
A COMPARATIVE …… . Dada, E. G. and Joseph, S. B. FJS

 FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 223 - 233

223

FUDMA Journal of Sciences (FJS)

 ISSN: 2616-1370

Vol. 2 No. 2, June, 2018, pp 223 – 233

A COMPARATIVE STUDY OF THE ARCHITECTURES AND APPLICATIONS OF SCALABLE

HIGH-PERFORMANCE DISTRIBUTED FILE SYSTEMS

Dada, E. G. and Joseph, S. B.

Department of Computer Engineering, University of Maiduguri

Maiduguri - Borno State, Nigeria

Correspondence: gbengadada@unimaid.edu.ng

ABSTRACT

Distributed File Systems have enabled the efficient and scalable sharing of data across

networks. These systems were designed to handle some technical problems associated with

network data. For instance reliability and availability of data, scalability of infrastructure

supporting storage, high cost of gaining access to data, maintenance cost and expansion. In

this paper, we attempt to make a comparison of the key technical blocks that are referred to as

the mainstay of Distributed File Systems such as Hadoop FS, Google FS, Luster FS, Ceph FS,

Gluster FS, Oracle Cluster FS and TidyFS. This paper aims at elucidating the basic concepts

and techniques employed in the above mentioned File Systems. We explained the different

architectures and applications of these Distributed File Systems.

Keywords: Distributed File Systems, Google File System, Hadoop File System, Oracle

Cluster File System, Ceph File System.

INTRODUCTION

Distributed File System (DFS) is an addition to the

concept of file system which performs the function of

managing files and data that are stored on various

devices on the computer system. They are

characterised with high performance, scalability and

dependability through the use various state-of-the-art

techniques. The people outside sees the DFS as one

undivided storage medium (Vaidya and Deshpande,

2016). File systems are concept that allows users to

read, maneuver and arrange data (Shyam and

Sudarshan, 2015). Usually, the data is kept in storage

locations as files in a hierarchical tree in which the

nodes are referred to as directories or folders. The file

system allows a similar view, unconnected to the

primary medium of storage that can be floppy disk,

hard disk, flash disk and CDs (Suralkar et al., 2013).

A distributed file systems (DFS) is a system that

permits many users to retrieve, via the network, a file

structure stored on one or other machines in isolated

or distant locations (File Servers) by means related

structures to the one employed to retrieve the file

stored on the local machine. It uses a client/server

model in which data is distributed among many

storage locations, usually known as nodes (Elomari et

al., 2017). Distributed file systems are occasionally

perceived to be a single storage device but in actual

fact they are interface to a larger extent creating the

platform for the storage of data on several machines.

However, the DFS offers location transparency and

duplication to enhance data accessibility in situation

where there is failure or heavy load. One of the

drawbacks of DFS is bottlenecks which can lead to

traffic jam and restricted access in some

workstations. Such situation can be expanded to

cover a sizable quantity of storage locations and

offering moderate performance degradation in their

operations while there are possibilities of hardware

failure.

HADOOP DISTRIBUTED FILE SYSTEM

(HDFS)

The Hadoop is a distributed parallel, fault-tolerant

distributed file system that drew its creative ideas

from the Google file system (Suralkar et al., 2013).

The architecture was meant to dependably store files

that are very huge in size around machines having

large allocation unit and deployed on low-cost

hardware (Elomari et al., 2017). The Hadoop DFS is

advantageous because it allows large volume of data

to be processed within a short time and is appropriate

for use in storing applications with huge data sets.

