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ABSTRACT  

The existing diagnostic measures for heteroscedasticity incorrectly detect heteroscedasticity in the presence of 

outlying observations; usually high leverage points (HLPs). The classical White’s Test (WT) is the most 

commonly used diagnostic method for heteroscedasticity in linear regression. The WT does not depend on 

either normality or prior knowledge of the source of heteroscedasticity. The shortcoming of WT is that in the 

presence of HLPs it incorrectly detects heteroscedasticity in a data set. In this paper, a Robust White’s Test 

(RWT) has been proposed which is capable of detecting heteroscedasticity in the presence of HLPs. The results 

based on Monte Carlo simulation study and real data examples show that the proposed RWT correctly detect 

heteroscedasticity in the presence of HLPs.  
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INTRODUCTION  

The existence of atypical observations which often referred to 

as outliers is inevitable in real data sets (Hampel et al., 1986). 

Rousseeuw and Van Zomeren (1990) classified outliers into 

high leverage points (HLPs) and vertical outliers (VOs). 

Presence of anomalous observations especially HLPs in a data 

set invalidate classical statistical inference (Hampel et al., 

1986). The Ordinary Least Squares (OLS) is inefficient and 

produce unreliable estimates even when a single outlying 

observation is added or present in a data set. Hampel et al. 

(1986) claimed that a routine data set typically contains about 

1–10% outliers and even the highest quality data set cannot be 

guaranteed to be free of outliers. 

Outlying observations are usually responsible for causing 

heteroscedasticity. Heteroscedasticity occurs when the residual 

variances of a linear regression model are not constant.  In the 

presence of heteroscedasticity the OLS is still unbiased, but it 

estimates become inefficient and will not provide reliable 

inference due to the inconsistency of the variance-covariance 

matrix. In the literature, many diagnostic plots for 

heteroscedasticity are now available (Ryan, 1997; Montgomery 

et al., 2001; Draper and Smith, 2003; Chatterjee and Hadi, 2006; 

Imon, 2009). Nonetheless, the graphical methods are very 

subjective. Analytical methods are more effective in detecting 

the problem of heteroscedasticity. 

 

Several procedures for testing the heteroscedasticity are 

available in the literature (Goldfeld and Quandt, 1965; Breusch 

and Pagan, 1980; White, 1980; Cook and Weisberg, 1983; 

Muller and Zhao, 1995; Diblasi and Bowman, 1997; Cai, et al., 

1998). However, most of these tests depend on normality 

assumption and/or require prior knowledge of what might be the 

cause of the heteroscedasticity. The White’s test (WT) does not 

depend on either normality or prior knowledge of the source of 

heteroscedasticity. The shortcoming of WT is that in the 

presence of outlying observations; usually high leverage points 

(HLPs) it incorrectly detect heteroscedasticity. HLPs here mean 

outlying observations in X-direction.  

In this paper, we proposed a Robust White Test (RWT) by 

replacing some components of the WT which are very sensitive 

to outlying observations by robust alternative to form RWT. The 

RWT is expected to correctly detect heteroscedasticity in 

presence of HLPs. 

 

MATERIALS AND METHODS  

The White’s Test (WT) of White (1980) follows a Chi-square 

distribution with p degree of freedom and requires two times of 

minimizing sum of squares residual by using OLS. Firstly, when 

obtaining the residual of the original regression and secondly 

when regressing the squared residuals in the auxiliary 

regression. The OLS has been reported to have been very 

sensitive and easily affected by outlying observations. To 

remedy these problems, we replaced the OLS of the original 

regression with MM-estimates developed by Yohai (1978) 

which has 50% break down point and 95% efficiency relative to 

OLS under Gauss-Markov assumptions. The OLS in the 

auxiliary regression was also replaced by a weighted least 

squares (WLS) based on GM-FIID weighting method of Sani 

(2018). 

 

The algorithm of the proposed RWT is summarized as follows: 
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Step 1: Estimate the regression coefficients using MM-

estimator and obtain the residuals (𝑟𝑖) 

 

Step 2: Obtain the auxiliary regression by regressing the 

squared residuals (𝑟𝑖
2) obtained in Step 1 against the 

original regressors along with their squares and cross 

product terms using WLS based on GM-FIID 

weighting function. 

 

Step 3: Obtain the coefficient of determination 𝑅𝑅
2  from the 

auxiliary regression, given by:  

 

𝑅𝑅
2 =

𝑆𝑆𝑅𝑅
𝑆𝑆𝐸𝑅 + 𝑆𝑆𝑅𝑅

 

 

where, 𝑆𝑆𝑅𝑅 is the sum of squares regression and 

𝑆𝑆𝐸𝑅 is the sum of squares errors of the auxiliary 

regression. 

 

Step 4: Reject the null hypothesis (H0) that the residual 

variances are constant if  𝑛𝑅𝑅
2 > 𝜒(𝑝,0.05)

2 , where p is 

the number of regressors in the auxiliary regression 

and n is the sample size. 

