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ABSTRACT 

The present paper investigates on combined effects of variable viscosity and thermal radiation on 

unsteady natural convection flow. It is an extension of the work of Makinde et al. (2007) in which 

the fluid viscosity was considered to have a constant status. However, it is well known that the 

physical properties of fluids may change significantly with temperature. For lubricating fluids, 

heat generated by the internal friction and the corresponding rise in temperature affects the 

viscosity of the fluid and so the viscosity can no longer be assumed constant. Here, the fluid 

viscosity is considered to vary with temperature difference. The partial differential equations 

(PDEs) governing the fluid flow were transformed to dimensionless ordinary differential equations 

(ODEs) using similarity transformation. The obtained ODEs were solved using Adomian 

decomposition method (ADM). The effects of controlling physical parameters on the fluid 

temperature and its velocity are presented graphically and discussed. During the investigation; our 

result shows that, the velocity of the fluid increases with increase in viscosity variation parameter 

)( and thermal radiation while the fluid temperature increases with increase in thermal radiation. 

Notably, it is worthy to mention that; the result obtained herein coincides with that of Makinde et 

al. (2007) when  and R tend to zero. 
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INTRODUCTION 

One of the basic flows in fluid dynamics is Couette 

flow where the fluid motion is induced by the 

movement of the bounding surface. Fluid flow is either 

natural, forced or mixed convection. The natural 

convection flow is a flow induced by density difference 

occurring within the fluid particles due to temperature 

gradients. In this mechanism, the fluid surrounding the 

heat source receives heat, becomes less dense and raise, 

the surrounding cooler fluid then moves to replace it. 

The study of fluid flow with variable viscosity has 

become of principal interest in many scientific and 

engineering applications, such as crude oil extraction, 

petroleum industries, automobiles industries and so on. 

It is well known that the most sensitive fluid property to 

temperature rise is the viscosity. This was affirmed in 

the works of; John and Narayanan (1997), 

Hashemabadi et al. (2004), Becker and McKinley 

(2000). For many liquids, among them water, petroleum 

oils, glycerin, glycols, silicone fluids, and some molten 

salts, the percent variation of absolute viscosity with 

temperature is much more than that of the other 

properties. For instance, when the temperature increases 

from 10  to 

50 , the viscosity of water 

decreases by 240% (Carey and Mollendorf (1978)). The 

studies of Macosco (1994), Schlicting and Mahmud 

(2002) lamented that flow of viscous fluids with 

temperature dependent properties are of great 

importance in industries such as food processing, 

coating and polymer processing industries. In industrial 

systems, fluid can be subjected to extreme conditions 

such as high temperature, pressure and shear rate. 

External heating and high shear rate can lead to a high 

temperature being generated in the fluid. This may have 

a significant effect on the fluid properties. Fluids used 

in industries, such as polymer fluid has viscosity that 

varies rapidly with temperature change and may give 

rise to strong feedback effects. This consequently leads 

in the significant changes in the flow structure of the 

fluid (Sahin (1999)). When a system is under working 

conditions, some of its energy is wasted in the form of 

rays to the surrounding environment due to thermal 

radiation and this result in poor performance of the 

system.  
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Radiation effects on free convection flow are important 

in the context of space technology and processes 

involving high temperature. This is due to the safety of 

lives and properties especially in working medium that 

requires liberation of heat to the environment. In order 

to minimize thermal radiation emission, Makinde 

(2008) and Ibanez et al., (2003) lamented that; when 

entropy generation takes place, the quality of energy of 

the system decreases. In a related literature, Ajibade et 

al. (2011) concluded that entropy generation increase 

with suction on one plate and decrease on the other 

plate with injection while Elbasbeshy and Bazid (2000) 

investigated the effect of temperature dependent 

viscosity on heat transfer over a moving surface where 

they assumed the fluid viscosity to vary as an inverse 

linear function of temperature. Costa and Macedonio 

(2003) applied temperature dependent viscosity model 

to study magma flows whereas Makinde and Ogulu 

(2011) analyzed the effect of thermal radiation on the 

heat and mass transfer flow of a variable viscosity fluid 

past a vertical porous plate permeated by a transverse 

magnetic field where they concluded that an increase in 

the positive value of viscosity variation parameter 

resulted into a decrease in the fluid viscosity. In the 

study of the later researchers, they used a linearized 

form of temperature in the radiative heat flux of their 

energy equation. This was however condemned by 

Magyari and Pantokratoras (2011) arguing that, a 

linearized form of temperature does not depict the real 

heat emission or conduction in the energy 

characteristics of most boundary layer flows. They 

therefore proposed alternative approach in which the 

temperature is evaluated using normal differentiation. 