Hadoop Distributed File System (HDFS) divides

large data files into different clusters and each

segment is managed by different machines in the

group (Shvachko, et al., 2010). Each segment is

duplicated across many machines in a cluster, so that

if any of the machines malfunctions it does not makes

the data to be inaccessible (Pooja, 2014). In spite of

the several benefits of HDFS, there is still a foremost

mailto:gbengadada@unimaid.edu.ng

A COMPARATIVE …… . Dada, E. G. and Joseph, S. B. FJS

 FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 223 - 233

224

challenge which is data security. Whenever a virus,

malware or worm infect a data, it rapidly affects all

the data. Another challenge with HDFS is that it is

susceptible in nature and unsuitable for storing small

data. Each file is stored as a sequence of blocks; all

blocks in a file excluding the last block are of the

same size. Blocks belonging to a file are reproduced

for fault tolerance. The block size and replication

factor are can be configured for each file. The files

are “write once” and only one writer can write on it at

any time (Hurwitz et al., 2013). Other drawbacks of

Hadoop DFS include centralisation. The Hadoop

system uses a centralized master server. Thus, the

Hadoop cluster is unreachable whenever its

NameNode is inoperative (Gemayel, 2016). A

suitable recovery approach to solve this problem so

far is to restart the NameNode, and adequate steps are

being taken regarding the ability of the system

automatically recover. Moreover, HDFS have

scalability issues. Since the NameNode stores the

entire namespace and block locations in memory, the

size of the NameNode heap reduces the number of

files and blocks that can be addressed. A possible

solution to this problem is to permit the sharing of

physical storage by several namespaces and

NameNodes within a cluster (Suralkar et al., 2013).

Architecture of HDFS

HDFS cluster contains one namenode, a master

server and several datanodes known as slaves in the

architecture. The HDFS stores filesystem metadata

and application data independently. HDFS stores

metadata on an autonomous dedicated server named

Namenode and Application data are stored on

separate servers termed Datanodes. Every servers are

fully connected and communicated with the TCP

based protocols. Figure 1 shows the complete

architecture of the HDFS.

Fig.1: HDFS Architecture (Source: DataFlair Team, 2017).

Areas of Application of HDFS:

According to Sravanthi and Reddy (2015), the areas

of application of HDFS among many others include

the following;

1. Agriculture: HDFS have found application

in the agricultural sector. For instance in

genetic engineering, where sensors are used

to monitor plant reactions to various changes

in the environment, large amount of data is

collected and the simulation will allow for

the discovery of the most appropriate

environmental conditions for various plants.

2. Stock Exchange: HDFS is broadly used

through an analytical database to identify

illegal trading patterns and also to uncover

fraudulent activities.

3. Big Data Applications (BDA): HDSF can

be used to effectively store big data. Big

data application is a software application

which analyses big data by processing them

in a very large parallel framework. For

example data from traffic routine, stock

market updates, tweet massages and others.

4. Clustering: Data store in HDFS can be

divided clusters. This is used mainly to

identify and address group of data through a

single click using a k-means algorithm.

A COMPARATIVE …… . Dada, E. G. and Joseph, S. B. FJS

 FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 223 - 233

225

5. Enterprise: HDFS is used for in-data

analytics help business to make decisions

faster than another traditional analytic tool.

6. Credit cards: HDFS can assist an

organisation to detect possible fraudulent

acts in credit cards transactions. Companies

depend on the in-database analytics because

of its speed and accuracy. It does a kind of

verification before authorization where there

is any suspicious activity.

7. Consumer goods: HDFS is used for storing

collection of consumers’ details and

activities. For example type of goods or

product, place of purchase, quantity

purchased, online transactions etc. When

analyzed, it can help a company to

understand some information such as the

reason why customers purchase some goods

more than others and the areas where they

have to intensify their efforts such as

marketing the product.

8. Banking: Banks make use of HDFS for

storing customer data and also assists in

detecting any questionable customer

activity. It provides easy access to

customer’s information wherever the

customer requests for it. It helps the banks to

also track their progress and enhance the

efficiency of their service.

9. Hadoop is also being used by the giant ISP

(Yahoo) and popular social media such as

Facebook.

Google File System

Google File System (GFS) is a distributed file system

introduced by Google to manage huge amount of data

which is spread across different databases

(Ghemawat et al., 2003). GFS is mainly intended to

provide efficient, dependable and fault tolerant access

to data by employing huge clusters of commodity

servers. Google system (GFS cluster) is made up of

one master and many Chunk servers (nodes) and can

be retrieved by several clients (Vijayakumari et al.,

2014). GFS files are partitioned into chunks of 64

megabytes, and are normally appended to or read. It

is overwritten or compressed only in exceptionally

seldom cases. Compared with other conventional file

systems, GFS is planned and enhanced to operate in

data centers to offer exceptionally great data

processing capacity, minimal delay to rapidly

changing data and continue in its operations despite

individual server failures (Gemayel, 2016). The

features that make GFS highly appealing include:

continuous operation in the event of system

breakdown, important data duplication, automatic

and effective, salvaging corrupted or damaged data,

superior sum of the data rates that are delivered to all

terminals in a network, decreased client and master

communication due of huge chunk server size,

namespace organisation and securing, and better

accessibility.