 

The distribution of the Lagrange Multiplier statistics of RWT 

(𝑛𝑅𝑅
2) is intractable. However, we anticipated that it’s 

approximately follows Chi-square distribution with p degree of 

freedom (df). It is very important to show that the distribution of 

RWT statistic has similar distribution as the WT statistic.  This 

is an important property for RWT statistic to make it comparable 

with the WT test in detecting the heteroscedasticity of a data set. 

 

Distribution of RWT Statistic: The Lagrange Multiplier of WT 

and RWT can be specified as 𝑛𝑅2 and 𝑛𝑅𝑅
2 , respectively. To 

verify the distribution of the Lagrange Multiplier of RWT 

(𝑛𝑅𝑅
2). Consider a linear regression with three independent 

variables. 

 

  𝑦 = 1 + 𝑥1 + 2𝑥2 + 3𝑥3 + 𝑒   (1) 

where, y is the response variable, 𝑥𝑗 , 𝑗 = 1,2,3 are the 

independent variables generated from standard normal 

distribution and 𝑒𝑖~𝑁(0, 𝜎𝑖
2) with 𝜎𝑖

2 = √2𝑋2 where 𝑖 =

1,2,3,… , 𝑛. (Draper and Smith 2003).  1000 data points were 

generated for the sample sizes 𝑛 = 50, 100, 200, 300 and 500. 

The Lagrange Multiplier of WT and RWT are computed for 

each sample size. The distribution for the comparison will be 

Chi-square distribution with 10 degree of freedom (df) since our 

Lagrange Multiplier of WT and RWT has p = 10 (number of 

regressors in the auxiliary regression). The distribution of RWT 

has been verified using mean and variance, Cramer-von Mises 

one sample test (Choulakian et al., 1994) and Anderson-Darling 

test (Rahman et al., 2006). 

 

Monte Carlo simulation: An experiment has been conducted to 

investigate the effect of HLPs on heteroscedasticity detection; 

we generate a homoscedastic data with three independent 

variables as, 

 

 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝜀𝑖                                  (2) 

 

where y is the response variable, X is the (n x 3) vector of 

explanatory variables. In this simulation study, all the values of 

X and the random errors (𝜀) were generated from standard 

normal distributions. The Y values are obtained from Equation 

(2). The HLPs contamination were created by random 

replacement of a certain percentage of regular observations by a 

values generated from normal distribution N(10,1) for both X 

and y at 5% and 10% HLPs contamination. We run this 

simulation experiment for six different sample sizes n = 20, 50, 

100, 150, 200 and 250. To measure the effect of HLPs on 

heteroscedasticity detection, we calculate the p-value of the 

Lagrange Multiplier for WT and RWT with different sample 

size and contamination level. We set the level of significance to 

be 0.05. Subsequently, the average value of LM and p-value is 

recorded. Results are presented in Table 4 which is based on the 

average of 2,000 replications. 

 

The p-value is the probability of obtaining a test statistic at least 

as extreme as the one we observed from the sample, if the null 

hypothesis were true. For a Chi-square distribution the p-value 

is obtained by R package using the following formula, 

 

𝑃𝑣𝑎𝑙𝑢𝑒 = 1 − 𝑝𝑐ℎ𝑖𝑠𝑞(𝐿𝑀, 𝑑𝑓)   (3) 

where LM and df are the Lagrange Multiplier and degree of 

freedom, respectively. 

 

Numerical Example1: Education Expenditure Data 

This data set is taken from Chatterjee and Hadi (2006). It 

contains 50 observations with three explanatory variables. 

Moreover, it has been identified using FIID that observation 49 

Alaska(AK) is high leverage points (HLP). The classical and 

proposed robust White tests were applied to this data set. The 

result is presented in Table 5. 

 

Numerical Example2: Housing Expenditure data 

This data is given by Pindyck and Rubinfeld (1997). It contains 

20 observations that give housing expenditure for four different 

income groups. As expected, people with higher income have 

relatively more variation in their expenditures on housing. Two 

HLPs (observation 16 and 17) were identified as HLPs using 

FIID. We removed these 2 HLPs as shown in Table 6 and apply 

WT and RWT to investigate the heteroscedasticity.  

 

RESULTS AND DISCUSSION 

This section presents the results and discussion of the analysis 

of this paper.  
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Table 1: Mean and Variance of WT and RWT Statistic 

 

Table 1 shows the computed mean and variance of WT and RWT statistics for the different sample sizes considered. The mean and 

variance of both WT and RWT are fairly closed to the mean (≈ 10) and variance (≈ 20) of the Chi-squares distribution with 10 df. 

 

Table 2: Cramer-von Mises One Sample Test for Testing the Distribution of WT and RWT Statistics 

 

Test 

Cramèr-von Mises Samples 

n=50 n=100 n=200 n=300 n=500 

WT 
T  0.0944 0.1030 0.0839 0.1493 0.0984 

p-values 0.1244 0.0944 0.1732 0.0617 0.1279 

RWT 
T 0.0409 0.0939 0.0391 0.0698 0.0975 

p-values 0.6465 0.1266 0.6803 0.2672 0.2306 

 

 

Table 3: Anderson-Darling Test for Testing the Distribution of WT and RWT Statistics 

 

 

Table 2 and 3 shows the result of Cramer-von Mises and Anderson-Darling test of no difference between WT and RWT statistic 

following Chi-square distribution with 10 df. It is very interesting to see that all the p-values are greater than 0.05 significance level 

for all the sample sizes considered. This finding shows that WT and RWT statistic are following Chi-square distribution with 10 

degree of freedom.  