In all the studies, some solution methods, such as 

variational iteration method (VIM), Runge-Kutta 

method, homotopy perturbation method (HPM), finite 

difference method were deployed for the solution of 

their flow problems. Other researchers have used 

Adomian decomposition method (ADM) proposed by 

Adomian (1994). With the advent of ADM, numerous 

scholars like Jiya and Oyubu (2012), Adesanya et al., 

(2015), Adesanya and Makinde (2017), Adesanya and 

Gbadeyan (2010) and Venkatarangan and Rajalaksm 

(1995) have used the technique. 

In the present study, the idea proposed by Magyari and 

Pantokratoras (2011) is adopted to analyse the flow 

equations and the fluid viscosity is assumed to vary 

linearly with temperature difference following Carey 

and Mollendorf (1978). 

MATHEMATICAL PROBLEM 

The physical problem under consideration consists of a 

vertical channel formed by two infinite vertical parallel 

porous plates; stationed h distance apart. The channel is 

filled with a viscous incompressible fluid in the 

presence of an incidence radiation flux of intensity rq , 

which is absorbed by the plates and transferred to the 

fluid as shown in Figure 1. Similarly, the fluid physical 

properties are assumed to be constant except for its 

viscosity which is temperature dependent; also the fluid 

is considered optically thick where the radiative heat 

flux derived using Rosseland approximation can be 

utilized.  The stream wise coordinate is denoted by 
'x  

taken along the channel in the vertically upwards 

direction and that normal to it is denoted by 
'y . The 

flow is assumed to be fully developed means that the 

axial (
'x - direction) velocity depends only on the 

transverse co-ordinate 
'y . In addition, the effects of 

radiative heat flux in the
'x - direction is considered 

negligible in comparison with that in the
'y - direction. 

At time 0t , both the fluid and the plates are 

assumed to be at rest at constant temperature 0T  . At 

time 0t , the temperature of the plate kept at 

0' y
 
rise to wT

 
while the other plate at h  distance 

from it, is fixed and maintained at temperature 0T . 

Since the plates are of infinite length, the velocity and 

temperature are functions of  and t only.
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    Figure 1. Schematic diagram of the problem 

 

 

 

 

 

Under these assumptions, the appropriate governing equations for the present problem in dimensional form are:  
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Following Carey and Mollendorf [5], the fluid dynamic viscosity (  is assumed to vary with temperature 

difference given as: 

   y  10  ,      (3) 

and the radiative heat flux rq  as given by Sparrow and Cess (1962) is:   
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with the appropriate boundary conditions for the velocity and temperature fields as: 
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METHOD OF SOLUTION 

In order to transform the governing equations together with the initial and boundary conditions; the following 

similarity variables are introduced: 
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Using equations (3) and (7) in equation (1), the momentum equation is transformed into: 
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The term 
'y

qr




in equation (9) is simplified using Magyari and Pantokratoras (2011) as follow: 
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Substituting equation (10) into (8) and simplifying gives:  
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Again, using equation (6) in the boundary conditions (5) we have: 
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Mathematical Description of ADM 

Consider the inhomogeneous nonlinear differential equation in Adomian’s operator-theoretic form:  
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where f is unknown function or system output, which is to be determined by a recursive  relation, L  is an 

invertible linear operator which is the highest order derivative,  D  is the remainder of the linear operator whose 

order is less than L ,  Nf
 
represents the nonlinear terms and q is the system input.  

Applying the inverse 
1L to both sides of (15) and using the given boundary conditions, we have: 

 )()( 11 NfLDfLuf       (16) 

where u represents the term arising from integrating q . 

The standard ADM defines the solution f by the decomposition series 
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such that the Adomian polynomials are evaluated as: 
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The solution components .,.........,, 210 fff  are determined recursively as follows: 
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where 0u is referred to as the zeroth-order component. 

Next, we proceed to obtain the approximate solution of equations (8) and (11). 

 

Adomian decomposition solution of the problem 

Equations (8) and (11) under the boundary conditions (12) and (13) are solved using ADM as follow: 
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Operating   both sides of equations (25) and (26) we obtain: 
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According to the standard ADM, )(yf and )(y may be expressed as: 
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Finally, the solution is given by the partial sum: 
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(38)

 
where S and Q

 
are truncation points such that the ADM solution converges. Convergence of ADM solution has 

been shown to be rapidly in Adomian (1994) and Cherruault (1990).  