Some of the advantages of GFS include its very high

availability and high faults tolerance through data

duplication. Its single master design makes it very

efficient and simple. GFS ensures data integrity by

verifying of each copy by chunk server using check

sum. It has a reduced check sum cost. It has an

increased bandwidth because of its batch operations

such as cabbage collection and writing to operation

log. At client end, no synchronization is needed

because of the append operations. It takes care of

caching issues. It automatically collects garbage

chunks using garbage collection. Continuous

monitoring of chunk server by GFS through

continuous messaging (Ghemawat et al., , 2003).

The GFS is limited to special purpose design and thus

cannot accommodate a general-purpose design. It is

very inefficient in the case of small files (Gemayel,

2016). Slow garbage collection is a setback i.e. when

the files are not static. Consistency checks are done

by the clients themselves. When the number of

writers increase there can be degradation in the

performance of the system. The master memory also

poses a limitation (kaushiki, 2012).

Architecture of GFS

A GFS cluster is made up of a one master and many

chunkservers. It can be retrieved by several clients, as

shown in Figure 2. Each of the components is

normally a service Linux machine running a user-

level server process. The chunkserver and a client can

be run on similar computer without difficulty

provided that the resources on the computer system

allows it and the inferior inconsistency brought about

by running perhaps application code that is likely to

act in an unusual manner is suitable (Ghemawat et

al., , 2003).

It is easy to run both a chunkserver and a client on

the same machine, as long as

A COMPARATIVE …… . Dada, E. G. and Joseph, S. B. FJS

 FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 223 - 233

226

 Fig. 2: Architecture of GFS (Source: Ray, 2015)

Areas of Application of GFSMapReduce:

This is the major application area of GFS.

MapReduce is a programming model proposed by

Google and used by both GFS and HDFS. The

principal responsibility of MapReduce is to serve as a

platform for the development and execution of large-

scale data processing tasks. Hence, MapReduce takes

advantage of the high processing power made

available by computing clusters while at the same

time presenting a programming model that makes

easier the development of such distributed

applications. MapReduce make the breakdown of

jobs and fusion of results stress-free. It also offers the

opportunity to easily track jobs and task.

LUSTER FILE SYSTEM

Luster is a file system designed for efficient storage

(Paul et al., 2013). Luster file systems have the

capacity to change in size and can be integrated into

several computer clusters that have thousands

of client nodes, large storage capacity on several

servers (Sage et al., 2004). This makes Luster file

systems a widely accepted file system for use in

businesses where massive data centers are

required. Luster file systems have high performance

abilities and open licensing, it is commonly used

in supercomputers (Paul et al., 2013). Today, Luster

is completely based on Linux and usually use kernel-

based server modules to produce the required

performance, but it can be re-exported with NFS or

CIFS to allow use by Windows and OS X clients.

Another notable features of Luster are incorporated

network diagnosis, and performance tracking and

fine-tuning mechanisms. Luster can support several

kinds of clients and runs on almost any modern

hardware. Scalability is one of the most critical

characteristics of Luster. It can also be used to

produce a single namespace of what seems to be

practically immeasurable capacity (Paul et al., 2013).

Architecture of Luster File System

The Luster architecture aims to connect a large

number of clients with the data servers in an efficient

and foolproof manner. According to (Knowledge

Base, 2018), Luster file system is made up the

following components:

 Luster clients: This DFS client software

runs on machines like desktop nodes that

interacts with file system's servers through

the Luster Network (LNET) layer. In an

establishment, Luster offers clients a

combined all inclusive namespace for every

files and data in the file system. When

Luster is attached on a client, its users can

manage file system data in a way that makes

it look as if the data is stored locally.

Nevertheless, the clients will under no

circumstances be able retrieve data instantly

from any part of a computer file, without

having to read the file from the beginning in

the main file storage.

 Management Target (MGT): The MGT

keeps file system information settings for

use by the clients and other Luster parts.

Even though MGT storage prerequisites are

reasonably low even when the system that

controls how data is stored and retrieved file

is very huge, the information kept in it is

highly essential to log on to the system.

 Management Server (MGS): It manages

the organization data stored on the MGT.

Luster clients communicate with the MGS to

access information from it.

 Metadata Target (MDT): It keeps

filenames, directories, authorizations, and

other data that gives information about the

namespace.

