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ABSTRACT 

The transient population dynamics is the short-term behaviour of the population structure or the response of a 

model to changes in its parameters. This paper investigates transient sensitivity analysis of a density dependent 

mathematical model of a weed species for the purpose of short- term weed control plans as an alternative to 

sensitivity analyses of the steady-state equilibrium that rely on long-terms dynamics of the weed population. 

The analysis’ result shows that the transient population growth is more sensitive to seedling survival (e) than 

germination rate ( 1g ). Hence, weed population control could be targeted at seed germination and seedling 

stages of the weed growth for effective control plan.  
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INTRODUCTION 

The transient population dynamics which is the short-term 

behaviour can differ in important ways from asymptotic 

dynamics, the long-term behaviour. It has long been recognized 

that a focus on the population growth rate alone can obscure 

these important transient effects (Caswell, 2007). Transient 

population growth rates and eventual population sizes differ 

sufficiently from asymptotic expectations (Dong et al., 2013). 

Hence, Transient dynamics is a growing concern in population 

biology.  This concern led to the development of a perturbation 

analysis of transient densities by Fox and Gurevitch (2000). The 

perturbation analysis of transient dynamics can reveal the 

determinants of short-term patterns (behaviours), just as 

perturbation analysis of (sensitivity and elasticity) of the 

asymptotic growth rate and steady state population density 

growth  reveals the effects of the parameters (vital rates) on 

long-term growth. 

Asymptotic dynamics always assume that environmental 

conditions will remain the same for a very long time, but this is 

often not the case, populations experience disturbances which 

either perturb the population structure or the parameters of the 

model. 

Transient sensitivity analyses describe how parameters affect 

the transient (short-time) dynamics and can thus be used in 

management scenarios. Besides, it provides information more 

applicable in control compare to the long-time behaviour 

associated with eigenvalue sensitivity analyses (Burch et al., 

2011). Transient dynamics can take place if a stage structured 

population is not at the steady stage distribution, that is, when 

the relative magnitude of life history stages has not reached 

stable values (Tenhumberg et al., 2010). The transient analysis 

aims to understand the short-term dynamics exhibited following 

a disturbance which perturbs the population structure away from 

stable stage distribution. The steady state-type sensitivity 

analysis we carried out in the last section described how 

parameters affect the steady-state behaviour, but we are likely 

more interested in the behaviour soon before the steady-state for 

the purpose of control of annual weeds density (which we do not 

want to reach steady-state).   

The Parameterized Model Equation 

In this paper, we examine a stage structured population model 

for the abundant densities of seeds (𝑛1 ,𝑡), established seedlings 

(𝑛2 ,𝑡) and mature-weeds (𝑛3 ,𝑡) described by Nasir et al (2015), 

given by the following system of difference equations: 

ttttt nngbdnngdn ,3,21,1,211,1 ))(1())(1( 
      (1) 

ttttt nnbedgnnedgn ,3,22,1,211,2 )()( 
       (2) 

ttt nnmn ,2,21,3 )(
          (3) 
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Biologically, any of the parameters meg i ,,  and b may 

experience density-dependence due to resource limitation (such 

as space, nutrient, water and light). The Beaverton-Holt density-

dependence function type in (Alsharawi and Rhouma, 2010) is 

adopted for the functions )( ,2 ti ng  and )
,2

(
t

nm  due to the 

assumption that seedling recruitment and the established 

seedling growth to mature weed are density dependent and there 

is competition among the weed for the available micro site. 

Thus;  

 

igng ti )( ,2
          (4) 

mnm t )( ,2           (5) 

 Where    

tn ,21

1





  

Substituting (4) and (5) into (1) – (3) gives a density–dependence stage-structured model for non-homogeneous population density 

of an annual weed, thus 

    ttt ngbdngdn ,32,111,1 11         (6) 

ttt ngbdengden ,32,111,2  
       (7) 

tt mnn ,21,3            (8) 

The system of difference equations (6) – (8) is a density–dependence stage-structured model for non-homogeneous population 

density of an annual weed.  

Where 

𝒏𝟏,𝒕  Density of seeds in the seed bank 

𝒏𝟐,𝒕 Density of the established seedling 

𝒏𝟑,𝒕 Density of mature weeds 

ig    The maximum value of  )( ,2 ti ng at a low density of established seedling )( ,2 tn . 

d  Fraction of dormant seeds surviving in the seed bank  

2g  Fraction of viable new (fresh) seeds germination within the growing season                                         1g  Fraction 

of seeds older than one year germination out of the seed bank.   

e  Fraction of germinated seeds that become established seedlings  

m  Fraction of the established seedlings that survive to mature weeds 

b Average number of seeds produced by the mature weed per unit area. 

