatively higher fungal population and diversity in soil samples as opposed to plant materials among the different sampled locations. Fungi belonging to the Division Deuteromycota were the most frequently isolated from soil and plant materials. Members of the genus Aspergillus had the highest frequency of occurrence in infected plant tissues and field soils compared to other fungi genera. Majority of fungi observed in this study belonged to economically important genera and could play important roles in determining tomato crop health and productivity in the study area. Species identification through molecular characterization and determination of the pathogenicity of the isolated fungi are required for in-depth understanding of the role played by members of the studied fungi genera in the pathogenesis of the tomato crop in Benue State and other tomato growing locations in Nigeria and beyond.

REFERENCES

Bem, A.A. (2009). Incidence of Major Fungal Diseases of Tomato (*Lycopersiconesculentum L.*) and their Evaluation in some Tomato Growing Areas of Benue State, Nigeria. Ph.D.

Terna et al

Bjarnadottir, A. (2019). Tomatoes 101: Nutrition, Facts, andHealthBenefits.Availableonlineat:https://www.healthline.com/nutrition/foods/tomatoes.Accessed on: 21/6/2019.

Bollen, W.B. (1959). Microorganisms and Soil Fertility. Oregon: CORVALLIS. Pp.6.

Brady, N.C., and Weil, R.R. (2002). The nature and properties of soils, 13th Editionn. Upper Saddle River, NJ: Prentice Hall. 960pp.

Bruehl, G.W. (1987) Soilborne Plant Pathogens. New York: Macmillan Publishing Company.368Pp.

Chehri, J. (2013). Factors affecting the growth of biomass of *Aspergillus niger. Medical Sciences and Public Health*, 1(1): 1-5.

Cobley, L. S., and Steele, W.M. (1976). An introduction to the Botany of Tropical Crops. London: Longman Groups Limited. 371Pp.

Cooke, R.C., and Whipps, J.M. (1993). Ecophysiology of Fungi.Oxford: Blackwell Scientific Publications. Pp. 1-348.

Cox, S. (2000). I say Tomyto, you say Tomahto. Available Online at:http://lamar.colostate.edu/~samcox/Tomato.html. Accessed on: 1/7/2017.

De Vries, P., Gelber, I.B., and Andersen, M.R. (2016). *Aspergillus* and *Penicillium* in the Post-Genomic Era. The Netherlands: Caister Academic Press. Pp.1-206.

Eurofresh Distribution (2016). Around the world: Tomatoes. Available Online at:<u>http://www.eurofresh</u> <u>distribution.com/news/around-world-tomatoes</u> Accessed on: 26/6/2017.

Feet, M. (2001). Sustainable Practices for vegetable Production in the South. Available Online at: http://wwwCalsNCSU.edu/sustenable/Feet/Profile/C19tom.ht ml. Accessed on: 30/7/2017.

Harrison, J.G., Lowe, R., and Williams, N.A. (1994). Humidity and fungal diseases of plants – problems. In J.P. Blakeman and B. Williamson (Eds), *Ecology of plant pathogens* (Pp.79-97). Wallingford: CAB International.

Huber, L., and Gillespie, T.J. (1993). Modeling leaf wetness in relation to plant diseaseepidemiology. *Annual Review of Phytopathology*, 30: 553-577.

Ibrahim, M., Rabah, A.B., Liman, B., and Ibrahim, N.T. (2011). Effect of Temperature and Relative Humidity on the Growth of Helminthosporiumfulvum. Nigerian Journal of Basic and Applied Science, 19(1):127-129.

Kim, K. Y., Jordan, D., and McDonald, G. A. (1998a). Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. *Biology and Fertility of Soils*, 26(2): 79-87.

Koike, S.T., Cladders, P., and Paulus, A.O. (2007). Vegetable Diseases, A Color Handbook.Burlington, MA, USA: Academic Press. 448Pp.

Lifeofplant (2011). Plant Life: Deuteromycetes. Available Online at: http://lifeofplant.blogspot.com.ng/2011/04/deuteromycetes.htm I. Accessed on: 4/7/2017.

Muiz, D.E. (2012). Parasexual Cycle in Deuteromycota. Available Online at: http://www.uobabylon.edu.iq/uobcoleges/lecture.aspx?fid=5&l cid=31937. Accessed on: 1/7/2017.

Ncube, L., Nyari, Nyari, P., Mnkeni, S., and Brutsch, M.O. (2011). Agronomic suitability of effective microorganisms for tomato production. *African Journal of Agricultural Research*, 6(3): 650-654.

Omolaran, B. B., Habib, U., Odunayo, O.J., Opeyemi. A.S., Alafe, A.H., and Temilade, O.A. (2016).

Microorganisms causing post-harvest tomato (Solanum lycopersicum L.) fruit decay in Nigeria. *Journal of Entomology and Zoology Studies*, 4(1): 374-377.

Ososanya, J. (2018). Facts about Benue State and their languages. Available online at: https://www.legit.ng/1164560-facts-benue-state-languages.html. Accessed on: 22/06/2019.

Pandey, R.R., Arora, D.K., and Dubey, R.C. (1993). Antagonistic Interacterion Between Fungal Pathogens and Phylloplane Fungi of Guava. *Mycopathology*, 124: 31-39.

Raid, R. (2011). Plant Pathology Guidelines for Master Gardeners. University of Florida: Everglades Education and Research Centre. Available Online at: http://erec.ifas.ufl.edu/plant_pathology_guidelines/module_02.shtml. Accessed on: 26/6/2017.

Rick, C.M, Verna, J.W, Cherelat, R.T. (1990). Experimental Introgression to Cultivated tomato from related Wild Night Shades In A.B. Bennett and S.D.O. Neil (Eds), *Horticulture Biotechnology*. New York. Pp.19 – 32.

Rovira, A. D. (1963). Microbial inoculation of plants. Part I. Establishment of freeliving nitrogen fixing bacteria in the

rhizosphere and their effects on maize, tomato, and wheat. *Plant and Soil*, 19(1): 304-314.

soils of Meghalaya, India. *Journal of Organic Systems*, 6(2): 3-11.

Samson, R.A., Houbraken, J., Thrane, U., Frisvad, J.C., and Adersen, B. (2010). Food and indoor fungi. The Netherlands: CBS-KNAW Fungal Biodiversity Centre. Pp.1-360.

Sustainable Agriculture Research and Education (2012). Soil Microorganisms. Available Online at:https://www.sare.org/Learning-Center/Books/Building-Soils-for-Better-Crops-3rd- Edition/Text-Version/The-

Living-Soil/Soil-Microorganisms. Accessed on: 22/06/2019.

Swer, H., Dkhar, M. S., and Kayang, H. (2011). Fungal population and diversity in organically amended agricultural

Terna, T.P., Okogbaa, J.I., Waya, J.I., Paul-Terna, F.C., Yusuf, S.O., Emmanuel, N.Y., and Simon, A. (2015). Response of Different Mango and Tomato Varieties to Post-Harvest Fungal Fruit Rot in Lafia, Nassarawa State, Nigeria. *IOSR Journal of Environmental Science, Toxicology and Food Technology*, 9(12): 106-109.

Uja, E. (2013). Benue: Nation's draining food basket. Available Online at: https://thenationonlineng.net/benue-nations-drainingfood-basket/. Accessed on:22/06/2019.