 Metadata Server (MDS): The MDS is in

charge of data about namespace kept on the

MDT. Luster clients get in touch with the

MDS to access information from the MDT.

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserver GFS chunkserver
) (chunk handle, byte range

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

https://en.wikipedia.org/wiki/Client_(computing)
https://en.wikipedia.org/wiki/Supercomputer

A COMPARATIVE …… . Dada, E. G. and Joseph, S. B. FJS

 FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 223 - 233

227

The MDS does not participate in file

read/write actions.

 Object Storage Targets (OSTs): The OSTs

keeps user file data in one or many logical

objects which have the ability to be streaked

hrough various OSTs.

 Object Storage Server (OSS): The OSS

supervises read/write actions for (normally)

several OSTs.

Depicted in figure 3 below is the architecture of the Luster distributed file system.

Fig. 3: Luster Architecture (Source: Torben, 2018)

Area of Application

This Luster file system are used in various areas of

applications such as Aeronautic Engineering,

Banking, Topography, Science of Weather and

Climate. In in industries such

as meteorology, simulation, oil and gas, life

science, and finance. It is remarkable to know that a

Luster file system is employed for a wide range of

purpose, it is used for program interfaces and services

relative to the initial user of these interfaces and

service in many sites, from Internet service providers

(ISPs) to large businesses that deals with financial

and monetary transactions.

Ceph Distributed File System

Ceph a distributed file system that offers users

outstanding performance, dependability, and

scalability. Ceph exploits the split between data and

metadata organization by substituting table that an

operating system maintains on a hard disk that

provides a map of the clusters with a pseudo-random

data distribution function (CRUSH) designed for

diverse and dynamic clusters of undependable object

storage devices (OSDs). Ceph was designed to be a

reliable, scalable fault-tolerant parallel file system.

Incorporated into Ceph is an smart and robust data

placement scheme, named CRUSH. The CRUSH

algorithm allows a client to pre-calculate object

placement and layout while taking into consideration

of failure domains and hierarchical storage tiers.

Ceph is built on top of a unified object management

layer, RADOS. Both metadata and the file data can

take advantage of this uniformity. Most of the Ceph

processes reside in user-space. Generally speaking,

this makes the system easier to debug and maintain.

The client-side support has been integrated into

Linux mainline kernel, which eases the deployment

and out-of-box experience (Feiyi et al., 2013).

The CephFS is very attractive because it provides a

very robust data safety for mission critical

applications. It makes practically boundless storage

file systems possible. Applications that use file

systems can use CephFS with POSIX semantics.

Moreover, it does not need any integration or

customization. CephFS automatically stabilise the

file system to provide best performance. Also,

CephFS enables enhanced scalability of the system in

which clients execute huge read/write operations that

linearly scale with the number of objects storage

devices in the RADOS cluster. However, each Client

is constrained by the bandwidth of its network link.

Some of the weaknesses of CephFS is that it

occasionally endangers file system by making

unauthorised users to be aware of the existence such

thereby compromising data privacy. Features like

Snapshots are not offered by CephFS. Also, testing

gets inadequate coverage in test suite.

Architecture of CephFS

CephFS is a file storage solution part of Ceph. It

works as a high-level component within the system

that provides files storage on top of RADOS, the

A COMPARATIVE …… . Dada, E. G. and Joseph, S. B. FJS

 FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 223 - 233

228

object is a store upon which all Ceph storage solution

are built (Sage et al., 2006). Two types of entities

cooperate to provide a file system interface: Clients

and metadata server (MDS). What is required of a

client is just to open a file (i.e. you inform the MDS

that you wants to use the file) and afterward the

read/write is changed instantaneously, with only

intermittent updates to the MDS (Giacinto et al.,

2014). The CephFS is depicted in figure 4 below.

Fig 4: CephFS Architecture (Source: John, 2015)

Areas of Application of CephFS

1. CephFS is used in storing large files

efficiently.

2. They are used in the Field of

Telecommunication for storage and

distribution.

GlusterFS File System

GlusterFS is a distributed network file system that

has the capability to handle growing amount of work.

