
 AN EXPERIMENTAL STACK….. Agaji, Mikailu, & Kile FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 1, March, 2019, pp 49 - 55
49

AN EXPERIMENTAL STACK ATTACKS DETECTION AND RECOVERY FRAMEWORK USING AGENTS,

CHECKPOINTS AND ROLLBACK

1Agaji, I., 1Mikailu, H. & 2Kile A. S.

1Department of Mathematics/Statistics/Computer Science, Federal University of Agriculture, Makurdi, Nigeria
2 Department of Computer Engineering, University of Maiduguri, Maiduguri, Nigeria

Correspondence Author’s Email: ior.agaji@uam.edu.ng & sasemiks@gmail.com

ABSTRACT

Stack based attacks are on the increase. This work generally studied stack-based vulnerabilities and attacks and

focused on attacks which employ the modification of return addresses used by control stacks. A control stack

keeps track of the point in which a function returns control to after its execution. We proposed a framework

that mitigates control stack attacks which utilizes kernel-controlled agent, checkpoints and rollback

mechanisms. In the framework once a function is called the same return address (RA) is pushed to the control

stack and also passed to the kernel-controlled agent. When a function call terminates the RA in the control

stack is popped and passed to the kernel protected agent for comparison and if there is any disparity in the

values of the RAs then there is an attack. In such cases the kernel protected agent directs execution of the

process to stack at the latest checkpoint. The framework was implemented using Java Netbeans 7.2.1.

Experimental results of the framework indicated successful detection of attacks and rollbacks in case of the

attacks. Rollback indicated recovery from the attacks.

Keywords: Checkpoints, Rollback, Kernel protected agent, Control stack, Stack smashing attacks

INTRODUCTION

Most today’s Operating Systems utilize stacks in their

operations. A stack holds immediate results of an operation or

data that is waiting processing. A stack has a capacity and data

received beyond its capacity is corrupted. Recently there has

been increased stack smashing attacks using various

approaches. While some attackers concentrate on introducing

too much data than the capacity of the stack can hold, others

focus on modifying the return address of functions and

redirecting the address to their own code. Siberman and Johnson

(2004) explored two approaches for applying a generic

protection against buffer overflow attacks. With increased

utilization of computers and internet in work places and the

development of e-commerce, there has been growing concern

over stack smashing issues which usually lead to huge loss in

terms of revenue to organizations

LITERATURE REVIEW

There has been growing research in stacks mitigation attacks.

This has led to the development of countermeasures against

these attacks. In this section a review of the various methods

adopted against such attacks and their shortcomings will be

explored.

Murugan and Alagarsamy (2011) suggested many ways of

detecting buffer overflows. These include entering extra data

than asked for by a program that accepts input, entering

malformed data for a program that accepts data in a standard

format and the use of data block larger than the one specified in

the size field. They further suggested a perfect coding style that

would eliminate unchecked buffers which will eliminate buffer

overflows

Patil and Chavan (2017) presented a systematic study on ways

to make a browser secure. They listed attacks on a browser to

include buffer overflow, browser cache poisoning, man-in-

middle, session hijacking and clickjacking. They suggested

many prevention measures against these attacks. These

measures included the modification in the stack-allocated data

and use of canary values for buffer overflow attacks, the use of

input validation techniques that ensures correct entry of data,

use of strong session ID to avoid hijacked sessions and use of

frame busting defense against clickjacking. They further

suggested the use of web browsers with electrolysis and

sandboxing feature which restrict access to file systems.

Mirdula and Manivannan (2013) discussed commonly occurring

online attacks in web applications. These attacks included

phishing and pharming, IP spoofing, non-binding spoofing,

binding spoofing, SQLinjection and cross cite scripting. They

used a tool called BACKTRACK for checking SQL injection.