 

Table 4: Average Lagrange Multiplier (LM) for WT and RWT in a simulated Homoscedastic Data 

 

Samples 

 

Contamination Levels 

WT RWT 

LM 

(18.307 ) 

p-value 

(0.05) 

LM 

(18.307 ) 

p-value 

(0.05) 

 

n = 20 

Without BLPs 5.5423 0.0849 5.2900 0.1905 

5%  BLPs 21.7264 0.0130 5.6196 0.1302 

10%  BLPs 20.1148 0.0174 6.3921 0.1971 

 

n = 50 

Without BLPs 6.7743 0.06540 5.7681 0.1482 

5%  BLPs 19.0929 0.0111 6.0550 0.2933 

10%  BLPs 18.8878 0.0226 6.7342 0.1157 

 

n = 100 

Without BLPs 6.6951 0.1174 5.4209 0.1890 

5%  BLPs 18.7821 0.0230 5.8611 0.1730 

10%  BLPs 21.4894 0.0169 6.5379 0.1897 

 

n =150 

Without BLPs 6.8358 0.1012 5.4441 0.1886 

5%  BLPs 23.7780 0.0216 5.9235 0.3409 

10%  BLPs 25.4055 0.0079 6.4090 0.5163 

 

Tests 

 

Values 

Samples 

n=50 n=100 n=200 n=300 n=500 

 

WT 

Mean 10.1774 10.1406 10.0671 10.0802 10.0738 

Variance 20.4105 20.3231 20.1052 20.1721 20.1094 

 

RWT 

Mean 9.8980 10.2064 10.1988 9.9213 10.1038 

Variance 20.1154 20.1663 20.1340 20.0930 20.1108 

 

Test 

Anderson-

Darling 

Samples 

n=50 n=100 n=200 n=300 n=500 

WT  
𝐴2 0.0872 0.0944 0.1030 0.0839 0.1493 

p-values 0.1797 0.1244 0.0944 0.1732 0.0217 

RWT 
𝐴2 0.0871 0.0409 0.0939 0.0391 0.0698 

p-values 0.1793 0.6465 0.1266 0.6803 0.2672 
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n = 200 

Without BLPs 6.9337 0.1735 5.4810 0.3282 

5%  BLPs 26.6135 0.0011 5.7335 0.4605 

10%  BLPs 24.0140 0.0312 6.3793 0.3496 

 

n = 250 

Without BLPs 6.9336 0.5517 5.4333 0.4147 

5%  BLPs 31.0287 9.99e-16 5.9703 0.0955 

10%  BLPs 27.2550 1.16e-07 6.2696 0.4573 

 

Table 4 shows that in the absence of HLPs, both WT and RWT indicate that the variances of the errors are homoscedastic since all 

the p-values are greater than 𝛼 = 0.05. Looking at 5% and 10% HLPs contamination for all sample sizes considered, the WT shows 

presence heteroscedasticity (𝑝 < 0.05) and RWT still shows the data is homoscedastic. This implies that, with 5% and 10% of 

HLPs contamination, the WT cannot correctly detect heteroscedasticity in a data set. 

 

Table 2: Heteroscedasticity Diagnostics for Education Expenditure Data 

 

Tests 

WT RWT 

LM = nR2 

(18.307) 

p-values 

(0.05) 

LM = nR2 

(18.307) 

p-values 

(0.05) 

Without AK(HLP) 5.7978 0.1219 5.2922 0.1516 

With AK(HLP) 22.7817 4.48e-05 5.4339 0.1426 

 

Table 6: Heteroscedasticity Diagnostics for Housing Expenditure Data 

 

Tests 

WT RWT 

LM = nR2 

(3.841) 

p-values 

(0.05) 

LM = nR2 

(3.841) 

p-values 

(0.05) 

Without 2 HLPs 3.1454 0.0761 3.0705 0.0797 

With  2 HLPs 7.1892 0.0073 3.7557 0.0664 

 

It can be observed that in the absence of HLPs in both Table 5 and 6 the data is homoscedastic. However, the classical WT indicates 

heteroscedasticity in the presence of HLPs and RWT still shows homoscedasticity which clearly indicates its robustness against 

the effect HLPs.  

 

CONCLUSION 

This paper provides a robust method for the detection of 

heteroscedasticity in linear regression. The existing method 

(White’s Test) fail to correctly detect heteroscedasticity in the 

presence of high leverage points (HLPs). Therefore, a Robust 

White’s Test (RWT) to detect the presence of heteroscedasticity 

in the presence of HLPs has been proposed. A Monte carlo 

simulation study and real data examples were used to evaluate 

the performance of the proposed (RWT) method. The results 

based on the numerical examples and simulation study signifies 

that the RWT is resistance to the effect of HLPs. 
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