It is developed using C programming language

(Shyam and Sudarshan, 2015). By means of

conventional standard hardware, GFS can produce

massive, storage solutions that are geographically

dispersed. It can be used for media streaming, data

transformation and modeling, and other data and jobs

that affects the maximum data transfer rate of a

network or Internet connection. GlusterFS is an

unrestricted and source code that anyone can inspect,

change, and distribute. It is easy to understand its

architecture. Users put it on their computer for

personal use. The idea of information about data for

storing files on server does not apply in GlusterFS. It

have the ability to compute files’ address and retrieve

files without difficulty. GFS utilizes the idea of

bricks and volumes to separate various user’s data on

small allocation units for a file within a file system

(Shyam and Sudarshan, 2015).  GlusterFS have four

major notions:

Bricks - the part of a computer in which information

is stored. It is made up of a server and route that

points to a file system location by following the

directory tree hierarchy (i.e., server:/export)

Translators - components that are joined to transport

data from point A to point B

Trusted Storage Pool – a reliable interconnection of

servers that will as the central repository of data and

programs that are shared by users in a network

Volumes - group of bricks having the same condition

for redundancy.

Architecture of GlusterFS file System

GlusterFS system architecture is easy to comprehend

and it is equally a robust file system written in user

space that employs FUSE to attach itself to programs

that forms an interface between an operating system's

kernel and a more concrete file system. GlusterFS file

system architecture is in different levels. This makes

it possible to add or delete features. GlusterFS file

system works on ext3, ext4, xfs.etc.to store data. It

allows horizontal growth or the addition of new

resources in the network. The conceptual model that

defines the structure of GlusterFS is depicted in

figure 5 below.

A COMPARATIVE …… . Dada, E. G. and Joseph, S. B. FJS

 FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 223 - 233

229

Fig 5: GlusterFS System Architecture (Source: Shyam and Sudarshan, 2015)

Areas of Application of GlusterFS

GlusterFS cluster have found relevance in computer

storage of large and voluminous data, electronic

device that can be used to store data (e.g. hard drives,

CDs, DVDs, Floppy Disks, USB drives, ZIP disks,

magnetic tapes and SD cards).

The Oracle Cluster File System (OCFS)

The OCFS is a file system which is shared by being

installed on many servers concurrently. Oracle makes

balancing and automatically and seamlessly switch to

a highly reliable backup solutions such as OCFS2

and ACFS possible by allowing shared disk clustered

file system architecture (Burleson, 2017). A cluster

comprises of two or more autonomous, but

interconnected, servers. Many hardware merchants

have made available cluster capacity for some years

to satisfy many needs. Some clusters were meant

only to offer the users superior availability by

permitting the relocation of work to an auxiliary node

if the operational node crashes. The reason for

designing others was to provide scalability by making

it possible for user connections or work to be

distributed across the nodes. Additional popular

attribute of a cluster is that it should seem to an

application that it is one server. Likewise, many

servers should be managed as much as possible in the

same manner as a single server is being managed

(Burleson, 2017). The software that balances

workload to reduce bottlenecks in the cluster makes

this transparency possible. In other for the nodes to

appear as one server, files need to be kept in a way

that they can be located by the particular node that

requests for them. We have existence today several

softwares that define the type and state of each node

in the cluster and the relation between them. This

solves the data retrieval problem though it relies on

the prim goal of the person that designed the cluster.

The connection is a computer network topology

employed as a way of transmitting information

between each node of the cluster. A cluster is made

up of many connected computers or servers that look

as though they are one server to end users and

applications. Oracle Real Application Clusters

(Hupfeld, et al., 2008). Some of the benefits of OCFS

are Advanced Security (POSIX ACLs and SELinux),

REFLINK Snapshots with Copy-On-Write, in-built

Clusterstack with a Distributed Lock Manager, file

Size Scalability up to 16 TB, and cluster Scalability

up to 32 Nodes.

Architecture of Oracle Cluster File System

Fig. 6: Oracle Cluster File Architecture (Source: Carlos, 2008).

A COMPARATIVE …… . Dada, E. G. and Joseph, S. B. FJS

 FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 223 - 233

230

Area of Application of Oracle Cluster file system

According to Burleson (2017), Oracle Cluster File

System is applicable in the areas explained below:

i. Metadata caching

ii. Metadata journaling

iii. Asynchronous and direct I/O support for

database files for enhanced database

workload, throughput, resources,

optimization, and contention.

iv. Oracle Database has found application in

storing files related to software programs

designed to accumulate, manage and

disseminate information efficiently like

CAD, medical images, invoice images,

documents, etc. The SQL usual data type,

BLOB (and CLOB) is used by applications

to store files in the database. Oracle

Database offers superior security,

accessibility, ability to operate without

breakdown despite degradation in

transactions, and capacity to be handle

increase in file size compared to

conventional file systems. Each time files

are stored in the database, they are copied or

achieved, harmonized to the failure

recuperation site by means of Data Guard,

and regained together with the relational

data in the database (Burleson, 2017).

