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ABSTRACT 

Understanding the vegetation dynamics is very essential for the protection and management of 

ecological environment especially in the dryland areas. In this paper, remote sensing satellite data and 

GIS analyses were used to monitor and assessed vegetation dynamics in the Sokoto Close-settled Zone, 

North-western Nigeria from 2001 to 2016. The objectives of the paper are threefold viz: to measure the 

extent and the trend of vegetation change; to determine the role of different drivers responsible for 

vegetation change and to discuss the implications of the observed changes on the ecosystem and the 

livelihoods of people in the area. The result revealed a gradual but persistent decline in the spatial 

distribution of vegetation cover from 66% in 2001 to 51% in 2016. Vegetation productivity also 

declined from 0.71 in 2001 to 0.42 in 2016. Correlation analysis shows that rainfall has a positive while 

population a negative relationship with the vegetation change. Therefore, deceasing rainfall and 

increasing population are the major factors of vegetation decline in the area. This has drastically affects 

the capacity of the ecosystem to provide essential goods and services such as food, water supply and 

pasture for livestock, with varied socio-economic consequences to the inhabitants of the area. 

Keywords: Remote Sensing; Vegetation Change; Dryland; Ecosystem. 

INTRODUCTION 

The importance of vegetation in any ecosystem cannot be 

overemphasized. Vegetation is one of the important 

components that influences the structure and functions of any 

terrestrial ecosystem. This is because, vegetation represents a 

natural link, connecting the land, water and the atmosphere. It 

also plays important roles in primary productivity, soil 

conservation and maintaining atmospheric balance, in 

addition to its influences on micro, local, regional and global 

climate system (Guo et al., 2005; Jiang et al., 2015; Shen, Li 

& Guo 2014; Zheng, & Moskal 2009). Vegetation is however, 

characterised by both spatial as well as inter-annual and 

seasonal dynamics, which to a very large extent influences the 

balance, structure and functions of the ecosystem (Brandt et 

al., 2016; Ma et al., 2013; Ochege, & Okpala-Okaka 2017; 

Yang, Weisberg & Bristow 2012). Understanding the 

vegetation dynamics is therefore, of paramount importance 

for the protection, conservation and management of the 

ecological environment (Fang, Bai & Wu 2015; Jiang et al., 

2015).  

Periodic monitoring and assessment of vegetation condition 

is therefore necessary for understanding the effects of 

different drivers of change on spatio-temporal dynamics of 

vegetation. This is particularly important in the dryland 

environment of Sokoto Close-settled zone due to the fragile 

nature of the ecosystem in the region and the peoples’ over 

dependence on it for their livelihoods. Furthermore, over the 

last decades, vegetation of the area has been experiencing 

major disturbances mainly due to anthropogenic drivers 

coupled with other natural processes, posing serious 

consequences on the natural vegetation, biodiversity, food 

security as well as socio-economic development of the area 

(Marian et al., 2014). Urban and agricultural expansions 

caused by the rapid population growth in the area, are among 

the major drivers of vegetation change in the area (Pooter et 

al., 2004). Other sources of vegetation disturbances in the area 

includes, overgrazing, fuel wood extraction, bush burning and 

desert encroachment all of which poses serious ecological, 

social and economic consequences (Mohammed, 2015; 

Olgunju 2015). Climate change and associated challenges 

further aggravates these challenges (IPCC, 2013; MEA, 

2005). 

One of the central and basic indicator of vegetation condition 

in a wide variety of physiological, climatological and 

biogeochemical studies is the Leaf Area Index (LAI) (Asner, 

Scurlock & Hicke 2003; Jonckheere et al., 2004; Shen et al., 

2014; Zheng, & Moskal 2009). Although, variously defined 

by different authors, all the definition point to the fact that, 

LAI is an estimate of the amount of photosynthetic leaf area 

per unit ground area, and is an important vegetation 

biophysical parameter used to represent the spatio-temporal 

distributions of vegetation in an ecosystem (Fang et al., 2015; 

Jiang et al., 2015; Shen et al., 2014; Zheng, & Moskal 2009).  