Using equation (38); Nusselt numbers on the plates at 0y  and 1y  are evaluated using:  

 0 0 1 1y y

d d
Nu and Nu

dy dy

 
            (39) 

and the skin friction is calculated via: 

 0 0 1 1y y

df df
and

dy dy
            (40) 

RESULTS AND DISCUSSION 

Using computer algebra software package 

(Mathematica), equation (38) is simulated and the 

results are presented in Figures 2- 9 and in Tables I and 

II.  The ambient Prandtl number is taken as 0.71 and 4 

which correspond to air and R-12 refrigerant 

respectively. Similarly, the values of radiation, suction 

and viscosity variation parameters are chosen arbitrarily 

from 0 to 3. In addition, the value of Grashof number is 

taken to be 10, 12, 14. That is, 0Gr  corresponds to 

cooling of the channel by free convection current. 
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    Fig. 2: Velocity profile for different Pr 

(ϕ = 0.1, Pr = 0.71, 0.1  ,R = 0.1, Gr = 10, c = 1,  . . . Pr = 0.71, ____Pr = 2,  . _ . _ . Pr = 4)   

 

The effect of varying Pr is depicted in Figure 2 above. The figure reveals that the fluid velocity within the channel 

decreases with increase in Pr.  
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     Fig. 3: Velocity profile for different R 

(ϕ = 0.1, Pr = 0.71, 0.1  , R = 0.1, Gr = 10, c = 1,  . . . R = 0.1, ____R = 0.5, . _. _. R = 1)   

 

Figure 3 demonstrates that the velocity of the fluid within the channel increases with increase in radiation parameter. 

This is due to the fact that, when R increases, it amounts to increasing the buoyancy force of the fluid molecules 

within the channel.  
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       Fig. 4: Velocity profile for different c 

 (ϕ=0.1, Pr = 0.71, R = 0.1,   = 0.1, Gr = 10, - . -. - . c = 1, ____c = 0.5, . . . . c = 0.1)  

 

Figure 4 shows that; the fluid velocity within the channel decreases with increase in suction parameter. This is 

physically true that; when fluid is in motion, suction of its portion from the bounding surface causes a distortion in 

the fluid velocity near the suction area.  
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    Fig. 5: Velocity profiles for different   

(ϕ = 0.1, R = 0.1, Gr = 10, c = 0.1, Pr = 0.71, . . . .,   = 0.1, ____  = 0. 2, . _. _.   = 0.6)   

Figure 5 depicts that, the fluid velocity increases with increase in  . This is attributed to the fact that, when   

increases it results to the lessening of the fluid viscosity and this consequently increase the fluid velocity. 



COMBINED EFFECTS OF ……… Yusuf A. B. and Abiodun O. A.         FJS 

FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 273 - 287 
282 

   0.2 0.4 0.6 0.8 1.0
y

0.5

1.0

1.5

f

 
    Fig. 6: velocity profile for different Gr 

 (R = 0.1, ϕ = 0.1, Pr = 0.71, 0.1  , c = 0.1, . . .Gr = 10, ___Gr = 12, - . - . – Gr = 14) 

The effect of varying Gr is pictured in figure 6. The figure depicts that; the fluid velocity increases with increase in 

Gr. This is attributed to the fact that; an increase in Gr implies a corresponding increase in the buoyant force of the 

fluid molecules within the channel, hence an increase in the speed of the fluid during the flow. 
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          Fig. 7: Temperature profiles for different R 

  (c = 0.1, Pr = 0.71,   = 0.1, . . .R = 0.1, - - - R = 0.5, . - . -R = 1) 

The effect of radiation parameter (R) is reflected in figure 6. It is viewed that, the fluid temperature increases with 

increase in R. This is due to the fact that, when R increases it result to decrease in thermal conductivity of the fluid 

within the channel. 
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           Fig. 8: Temperature profiles for different c 

  (R=0.1, Pr=0.71,   = 0.1, . . . . c = 1, ____c = 0.5, - . - . c = 0.1) 

Figure 8 above depicts that a decrease in fluid suction (c) results to the increase in the fluid temperature within the 

channel.  This trend is as a result of concentration of the fluid molecules near the suction area; this transitively leads 

to the increase in temperature due to collision of the fluid molecules. 
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   Fig. 9: Temperature profile for different Pr 

 (R = 0.1, c = 0.1,   = 0.1, . . . . Pr = 0.71, _____ Pr = 2, - . - . Pr = 4) 