Their method for performing attacks test using BACKTRACK

involved gathering of information, carrying out vulnerability

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 3 No. 1, March, 2019, pp 49 - 55

mailto:ior.agaji@uam.edu.ng
mailto:sasemiks@gmail.com

 AN EXPERIMENTAL STACK….. Agaji, Mikailu, & Kile FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 1, March, 2019, pp 49 - 55
50

assessment, carrying out target assessment and maintenance and

finally carrying out track clearance. They demonstrated how to

use BACKTRACK to prevent SQL injection

Francillon et al (2009) presented a control flow enforcement

known as Instruction Based Memory Access Control (IBMAC)

which prevented low cost embedded systems against

manipulation of the control of flow and accidental stack

overflow. Their system divided the stack into two, that is, the

data and return stack and these sections grow in opposite

directions. The return section of the stack was used to store the

control flow information while the data section was used to store

regular data. This was achieved by a simple hardware

modification to carry out the division. Their system did not

totally prevent modification and control of information but

makes it more cumbersome since control flow data was not

close to stack allocated buffer. Their system was implemented

as a modification of an existing simulator and also on a soft core

on a field programmable gate array(FPGA)

Sahel et al (2013) proposed a software-based solution for stack-

based vulnerabilities and attacks. Their solution created a

random number of return addresses and stored them in random

locations. In their method when a pointer was used all stored

copies of the return addresses were read and compared. This

successfully mitigated the attacks since it was difficult for an

attacker to know all the locations where the return addresses

were stored so as to modify all of them simultaneously. Their

method proved good for mitigation of stack attacks, however, a

lot of time was spent on comparison in order to ascertain if the

return addresses stored in multiple locations were the same.

Sharazi and Kalaji (2010) applied information theory measures

like entropy and mutual information and ranked 41 connection

features according to their attack class after normalization. The

connection features were ranked according to their importance

in detecting attacks. They also designed network traffic linear

classifiers based on Genetic algorithm which were trained using

KDD99 data set. These classifiers were utilized in building a

detection engine whose experimental results showed a detection

rate of up to 92.94%

Mansour and Amir (2010) investigated the performance of rule

extracting module from a dynamic cell structure (DCS) neural

network in intrusion detection applications and compared it with

fast multilayer perceptron (MLP)-based intrusion detection

which utilized Output Weight Optimization – Hidden Weight

Optimization (OWO-HWO) and selected 25 input features.

They used a modified version of the LERX algorithm for rule

extraction from DCS, the detection rate of their model was

higher and the cost per example was lower than other models

Vadirelmurugan and Alagarsamy (2013) classified buffer

overflow attacks into first generation, second generation and

third generation. According to their classification first

generation attacks focused on stack smashing, second

generation focused on heap overflow and third generation

involved format string attacks crashing the program printf.

Printf is an in-built function in C used to print or display output

on the screen. They suggested tools to prevent buffer overflow

vulnerability which included Address space randomization,

canaries, deep packet inspection, executable space protection

and pointer protection

Alam et al (2010) presented different buffer overflow

techniques exploited and methods used to mitigate them. The

buffer overrun methods discussed in their work included arch

injection which is used to invoke a number of functions

including chain functions in sequence with arguments supplied

by them. They also discussed heap smashing which overruns a

heap buffer to change the control flow of a program which could

overwrite function pointers stored on the heap thereby

redirecting the control flow. They discussed various mitigating

techniques such as StackGuard, protection of function pointers

and use of high quality code

Leon and Bruda (2016) discussed buffer overflows attacks in

GNU/Linux OS. Their proposed solution worked using ptrace

system call as the main engine. Ptrace is a tool built in

GNU/Linux that allowed for the interception of certain

resources during process execution for analysis. Their method

has the advantage of not requiring hardware modification as

required by many other such similar systems.

Shinagawa (2006) presented an efficient mechanism for

protection against buffer overflow attacks that utilized pointer

copying. Copies of code pointers were stored in safe memory

locations and used to detect and prevent manipulation of code

pointers. To protect the copied code pointers from modifications

attacks segmentation hardware of IA-32 processors were

exploited. The scheme involved a small overhead of time used

in copying a code pointer.

Shacham, et al. (2004) studied the effectiveness of randomizing

address space and observed that its utilization in 32-bits

architectures was limited by the number of bits available for

address randomization. They explored many other ways of

strengthening the method and observed the weaknesses

associated with each. They concluded that on a 32-bit

architecture the only gain of a PaX-like address space

randomization was a small slowdown in worm propagation

speed

Sandeep et al. (2003) carried out a systematic study of address

obfuscation that randomized the location of victim program data

and code. They presented their implementation which

transformed object files and executables at link and load times.