It is a critical parameter that can be used to quantitatively 

measure the abundance and structure of vegetation thereby 

aiding the understanding of the entire biophysical processes 

in an ecosystem. It can also serve as an indicator of vegetation 

stress, which can alter the balance, structure and functions of 

the entire ecosystem (Asner et al., 2003; Shen et al., 2014; 

Vintrou et al., 2014; Walker et al., 2012). Long-term 

monitoring of LAI can therefore, enhance our understanding 

of dynamic changes in the spatial distribution and functions 

of vegetation as well as the impacts of climate change and 
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variability on the terrestrial ecosystem. It will also facilitate 

our understanding of gas-vegetation exchange phenomenon at 

different spatial scales ranging from leaf to landscape level 

(Asner et al., 2003; Shen et al., 2014; Zheng, & Moskal 

2009). Furthermore, for an area characterised by a mixed 

grassland ecosystem like that of our study area, LAI can be a 

good indicator of the variations in grassland ecosystem 

dynamics at the landscape level (Shen et al., 2014). 

Another important parameter for assessing vegetation 

dynamics is the Above-ground Net primary productivity 

(ANPP). Generally considered as the amount of organic 

matter produced by the vegetative component of the 

ecosystem per unit are and unit time, ANPP is one of the most 

important indicators of ecosystem condition, functions and 

resource utilisation efficiency (Field, Randerson & 

Malmstrom 1995; Goroshi et al., 2014; José M Paruelo et al., 

2013; Rossini et al., 2012; Turner et al., 2005; Yuan et al., 

2013; L. Zhu, & Southworth 2013). ANPP plays an important 

role in global carbon cycle at various spatial and temporal 

scales. In the same way with LAI, periodic monitoring and 

assessment of ANPP is also necessary as it enhances our 

ability to evaluate the trends in biospheric behaviour, increase 

our understanding of the role of biosphere in global carbon 

cycle and enable us to investigate and monitor the patterns in 

the supply of ecosystem goods and services, all of which 

constitutes vital information for the management of natural 

resources (Goroshi et al., 2014; José M Paruelo et al., 2013; 

Rossini et al., 2012; Turner et al., 2005).  

Both ANPP and LAI can be effectively monitored and assess 

with the high degree of accuracy using remote sensing data 

and techniques. Within the last couple of decade, remote 

sensing satellites provided cost and time effective global 

monitoring necessary for improving our understanding of the 

ecosystem dynamics. Following the revolutions in the field 

geoinformation science, particularly remote sensing within 

the last few decades, repeated observations of the earth 

surface from the space is now possible at different spatial and 

temporal scales. Multi-temporal satellite images such as 

Landsat, Advanced Very High-Resolution Radiometer 

(AVHRR) and Moderate Resolution Imaging 

Spectroradiometer (MODIS) of the same area can now be 

used to study the susceptibility of ecosystems to natural and 

other human induced changes and its associated 

consequences. One major advantage of remote sensing data is 

that, the data is collected using a consistent measurement over 

the entire area of interest and is free from the variations in data 

collection techniques in different locations which increases its 

usability for determining the extent, conditions and changes 

in ecosystems at different spatial and temporal dimensions 

(MEA, 2005). Earlier applications of remote sensing on 

ecological and environmental studies however, focused on 

such areas as assessment of land cover and land use changes 

(Ali & Bayoumi, 2004; Kerr & Ostrovsky, 2003; Rogan et al., 

2003; Stefanov & Netzband, 2005; Turner, Ollinger, & 

Kimball, 2004). With the passage of time more tool, 

techniques and system are developed and today, remote 

sensing provides key data in ecological research worldwide, 

offering repeatable, standardized and verifiable information 

on the key ecosystem indicators such as productivity, 

disturbances, response to different natural and anthropogenic 

stressors as well measuring changes on different spatial and 

temporal scales (Pettorelli et al., 2014). 

Different techniques and indices for integrated ecosystem 

measurement are being developed and used to measure 

different properties of ecosystem such as productivity, 

stresses and responses to different biophysical and human 

induced disturbances. The Normalised Difference Vegetation 

Index (NDVI) is one of the most commonly used indices for 

measuring different properties of the ecosystem at different 

spatial scales (Kerr, & Ostrovsky 2003; Pettorelli et al., 

2014). NDVI for example, has been extensively used to study 

the ecosystem’s net primary productivity (NPP) and spatial 

distributions of vegetation due to its strong positive 

correlation with vegetation photosynthesis which facilitates it 

common use as an excellent estimator of above ground net 

primary productivity and leaf area index (Chauvenet et al., 

2015; Fraser, Kerr & Sawada 2005; Shen et al., 2014; Xu, & 

Guo 2015). In the same way with the NPP and LAI, NDVI 

values also changes in response to the fluctuations of climatic 

variables particularly temperature and precipitation thus, 

making it useful for the study of the impacts of climate change 

on ecosystem (Li et al., 2014; Xu & Guo 2015). When 

combine with land use data, NDVI is also useful in 

differentiating between natural and human induced changes 

in the structure and functions of an ecosystem (Fung, & Siu 

2010; Li, Xu & Guo 2014; Paruelo, Burke & Lauenroth 2001; 