  Intra-specific coefficient of the established seedling 

The variables units are density per unit area. 

Note: Mature weed density is not consider to be density–dependence, because after seed production they will die been monocarpic 

annual weed. 

Transient Dynamic Analysis  

In order to investigate the transient dynamic of the model 

equations (6) – (8) for weed population density, the matrix 

calculus approach in Caswell (2008) is employed to carry out 

the transient sensitivity analysis for the model. To study the 

sensitivity of each parameter in the population growth model, 

the model equation is differentiated partially with respect to 

each identified vital parameter in the model. Since the state 

variables and parameters of a given population model may take 

on a wide range of values, it is imperative to evaluate how these 

parameters influence the population (Omony, 2014). 

 

The model equations (6) – (8) is stated in the form of matrix equation thus; 

 ttt n nPn ),(1            (9) 
 

Where   Ttttt nnn 1,31,21,11  n  ,  ),( ,3,2,,1, tttti nnnn  and 
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Differentiating both sides of the matrix equation (9) (instead of its steady-state solution), multiplying by 3I  (identity matrix), 

applying the vec operator and chain rule to gives; 

T

ttT

t

tT

t d
d

d

d

d
nnPI

n
nP

n
),(),( 3

1 






 

T

T
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t
t

d

dvec

d

d




P
In

n
nP )(),( 3       (10) 

But Pdvec in (10) include both direct effects of   and indirect effects of tn on the dynamics of (9), so 

T

t

TTT d

dvecvec

d

dvec



n

n

PPP
.









         (11) 

Substituting (11) into (10) gives 

T
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)(),( 33
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  (12) 

Rearranging the terms gives the transient sensitivity as 

T

tT

T

t

T

tT

tT

t vec

d

dvec

d

d






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
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)(
),(

)(),( 33

1 nP
In

n

n

nP
InnP

n
   (13)  

In other to solve equation (13) we obtained the derivatives of ),( tnP  with respect to the parameters 
Tmebgg )( 21

and to the densities ),( ,3,2,,1, tttti nnnn  and substituting these derivatives into equation (13) give the transient sensitivities of 

our model. 

Express tn  as in (9) and find 
Td

td



n
 by taking the differential of both sides applying both Roth’s theorem and chain rule to 

obtain (14) after the rearrangement.   

T

tT

tT

tT

tT

t vecvec

d

d





 








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


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
),(

)(
),(

)( 3

1

33

nP
In

n

nP
InPI

n
   (14) 

Using (9a)  to obtain
T

tvec







 ),( nP
 and 

T

tvec

n

nP



 ),(
, thus 
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And  
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Putting (15). (16).  ti ,n  and ),( nP in (14) and simplified to obtain 
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where,  
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Simplifying (13) subsequently, gives 
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Then substituting (17) into (19), and after several algebraic calculation and rearrangement, it gives 
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We consider an initial population of dormant seeds; T)001(0 n
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Substituting ijR  and the initial population density  
Tn )001(0   into (20), gives 
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Equation (21) gives the transient sensitivity of weed population density to perturbation in the vital parameters. Compactly written 

as 
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Each column of (22) indicates changing rate of the 1tn  to each 

of the parameter  . Thus, transient weed population density is 

susceptible to alteration in established seedling survival (e) and 

recruitment rate from the seed bank (
1

g ) than any other 

parameter. However, the transient population growth is more 

sensitive to seedling survival (e) than germination rate 

(recruitment) (
1

g ), since 1124 rr  .  Sensitivity of the 

transient population to establish seedling implies that whenever, 

the seedling population is disturbed by cutting or fire, this 

creates micro-site space for more seeds to germinate from the 

seed bank, which create unstable population system as response 

of weed population to disturbances. This result is contrary to that 

obtained in Nasir et al (2015), that, equilibrium population 

density of a weed is susceptible to maturation rate (m) and 

seedling survival rate (e), 

 

CONCLUSION 

Transient dynamics of a weed population was examined by 

carrying out the sensitivity analysis on a parameterized model 

of the transient population growth to changes in the identified 

parameters for the purpose of short-term weed control plans. 

Besides, it articulates the responses of the weed population to 

disturbance through mowing. From the analysis of this model, 

the transient population growth is more sensitive to seedling 

survival (e) than germination rate ( 1g ). Hence, weed 

population control could be targeted at these two stages of the 

weed growth, which are seed germination and seedling. 

However, further research work is going on in the area of 

transient elasticity and its application to some weeds species  
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