Their method required no changes to the OS kernel or compilers

and the method was applied to individual application programs

without affecting the rest of the system. Their system reduced

 AN EXPERIMENTAL STACK….. Agaji, Mikailu, & Kile FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 1, March, 2019, pp 49 - 55
51

the probability of successful attacks to the barest minimum and

it also ensured that an attack that succeeded against one victim

was not likely to succeed against another or even for the second

time against the same victim. Their system was particularly

useful against large scale attacks as each failed attempt typically

crashed the victim’s program

Cowan et al. (1998) described StackGuard which was a

compiler technique that eliminated buffer overflow

vulnerabilities with modest performance and penalties. With the

system privileged programs that were recompiled with

StackGuard extension no longer yielded control to attackers

since such programs required no source code changes at all and

were binary compatible with existing OS and libraries. Their

system provided an adaptive response to buffer overflow

attacks. In their system performance was traded for survivability

of systems.

 Baratloo et al (2000) presented two methods to detect and

handle buffer overflow vulnerability attacks. Their first method

intercepted all calls to library functions known to be vulnerable.

A substitute version of the corresponding function implemented

the original functionality in such a manner that guaranteed that

no overflows were contained within the current stack frame. The

second method used binary modification of the process memory

thereby forcing verification of critical elements of the stack

before use. Their methods were implemented on Linux as

dynamically loadable libraries. Their methods detected many

known attacks and their performance overhead were not more

than 15%

Younan et al (2006) presented an efficient countermeasure

against stack smashing attacks that utilized the splitting of the

standard stack into multiple stacks in which the allocation of

data types to any of the stack was based on the chances that a

data element was either a target of attack or an attack vector.

They implemented their method using C-compiler for Linux and

their method showed negligible overhead.

A similar method to Stack Shield was suggested by Xu et al.

(2002). The method of their countermeasure divides the stack

into a control and a data stack. The control stack is to store the

return addresses while the data stack comprises the remaining

data stored on the stack. Their method, before any function call,

copies the return address to the control stack and copies it back

from the control stack where it was stored onto the data stack

ahead of return from the function call. The researchers provided

performance results that showed a minimum performance

overhead.

METHODOLOGY

The proposed framework detects stack smashing attacks and

recovers from such attacks using kernel protected agent,

checkpoints and rollback mechanisms. The framework was

designed using a UML tool called sequence diagram. During

function call the RA is pushed onto the control stack and also

passed as a message to the kernel protected agent. A checkpoint

represents a milestone in the execution sequence of a process.

The RAs are compared after termination of function call and if

there are disparities then an attack has occurred and the latest

checkpoint is located and process execution is rolled back to the

checkpoint and process execution continues. The work is similar

to the work proposed by Sahel et al (2013) which makes use of

random locations for the storage of return addresses. However,

the work utilized kernel protected agent which can store return

addresses from different function calls. The work also utilizes

checkpoints and rollback mechanism to enable recovery from

control stack attacks. The architecture of the proposed

framework is depicted in fig 1. The architecture shows process

execution with zero or more occurrences of function calls. Once

a function call occurs the return address (RA) is pushed onto a

stack as well as passed to a kernel protected (KP) agent and

servicing of the function call is carried out. Upon return from

servicing of the function call the RA in the stack is popped and

passed to the KP agent for comparison and once a disparity is

discovered the agent redirects the process execution to start at

the most recent checkpoint so that execution will start from

there. A disparity is an indication that an attack has occurred. If

there is no disparity then there is no attack and normal execution

of the process continues. The difference between the use of

agents and other methods that employ memory locations to store

return address is that a single agent can store many return

addresses from different function calls.

The sequence diagram for the framework is as shown in fig 2.

Actors/Objects identified in the framework are Process

Executor, Process, Kernel protected Agent (KPA), Control

Stack, Checkpoints and functions. The interactions between the

actors/objects are depicted with respect to time. The Process

executor executes process instructions and creates checkpoints

at certain intervals, when a function call occurs the process

executor agent branches to execute the function after saving the

RA to the stack and passing the same RA to the kernel protected

agent. On returning from the execution of the function, it

compares the two addresses in the stack and the kernel protected

agents. If a variation is observed, it rolls back the execution to

the latest checkpoint else it continues with normal program

execution.