Paruelo et al., 2013; Xu, & Guo 2015; Zhu et al., 2017). In 

this research MODIS-NDVI remote sensing data was used to 

monitor the spatio-temporal trends in vegetation dynamics, in 

Sokoto Close-Settled Zone, Northwestern Nigeria, in order to 

understand the trend and extent of vegetation change, 

determine the role of different drivers in shaping the 

vegetation of the area and discuss the implication of the 

observed changes on the ecosystem and livelihood of the 

people in the area. 

The Study Area 

The study area is Sokoto Close-settled Zone located in the 

dryland ecosystem Northwestern Nigeria. Sokoto Close-

Settled Zone is an area characterized mainly by high 

population density exceeding 300 persons per square 

kilometre and intensively cultivated, with over 80% of the 

land under rain-fed crop cultivation (Goddard 1972; Mamman 

1989). It covers a total land area of 6000 kilometres square, 

extending to some 120 kilometres North to South and 50 

kilometres East to West of Sokoto town (Mamman, 1989). It 

forms an integral part of Sokoto State, located in the 

Northwestern part of Nigeria, between latitudes 11ᵒ 30” to 13ᵒ 

50”N and longitudes 4ᵒ 00” to 6ᵒE (Figure 1). The state shares 

common boundaries with the republic of Niger to the North 

and West, Zamfara State to the East and Kebbi State to the 

South. 
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The area is under the influence of tropical continental climate 

with a very fragile ecosystems. Temperatures are high 

throughout the year while rainfall are low, variable and 

unreliable, lasting for less than five months in duration. 

Average annual rainfall is about 630 mm while temperatures 

could reach as high as 40ᵒC in the month of April which 

usually records the highest of temperature in the year. The 

area is also a typical of Sudan Savannah type of vegetation 

dominated by short grasses interspaced by shrubs and short 

woody trees. Grasses looks green and luxuriant during the 

rainy season, but eventually withered and die during the dry 

season, leaving vast expense of bare soil (Davis, 1982). Crop 

cultivation, animal husbandry and artisanal fishing along the 

rivers, streams and pools provides the major sources of 

livelihoods to the people of the area. However, the dwindling 

income from these activities during the recent decades has 

compelled almost everybody in the area is to be engaged in 

one form of non-farming activity or the other both during the 

wet and dry seasons as a supplementary source of income 

(Illiya 1999). 

 

 
Fig. 1: The Study Area. 

DATA AND METHODS 

The main data for this study is the MODI-NDVI 

(MOD13Q1.V6), acquired by the Moderate-resolution 

Imaging Spectroradiometer (MODIS), on-board NASA’s 

Terra (EOS AM). MODIS Normalised Difference Vegetation 

Index (NDVI) is one of the products of the of MODIS that is 

designed to provide consistent spatial and temporal 

comparisons of vegetation condition using blue, red and near-

infrared reflectance centred at 469 nanometres, 645 

nanometres and 858 nanometres respectively (Didan 2015). 

The data is computed from the atmospherically corrected bi-

directional surface reflectance that have been masked for 

water, clouds, heavy aerosols and cloud shadows. 

MOD13Q1.V6 data are provided every 16 days at 250 meter 

spatial resolution and is widely used for global monitoring of 

vegetation conditions and land cover changes at various 

spatial and temporal scales. The data can also be used for 

modelling global biogeochemical and hydrologic processes, 

global and regional climate as well as characterizing land 

surface biophysical properties and processes such as primary 

production and land cover conversion (Didan 2015).  