TidyFS

The Tiny File Systems is a small uncomplicated

client/server-based application that permits clients to

retrieve and process data stored on the server as if it

were on their own. TidyFS offer the abstractions

required for concurrent processing of data on clusters

(Fetterly, et al., 2010). There has been a sudden

increase of research in computing using large

numbers of already-available computing components

for parallel computing, to get the best number of

useful computation at reduced cost. Often, the high

number of reads and writes, causing latency and

bottlenecks for such clusters is generated by a

software systems that runs on a cluster of networked

computers and looks like one dependable machine

that offers huge collective volume of computational

and I/O performance. Examples include Map Reduce,

Hadoop or Dryad. They have a high-throughput, they

are sequential, and are read-mostly (Fetterly, et al.,

2010). Unlike the other DFS that we discussed in the

previous sections, TidyFS is very simple. The system

does not have any complicated duplication protocols

and read/write code paths by taking advantage of

workload properties which include the nonexistence

of simultaneous writes to a file by many clients, and

the presence of end-to-end fault tolerance in the

execution engine (Fetterly, et al., 2010).

Some of the advantages of TidyFS include: it permits

applications to carryout I/O by means of whatsoever

access patterns and techniques for reducing the

number of bits required to represent data. This can

save storage capacity, speed up file transfer, and

decrease costs for storage hardware and network

bandwidth. It makes migrating data and tools from

obsolete technologies to modern ones easier. It

removes the need for an additional layer of

indirection by means of TidyFS interfaces, ensuring

that clients can realize the highest obtainable I/O

performance of the indigenous system (Sajjad and

Harirbaf, 2013).

Architecture of TidyFS

Fig. 7: TidyFS System Architecture (Source: Ghemawat et al., 2003)

The TidyFS storage system is made up of three

sections: a metadata server; a node service that

performs housekeeping tasks running on each cluster

computer that stores data; and the TidyFS Explorer, a

GUI which permits users to observe the status of the

system

A COMPARATIVE …… . Dada, E. G. and Joseph, S. B. FJS

 FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 223 - 233

231

Area of Application

TidyFS is mostly used by TinyOS file system.

The table 1 below is a comparison of the different distributed file systems we studied in this paper.

Table 1: Comparative table of characteristics of distributed file systems under study

 Data

Scalability

Fault

Tolerance

Data Access

Concurrency

Data

Striping

Supported OS Reference

HDFS Yes Block

Replications.

Secondary

Namenode.

Files have

strictly one

write at any

time

Block size

of 128MB

Linux and

Windows are the

supported , but

BSD, Mac OS/X,

and Open Solaris

are known to

work

Suralkar et al.,

2013

Google

FS

Yes Chunk

Replication.

Meta data

replication

Optimised for

concurrent

‘appends’

64MB

Chunks

Linux Gemayel, 2016

Luster FS Yes Meta-data

replication by

a single

server.

Data is stored

on reliable

nodes

Many seeks

and read-and-

write

operations of

small amounts

of data

800

MB/sec of

disk

bandwidth

Linux and

provides a

POSIX-compliant

UNIX file system

interface.

Paul et al., 2013

CephFS Yes Metadata is

replicated

across

multiple

MDS

nodes.

Allow

aggregate I/O

performance to

scale with the

size of the

OSD cluster.

14-node

cluster of

OSDs

(around

58MB)

Linux VFS and

page cache.

Sage et al.,

2006

GlusterFS Yes Replication

means single

file can be

cloned

and placed on

multiple

nodes.

Lowest level

translator,

stores and

accesses data

from local file

system

Atleast

16KB file

size

Linux but

supports redhat.

CentOs, Fedoro.

Ubuntu flavors of

Linux operating

Shyam and

Sudarshan,

2015

Oracle

Cluster FS

Yes Oracle Net

connect-time

failover and

connection

load

balancing.