This approach will enhance detection and recovery from any

stack smashing attacks. Moreover, this proposed approach will

have better performance as opposed to the compiler-based

approach that has the limitation of runtime overhead as well as

the architectural approach that requires changing the instruction

set semantics, and adding new registers into the processor when

implemented as proposed by some researchers.

 AN EXPERIMENTAL STACK….. Agaji, Mikailu, & Kile FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 1, March, 2019, pp 49 - 55
52

RESULTS

The framework was simulated using Java NetBeans. Process

execution was modeled using a sequence generating positive

integers with each integer representing an executable statement

in the process. Checkpoints were created at regular intervals

using the integers. Random numbers were used in triggering

events. Events in the framework were the occurrence of function

call and the occurrence of an attack. For an event to occur a

threshold was set on the random number generated and once that

threshold was exceeded the event was said to occur.

Five simulation runs were carried out using the framework.

Sample outputs from the simulation are shown in figs 3.

. . .

Fig.1: The Architecture of the Proposed Framework
N

o
rm

al
 E

x
ec

u
ti

o
n

R
o

ll
b

ac
k

 E
x

ec
u

ti
o

n

Function

call 2

KP-Agent

RA

Compare S-RA

and KP-RA

RA RA

Stack

RA

N
o

rm
al

 E
x

ec
u

ti
o
n

R
o

ll
b

ac
k

 E
x

ec
u

ti
o

n

Function

call n

KP-Agent

RA

Compare S-RA

and KP-RA

RA RA

Stack

RA

Checkpoints

Process

Execution Function

call 1

KP-Agent

RA

Compare S-RA

and KP-RA

RA RA

N
o

rm
al

 E
x

ec
u

ti
o
n

R
o

ll
b

ac
k

 E
x

ec
u

ti
o

n

Stack

RA

 AN EXPERIMENTAL STACK….. Agaji, Mikailu, & Kile FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 1, March, 2019, pp 49 - 55
53

Fig. 3: Sample Output from the Simulation runs.

Fig. 2: A Sequence Diagram of the Proposed Framework

K.P Agent

Terminate Execution

Process

executor

Initiate Execution

Normal Execution

Compare RAs

Send RA

Push RA

Return from call

Process

Call

Rollback to latest Checkpoint

Checkpoints

 Normal Execution

Function

Send RA

Stack

 AN EXPERIMENTAL STACK….. Agaji, Mikailu, & Kile FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 1, March, 2019, pp 49 - 55
54

Fig 3 shows the number of statements in the process, the number

of checkpoints created during the execution of the process,

number of functions called during process execution and points

in the execution where attacked occurred. The results of the five

simulation runs are summarized in table 1.

Table 1: Summary of Results

Process Number Number of

Executable

statements

Number of

function calls that

occurred

Number of attacks Number of

Successful

rollbacks

Points where

rollbacks occurred

Process1 300 8 3 3 41, 208, 217

Process2 1200 25 6 6 120,360,375,630,

825,1005

Process3 800 14 3 3 405,465,660

Process4 600 0 0 0 0

Process5 1500 21 5 5 75,285,915,1110,

1395

In the table 1 only Process4 made up of 600 executable

statements was without any stack smashing attacks. All other

processes had varying number of attacks. In all the processes

that there were attacks the number of attacks was the same as

the number of successful rollbacks signifying recovery from

such attacks.

CONCLUSION

The work generally examined the various stack-based attacks

and concentrated on the control stack attacks. The research was

motivated because of the increased stack smashing attacks by

hackers and attackers. In this work, an experimental framework

for the mitigation of stack smashing attacks that makes use of

kernel protected agent, rollback and checkpoint mechanisms

was proposed. Simulations with the framework indicated

successful detection and recovery from control stack attacks.

The framework is recommended because of its detection and

recovery from control stack attacks.

REFERENCES

Alam, M., Johri, P., & Rastogi, R.(2010). Buffer overrun:

techniques of attacks and its prevention. International Journal

of Computer Science and Engineering, 1(3): 1-6.