Spatio-temporal dynamics of vegetation in the area was 

obtained through the reclassification the original NDVI 

images, by assigning the values from -1 to 0 to represent non-

vegetation areas while values from 0.1 to 1 represents 

vegetation areas. NDVI is derived from the ratio of red and 

near infrared reflectance and is based theoretically on the fact 

that, vegetation chlorophyll absorbs red rays of the 

electromagnetic spectrum (EMS), while mesophyll leaf 

structure scatters near infrared rays of EMS, leading to low 

reflectance in red and high reflectance in the near infrared 
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regions of the EMS, the ratio of which is used to discriminate 

vegetation from other types of land cover. Theoretically, 

NDVI values are represented as a ratio ranging from -1 to +1, 

but in practice, values from 0 to -1 represents different types 

of non-vegetation land cover surfaces such as water (extreme 

negative values), built up areas and bare soil, while values 

from 0.1 to 1, represents different shade of vegetation cover 

(Cao et al., 2010; Li et al., 2014; Rose et al., 2015; 

Vogelmann et al., 2012; Zhou et al., 2001). 

To assess the trends and changes in vegetation productivity, 

annual mean NDVI integral (NDVI-I) was computed and used 

as a surrogate of ANPP. This was based on theoretical 

understanding that, higher NDVI values represent both high 

photosynthetic activities and high net primary production of 

the vegetative component of the ecosystem, which in turn 

signifies a healthy ecosystem with a high degree of vigour. It 

therefore follows that, the higher the NDVI values, the more 

healthy and productive the vegetation is. On the other hand, 

the lower the NDVI values the more stressed and less 

productive the vegetation component of the ecosystem. Here, 

annual mean NDVI integral was used rather than maximum 

or minimum NDVI values. This is because maximum or 

minimum NDVI values may represent just a single pixel value 

in an image which will in turn represent a single location in 

the study area which again, might not represent the true 

condition of the ecosystem in the entire study area. On the 

other hand, mean NDVI integral (NDVI-I) is computed by 

summing up all the pixel values in the image and taking their 

average which give a more realistic representation of the 

vegetation productivity in the entire study area. 

To determine the role of different drivers of change on the 

vegetation dynamics, correlation analysis was used to 

measure the relationships between the trends in vegetation 

dynamics, rainfall and population distributions of the area. 

Finally, annual millet production was used to statistically 

validates the relationship between NDVI-I and vegetation 

productivity. Figure 2, show the flowchart of the 

methodology.  
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Fig. 2: Flow chart of Research Methodology  

RESULTS AND DISCUSSIONS 

Spatial Distribution of Vegetation 

The results of the analysis indicate a gradual but persistent 

decline in the spatial distributions of vegetation in the area.  

Figures 3 and 4, show the trends in the spatial distributions of 

the vegetation in the area, in the month of august from 2001 

to 2016. From the two figures, it is evident that, the spatial 

distribution of vegetation cover is persistently declining from 

66% in 2001 to 51% in 2016. This represent close to 23% 

decline in the spatial distribution of vegetation within 16 years 

period. The month of August represents a period during which 

the vegetation cover is densest and greenest in the study area, 

as is usually the peak of both rainy season, as well as the 

vegetation growing season in the area.   
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Fig. 3: Spatial Distribution of Vegetation 2001 – 2016 

 

Fig. 4: Percentage of Vegetation Cover 2001 - 2016  

Many drivers of change could also be responsible for the 

above change including climate change and variability. This 

is because amount and distribution of rainfall affects 

vegetation growth and distribution as well as its seasonal 

phenological cycles. Comparing the above change with the 

total annual rainfall reveals a strong positive correlation 

coefficient of r = 0.90 as indicated by figure 5.
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Fig. 5: Relationship between Total Annual Rainfall and Vegetation Cover. 

 

Figure 5 revealed a decline in the total annual rainfall of the 

study area from 725.6 millimetres in 2001 to 569.2 

millimetres in 2016. This correspond with a similar decrease 

in the percentage of vegetation cover from 66% in 2001 to 

51% in 2016. This is a confirmation of the influence and the 

negative impact of climate change on the spatial distribution 

of vegetation cover which could also affect the entire 

ecosystem of the study area. Over the recent decades, dryland 

areas world over are experiencing climate change mostly in 

the form of increasing temperature and declining rainfall both 

in form of amounts and durations including high frequency of 

extreme events such as drought, flooding as well as violent 

wind and rainstorm (IPCC 2013). Sokoto Close-settled Zone 

as part of global dryland ecosystems also experience these 

symptoms of climate change which to a very large extent, 

affects both health and spatial distribution of ecosystem 

particularly the vegetation components.  