It supports row

level locking

Can

handle 4.3

billion

fully

consistent

reads and

1.2 fully

transactio

nal writes

per minute

Windows, Red

Hat Linux and

United Linux

Burleson, 2017

Tidy FS Yes Automatic

replication of

read-only

database parts

Uses

native

interfaces to

read and write

data

Not

available

Windows Fetterly, et al.,

2010

A COMPARATIVE …… . Dada, E. G. and Joseph, S. B. FJS

 FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 223 - 233

232

CONCLUSION

A comparative study of some important features of

seven distributed file storage systems were

considered in this paper. We first discussed the

different types of distributed file systems, their

architectures and areas of application. At the end, we

drew a table of comparison (Table 1) whose each

column's header is a vital attribute of a DFS system

and each line's header parallels one of the seven DFS

systems we studied. At the intersection of each row

and column, we indicate whether the attribute is

implemented by the system in addition to the

distinctiveness of the implementation. It is obvious

from our analysis that the foremost mutual interest of

these systems is scalability. These systems are aimed

at efficiently managing the large volume of data that

kept on increasing on daily basis. Many drawbacks

are associated with centralised storage systems. Their

maintenance is complex and costly. Scalability in any

DFS should with lowest cost and labour.

Moreover, availability of data and fault tolerance

continue to be some of the main concerns of DFS.

Several systems are apt to employ cheap hardware

for storage. Such situation will the systems

vulnerable to periodic failures. This challenge is

corrected by means of replication, versioning,

snapshots and others which have the goal of restoring

the system state, in most cases spontaneously, once a

fault or total loss occurs at any node. In addition to

these mechanisms, data striping and lock mechanisms

are included to control and enhance simultaneous

access to the data. The development of concurrent

access is very crucial for systems that manage huge

files in substantial quantities. Locking a whole file to

modify a portion of it can stop the access to this file

for an undefined duration of time. Implementing

solutions that will simply lock the byte range

involved in the alteration is therefore principal. The

ability of the DFS to work on multiple operating

systems can be a great plus to its performance.

Among the seven DFS we studied, the HDFS is the

one offering the highest collection of operating

systems that can support its implementation.

REFERENCE

Akram Elomari, Larbi Hassouni, Abderrahim

Maizate (2017). The Main Characteristics of Five

Distributed File Systems Required for Big Data: A

Comparatively Study. Advances in Science,

Technology and Engineering Systems Journal, vol. 2,

No. 4, pp. 78-91.

Burleson (2017). Oracle Cluster File System (OCFS)

Tips. Available at http://www.dba-

oracle.com/disk_ocfs.htm

Carlos Fernando Gamboa (2008). Atlas LCG 3D

Oracle cluster migration strategy at BNL, Gris

Group, RACF Facility, Brookhaven National Lab,

WLCG Collaboration Workshop. Available at

http://slideplayer.com/slide/8285174/

D. Fetterly, M. Haridasan, M. Isard, and S.

Sundararaman, (2011). TidyFS: A Simple and Small

Distributed File System, in USENIX ATC’11,

Available at

http://research.microsoft.com/pubs/148515/tidyfs.pdf

.

DataFlair Team, (2017). Hadoop HDFS Architecture

Explanation and Assumptions. HDFS Tutorials.

Available at https://data-flair.training/blogs/hadoop-

hdfs-architecture/.

Feiyi W. Mark N. Sarp O. Dong F. (2013). Ceph

Parallel File System Evaluation Report. Oak Ridge

National LaboratoryOak Ridge, Tennesse.

Felix Hupfeld, Toni Cortes, Bj¨orn Kolbeck, Jan

Stender, Erich Focht, Matthias Hess, Jesus Malo,

Jonathan Marti, Eugenio Cesario. (2008). The

XtreemFS architecture – a case for object-based file

systems in Grids, Concurrency And Computation:

Practice And Experience Concurrency Computat.:

Pract. Exper.: 8:1–12.

Giacinto Donvito, Giovanni Marzulli, Domenico

Diacono (2014).Testing of several distributed File-

systems (HDFS,Ceph and GlusterFS) for supporting

the HEP experiments analysis. Journal of Physics:

Conference Series 513 (2014) 042014

doi:10.1088/1742-6596/513/4/042014.