Baratloo, A., Singh, N., & Tsai, T. (2000). Transparent run-

time defense against stack smashing attacks. In USENIX 2000

Annual Technical Conference Proceedings, San Diego, CA.

Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke,

P., Beattie, S., Grier, A., Wagle, P. & Zhang, Q. (1998). Stack-

Guard: automatic adaptive detection and prevention of buffer-

overflow attacks. In Proc. of the 7th USENIX Security Symp.,

San Antonio, TX.

Francillon, A., Perito, D., & Castelluccia, C.(2009). Defending

embedded systems against control flow attacks.

http://s3.eurecom.fr/docs/secucode09_francillon.pdf. Retrieved

7th December 2018.

Leon, E., & Bruda, S.D.(2016). Counter-measures against stack

buffer overflows in GNU/Linux operating system. Procedia

Computer science, 83(2016): 1301-1306.

Mansour, S., & Amir, K.(2010). Intrusion detection based on

rule extraction from dynamic cell structure neural networks.

Majlesi Journal of Electrical Engineering, 4(4): 24-34.

Mirdula, S., & Manivannan, D. (2013). Security vulnerabilities

in web applications – an attack perspective. International

Journal of Engineering and Technology, 5(2):1806-1811.

Murugan, P. V. & Alagarsamy, K. (2011). Buffer overflow

attack – vulnerability in stack. International Journal of

Computer Applications, 13(5): 1-2.

Patil, S. S. & Chavan, R.K. (2017). Web browser security:

different attacks detection and prevention techniques.

International Journal of Computer Applications, 170 (9): 35-

41.

http://s3.eurecom.fr/docs/secucode09_francillon.pdf

 AN EXPERIMENTAL STACK….. Agaji, Mikailu, & Kile FJS

FUDMA Journal of Sciences (FJS) Vol. 3 No. 1, March, 2019, pp 49 - 55
55

Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N. &

Boneh, D. (2004). On the effectiveness of address-space

randomization. In the 11th ACM Conference on Computer

and Communications Security (CCS).

Sahel, A., Mazen, K. & Rana, A. (2013). Stack memory buffer

overflow protection based on duplication and randomization.

Procedia Computer Science, 21(2013):250-256.

Sandeep, B,. Daniel, C. D., & Sekar, R. (2003). Address

obfuscation: an efficient approach to combat a broad range of

memory error exploits. In the 12th USENIX Security

Symposium. Washington DC

Sharazi, H.M. & Kalaji, Y. (2010). An intelligent intrusion

detection system using genetic algorithms and features

selection. Majlesi Journal of Electrical Engineering, 4(1): 33-

43.

Shinagawa, T. (2006). SegmentShield: exploiting segmentation

hardware for protecting against buffer overflow attacks. 25th

IEEE Symposium on Reliable Distributed Systems, Leeds, UK.

Siberman, P., & Johnson, R. (2004). Comparison of buffer

overflow prevention implementations and weaknesses.

iDEFENSE, https://www.blackhat.com/presentations/bh-usa-

04/bh-us-04-silberman/bh-us-04-silberman-paper.pdf.

Retrieved 29th January, 2019.

Vadirelmurugan, P. & Alagarsamy, K. (2013). Cataloguing and

avoiding the buffer overflow attacks in network operating

systems. International Journal of Computer and Organization

Trends, 3(4): 66-70.

Xu, J., Kalbarczyk, Z., Patel, S. & Ravishankar, K. I. (2002).

Architecture support for defending against buffer overflow

attacks. In Second Workshop on Evaluating and Architecting

System dependability, San Jose, CA.

Younan, Y., Pozza, D., Pissens, F. & Josen, W. (2006).

Extended protection against stack smashing attacks without

performance loss. https://www.acsac.org/2006/papers/43.pdf.

Retrieved 7th December 2018.

https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-04-silberman-paper.pdf
https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-04-silberman-paper.pdf
https://www.acsac.org/2006/papers/43.pdf.%20Retrieved%207th%20December%202018
https://www.acsac.org/2006/papers/43.pdf.%20Retrieved%207th%20December%202018