From figure 9, it is observed that the temperature of the fluid decreases with increase in Pr. Prandtl number (Pr) 

signifies the ratio of momentum diffusivity to thermal conductivity of fluids. Fluids with higher Prandtl number 

possess lower thermal conductivity as such heat diffused faster in fluid with lower Prandtl than in fluid with higher 

Pr.      
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 Table I: Numerical values of skin friction on the walls 

 

  R= 0.1, = 0.21, Pr =0.71,  

Gr = 10,  c = 0.001 

    0                     1  

R = 0.2, = 0.21, Pr =0.71, 

Gr = 10, c = 0.001 

   0                         1  

R = 0.2,  = 0.5, Pr = 0.71,   

Gr = 10, c = 0.001 

    0                       1  

0.1 2.49716      2.34804 2.56299      2.40398 2.61158        2.45774 

0.2 2.74505      2.40670 2.81760      2.46710 2.87109        2.52454 

0.3 2.99297      2.46461 3.07220      2.52946 3.13060        2.59056 

0.4 3.24091      2.52177 3.32679      2.59106 3.39012        2.65580 

0.5 3.48889      2.57819 3.58138      2.65191 3.64963        2.72027 

 

Table I shows the effects of varying viscosity parameter (  on the skin friction. It reveals that the skin friction 

between the channel walls and the working fluid increases on all the walls with increase in  . Similarly, the skin 

friction is seen to increase with increase in R and  for some fixed values of Pr and  

 

          Table II: Numerical values for the rate of heat transfer on the channel walls 

  

Pr R=0.1, =0.21, c=0.001 

0Nu             1Nu  

R=0.2, =0.21, c=0.001 

0Nu             1Nu  

R=0.2, =0.5, c=0.001 

0Nu           1Nu  

0.44 0.908144      0.998224 0.844077      1.053570 0.841484    1.127100 

0.71 0.924742      0.956932 0.856568      1.017510 0.850279    1.097740 

1.00 0.943317      0.910685 0.870481      0.977304 0.860029    1.065170 

2.00 1.014080      0.734268 0.922855      0.825604 0.896311    0.943703 

3.00 1.097430      0.526381 0.922855      0.825604 0.937418    0.805717 

4.00 1.197150      0.278266 1.054080      0.444814 0.984510    0.647312 

 

The effect of Prandtl number on the rate of heat 

transfer between the walls and the working fluid is 

displayed in Table II. The table displayed that; the 

Nusselt number on the wall at 0y
 
increases with 

increase in Pr while it is seen to decrease with increase 

in Pr on the wall stationed at at 1y . Furthermore, 

the Nusselt number on the wall kept at 0y  is 

observed to decrease with increase in R whereas it is 

noticed to increase with increase in R on the wall at 

1y . Again, the Nusselt number on the wall 

positioned at 0y  is found to decrease with 

increase in  while it is viewed to increase on the wall 

at 1y
 
with increase in  . 

CONCLUSION 

The paper investigates the combined effects of 

variable viscosity and thermal radiation on unsteady 

natural convection flow through a vertical porous 

channel and the results are presented and discussed. 

Our investigation shows that; the fluid velocity 

increases with increase in . It is worthy to mention 

here that when  and R tend to zero; the results 

obtained herein coincide with that of Makinde et al. 

(2007). Moreover, it can be concluded that, when the 
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viscosity of any working fluid is sensitive to 

temperature change; the effect of variable viscosity 

has to be taken into consideration. This study is hoped 

to serve as a complement to previous studies and also 

be an avenue for further researches.    
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Nomenclature and Greek symbols 

 

 

 

 Symbols   Interpretation                                               Unit 

     dimensional length    

     dimensionless length     

     time       

 g             gravitational acceleration    

 k             thermal conductivity     

      absorption coefficient   

  T            dimensional  temperature of the fluid  

 h            dimensional channel width                

     wall temperature     

     ambient temperature     

 V     velocity of suction    

     dimensional velocity    

     kinematic viscosity of the fluid   

     thermal diffusivity of the fluid     

                 volumetric expansion coefficient   

     variable viscosity      

     radiative heat flux    

 θ                dimensionless temperature   

         reference velocity     

     viscosity variation parameter   

     temperature difference parameter  K 

     radiation parameter 

     set of real numbers 

     Grashof number 

 Pr    Prandtl number   

 0     reference fluid viscosity    

 c    suction parameter 

     dimensionless channel  width 

 0Nu     Nusselt number at the plate 0y   

 1Nu     Nusselt number at the plate 1y  

 0     skin friction on the plate at 0y  

 1     skin friction on the plate at 1y
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