Another important driver of change that interact with and 

compound the influence of climate change in changing the 

vegetation of the area is the rapid population growth in the 

area. The total population of the six Local Government Areas 

that make up the study area based on the 1991 National 

Population Census, stands at 777, 915 people. This has 

increased to 1,111,773 people during the 2006 National 

Population Census and projected to 1,468,055 people in the 

year 2016 (NPC, 2016). This rapid increase in the population 

of the area act as an impetus that fueled other drivers of 

change that in themselves contributed in changing the 

ecosystem of the area and also aggravated the processes of 

climate change. Population growth for example increases the 

demand for food and urban infrastructures that lead to land 

conversions in favour of agriculture and urban expansion to 

cater for the increasing population. This will no doubt affect 

vegetation distribution negatively in particular and the entire 

ecosystem of the area in general. Moreover, increase in 

population also increases the rate of exploitation and 

consumption of environmental resources as well as discharge 

of bye products from both domestic and industrial sources 

including greenhouse gasses, which aggravates climate 

change processes, which in turn, affects different components 

of ecosystem negatively including vegetation. Thus, 

population growth is one of the indirect drivers of ecosystem 

change in the area and shows a strong or near perfect negative 

correlation with vegetation distributions in the study area (r = 

-0.99) as depicted by figure 6.
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Fig. 6: Relationship between Population Growth and Vegetation Distribution. 

Other drivers of vegetation change in the study area includes over grazing, fuel wood sourcing, bush burning and desert encroachment all of 

which presents serious ecological, social and economic consequences (Mohammed, 2015; Olagunju, 2015). 

 

 However, the rate at which the vegetation cover changes, 

varies from place to place and time to time depending on the 

interaction of different drivers causing the change both natural 

such as climate change and variability as well as 

anthropogenic drivers such as demographic, economic, 

cultural as well as technological changes. Figures 7 and 8 

indicate the spatio-temporal rate of vegetation change. From 

the two figures, it is clear that, more surface land area is 

experiencing decreasing vegetation cover. For example, 

between the periods of 2001 to 2006, 7% of the total land area 

experienced an increase in vegetation cover, 14% experiences 

a decrease in vegetation cover while 79% of the land surface 

remains unchanged. From 2006 to 2011, 11% of the total land 

area recorded an increase in vegetation cover, 13% recorded 

a decrease in vegetation cover and 76% of the total land area 

remains unchanged. Furthermore, from 2011 to 2016, only 

5% of the total land area recorded an increase in vegetation 

cover, while 12% recorded a decrease in vegetation cover and 

83% remain unchanged. 

Finally, on the whole, from 2001, to 2016, only 4% of the total 

land area recorded an increase in vegetation cover, while 19% 

recorded a decrease in vegetation cover and 77% remains 

unchanged. Thus, the trend is generally toward a declining 

vegetation cover, which is capable of changing many 

processes of ecosystem particularly, in view of the important 

roles of vegetation in supporting and stabilizing ecosystem. 

This will in turn, negatively affects the livelihood and 

economic development of the inhabitant of the area due to 

their over dependence on ecosystem for their sustenance, 

livelihood and overall development, 
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Figure 7 Vegetation Cover Change 2001 – 2016. 

 

Fig. 8: Rate of Vegetation Change 2001 – 2016.  

 

 The temporal variation in the rate of change could be 

attributed to the interplay of many drivers of change including 

natural climatic variability and other anthropogenic drivers, 

as well as the degree of exposure, response and resilience of 

the ecosystem to such drivers of change. Increasing intensity 

of these drivers generally increases vulnerability of ecosystem 

and weaken its resilience, leading to persistent negative 

changes which is the situation observed in the study area. 
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NDVI in the area. Figure 9, shows both the inter-annual 

variability and gradual decline in the vegetation productivity. 

Based on the figure, the vegetation productivity in the area 

declined from 0.71 in 2000 to 0.41 in 2016 representing over 

40% decline in the vegetation productivity within the period. 

These types of change in ecosystem are usually gradual and 

often unnoticeable unless conscious efforts are made to assess 

and monitor them, but their cumulative long-term impacts 

could be very devastating to both the ecosystem and 

livelihood of the area. These are usually subtle changes that 

take place within the state of vegetation communities that are 

beyond the normal phenological cycles (Vogelmann et al., 

2012).