Hooman Peiro Sajjad and Mahmoud Hakimzadeh

Harirbaf. (2013). Maintaining Strong Consistency

Semantics in a Horizontally Scalable and Highly

Available Implementation of HDFS,Master Thesis,

KTH Royal Institute of Technology.

Hurwitz J., Nugent A., Halper F. (2013). Big Data for

Dummies. John Willey and Sons Inc, USA IBM

(2018). Apache MapReduce. Retrieved May 7, 2018,

from:

https://www.ibm.com/analytics/hadoop/MapReduce

John Spray (2015). CephFS Development Update.

Available at

events.linuxfoundation.org/sites/events/files/slides/C

ephFS-Vault.pdf

http://www.dba-oracle.com/disk_ocfs.htm
http://www.dba-oracle.com/disk_ocfs.htm
http://research.microsoft.com/pubs/148515/tidyfs.pdf
http://research.microsoft.com/pubs/148515/tidyfs.pdf
https://www.ibm.com/analytics/hadoop/MapReduce

A COMPARATIVE …… . Dada, E. G. and Joseph, S. B. FJS

 FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 223 - 233

233

Kaushiki, (2012). Google File System. Available at

kaushiki-gfs.blogspot.com/

Knowledge Base (2018). About Luster file systems.

Indiana University. Available at:

https://kb.iu.edu/d/ayfh

Kuchipudi Sravanthi and Tatireddy Subba Reddy

(2015). Applications of Big data in Various Fields.

(IJCSIT) International Journal of Computer Science

and Information Technologies, Vol. 6 (5) , 2015,

4629-4632.

Madhavi Vaidya, Shrinivas Deshpande (2016).

Comparative Analysis of Various Distributed File

Systems & Performance Evaluation using Map

Reduce Implementation, IEEE International

Conference on Recent Advances and Innovations in

Engineering (ICRAIE-2016), December 23-25,

Jaipur, India, pp.

Nader Gemayel (2016). Analyzing Google File

System and Hadoop Distributed File System.

Research Journal of Information Technology, 8: 66-

74.

Pooja S.H. (2014). The Hadoop Distributed File

System. International Journal of Computer Science

and Information Technology, vol. 5(5), 6238-6243.

R.Vijayakumari, R.Kirankumar, K.Gangadhara R.

(2014). Comparative analysis of Google File System

and Hadoop Distributed File System. International

Journal of Advanced Trends in Computer Science

and Engineering, vol. 3 , No.1, pp. 553– 558.

Ray Walshe (2015). Google File System - DCU

School of Computing. Available at

https://www.computing.dcu.ie/~ray/teaching/CA485/

notes/LectGFS.pdf.

Sage A. Weil, Kristal T. Pollack, Scott A. Brandt,

and Ethan L. Miller (2004). Dynamic Metadata

Management for Petabyte-Scale File Systems,

Proceedings of the 2004 ACM/IEEE Conference on

Supercomputing (SC ’04), Pittsburgh, PA, November

2004.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller,

Darrell D.E. Long, Carlos Maltzahn (2006). Ceph: A

Scalable, High-Performance Distributed File System,

Proceedings of the 7th Symposium on Operating

Systems Design and Implementation (OSDI), Seattle,

WA, November 2006.

Sanjay Ghemawat, Howard Gobioff, Shun-Tak

Leung.(2003). The Google File System, SOSP '03

Proceedings of the nineteenth ACM symposium on

Operating systems principles.

Shvachko, Kuang, Radia, Chansler (2010). The

Hadoop distributed file system, Proceedings of the

26th Symposium on Mass Storage Systems and

Technologies (MSST ’10), Lake Tahoe, NV, pp. 1–

10.

Shyam C Deshmukh, Sudarshan S Deshmukh.

(2015). Simple Application of GlusterFs: Distributed

file system for Academics. International Journal of

Computer Science and Information Technologies,

vol. 6 (3) , pp. 2972-2974.

Sunita Suralkar, Ashwini Mujumdar, Gayatri

Masiwal, Manasi Kulkarni (2013). Review of

Distributed File Systems: Case Studies, International

Journal of Engineering Research and A pplications

(IJERA), vol. 3, Issue 1, pp. 1293-1298.

Torben Kling Petersen (2018). Inside The Luster File

System - An introduction to the inner workings of the

world’s most scalable and popular open source HPC

file system Technology Paper, Seagate. pp. 1-14.

https://kb.iu.edu/d/ayfh