 

 
Fig. 9: Trend in vegetation productivity 2000 – 2016. 

This result is further supported by the report of the Millennium Ecosystem Assessment (2005), which reported land degradation in the form 

of declining biological and economic productivity of the land as the major ecosystem change in dryland ecosystem, noting that, over 10% of 

the global dryland ecosystems are degraded (Millennium Ecosystem Assessment 2005). 

 

Many drivers of change in ecosystem, both natural and 

anthropogenic as well as direct and indirect drivers of change 

could be responsible for the above change. However, in order 

to assess the role of climate change on the observed decline in 

vegetation productivity, the trend in vegetation productivity 

was correlated with the annual distribution of rainfall which 

is the major critical climatic element that influences the 

growth and productivity of vegetation in the study area. To do 

this however, the mean NDVI integral were rescaled by 

multiplying them with 1000 in order to have a common scale 

with the annual rainfall distribution for effective comparison. 

The result in figure 10, shows a positive relationship between 

annual rainfall distribution and vegetation productivity with 

the correlation coefficient of 0.43. This indicates that, climate 

change and variability is one of the strong drivers of change 

and determinants of vegetation productivity in the dryland 

ecosystem of the Sokoto Close-settled zone of North-western 

Nigeria. 
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Fig. 10: Correlation between Rainfall Distributions and Vegetation Productivity 

However, in order to validate the above result, there is need 

to establish a relationship between the mean NDVI integral 

and vegetation productivity in the study area. In the absence 

of field measured ANPP of the study area, annual crop yield 

was used as a surrogate of ANPP. Annual crop yield has been 

established to have a positive correlation with both NDVI and 

ANPP (Chang 2002; Jat et al., 2012; Li et al., 2007; Panda et 

al., 2010; Paruelo et al., 2013). For this reason, annual millet 

yield of the study area was correlated with mean NDVI 

integral to validate the above result. Millet is the major crop 

produced in the study area through rain fed agriculture. Figure 

11 revealed a strong positive correlation between the mean 

NDVI integral (Mean NDVI-I) and the estimated annual 

production of millet in the study area, with a correlation 

coefficient of 0.88. 

 
Fig. 11: Relationship between NDVI-I and Millet Productivity 

 

CONCLUSION AND RECOMMENDATIONS 

The result of this study indicated a gradual but persistent 

decline in both the spatial distribution and productivity of 

vegetation in the Sokoto Close-settled Zone, Northwestern 

Nigeria. The spatial distribution of vegetation in the area 

declined from 66% of the total land surface in 2001 to 51 % 

in 2016, representing close to 23% decline. This shows a 

strong positive correlation with rainfall distribution (r = 0.90) 

and a near perfect negative correlation with population growth 

in the area (r = -0.99).  Similarly, vegetation productivity in 

the area decline from 0.70 in 2000 to 0.41 in 2016, 

representing over 40% decline, which shows a strong positive 

correlation with annual rainfall distributions in the area over 

the same period (r = 0.43). These confirmed the influence of 

climate change and variability on the vegetation dynamics of 

the area, which is also capable of changing the structure and 

functions of the ecosystem of the area. These types of change 

although operate gradually and not easily noticed, their 

cumulative effects over the years can have a significant 

impact on both the ecosystem, supply of ecosystem good and 

services as well as the livelihoods and sustainable 

development of the area. For example, declining vegetation 

cover can increase soil exposure to erosion by the action of 

wind and running water as well as dessert encroachment. This 

in turn could lead to loss of agricultural and grazing lands, 

decline in food production, depletion of surface and 

subsurface water hunger, increasing poverty, malnutrition and 
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diseases. To mitigate and avert these negative development 

therefore, require a concerted efforts and collaborations from 

all stake holders including government at all levels, 

individuals, private and public as well as international 

organisations though such measures as public awareness, 

protection of marginal lands, sustainable farming and land 

management practices, afforestation, provision of alternative 

sources of energy and the use of alternative means of 

livelihoods with minimal negative impacts on the ecosystem 

of the area. A system also need to put in place for effective 

and frequent monitoring and assessment of the state of 

ecosystem in order to guide policies and actions and to assess 

the effectiveness of mitigation measures. 
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