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ABSTRACT  

In the present study, the effects of thermal and velocity slip on steady boundary layer 

magnetohydrodynamic flow, heat and mass transfer of an incompressible upper convected 

Maxwell fluid over a permeable stretching sheet are analyzed. Similarity transformation technique 

is adopted to obtain the self-similar coupled nonlinear ordinary differential equations and then the 

self-similar equations are solved numerically using Runge-Kutta-Fehlberg integration technique 

with shooting method. The velocity and temperature fields are enhanced by increasing values of 

velocity and thermal slip parameters respectively. The wall shear stress, rates of heat and mass 

transfer are enhanced by the increments in the values of thermal and velocity slip parameters. The 

presence of thermal and velocity slip on the flow fields is found to be of great significance to the 

investigation.   

Keywords: Velocity slip, Thermal slip, Maxwell fluid, Hydromagnetic flow, Heat and mass 

transfer, Stretching sheet. 

 

INTRODUCTION 

Mechanics of non-Newtonian fluids has emerged as one 

of the most important research areas of modern Applied 

Mathematics. Many biological and industrial fluids 

have elastic characteristics which cannot be ignored 

because most of them are suspensions of particles in the 

viscous liquid with short memory. As a result of this, 

almost all biological and industrial fluids are non-

Newtonian for which the Navier-Stokes equations are 

inadequate. Such fluids are found to exhibit a non-

linear stress strain relation and thus the resulting 

differential systems of equations are highly nonlinear. 

Keeping these challenges in view, many investigators 

have engaged in obtaining solutions for flow, heat and 

mass transfer of non-Newtonian fluid with different 

geometries. For these, one may refer to the studies of 

Sarpakaya (1961), Soundalgekar (1974), Gupta and 

Sridhar (1985), Anderson (1992), Eldabe-Nabil and 

Mohammed-Mona (2002), Vajravelu and Rollins 

(2004), Khan and Sanjayanand (2005), Sanjayanand 

and Khan (2006), Abel and Mahesha (2008), Prasad et 

al. (2010), Olajuwon and Baoku (2014), Baoku and 

Olajuwon (2014), Baoku (2014), Baoku et al. (2015), 

Koriko et al. (2016), Popoola et al. (2016) and Rahbari 

et al. (2018).   

Generally, non-Newtonian fluids are categorized into 

three types, namely; the differential, rate and integral 

types. The simplest class of rate type fluid is known as 

Maxwell fluid. Maxwell fluid model is important 

especially to viscoelastic problems having small 

dimensionless relaxation time. The problems of 

hydrodynamic Sakiadis flow of an upper-convected 

Maxwell (UCM) fluid over a rigid plate moving 

steadily in a quiescent fluid was investigated by 

Sadeghy et al. (2005). They employed perturbation 

method and two numerical schemes, namely; the 

Runge-Kutta and finite difference methods for the 

solution to the problem. Hayat and Sajid (2006) 

extended the work of Sadeghy et al. (2005) to 

magnetohydrodynamic flow for the totally analytic 

solution of the problem. Fetecau and Fetecau 

(2003a,b,c) examined the problems of Maxwell fluids 

past an infinite plate; on the Rayleigh-Stokes problems; 

and on decay of a potential vortex respectively. Zierep 

and Fetecau (2007) further studied the Rayleigh-Stokes 

problem of a Maxwell fluid for three different types of 

initial and/or boundary conditions. Hayat et al. (2008) 

also discussed the magnetohydrodynamic (MHD) flow 

and mass transfer of upper-convected Maxwell fluid 

past a porous shrinking sheet in the presence of 

chemically reactive species. Hayat and Qasim (2010) 

further provided solutions to the flow and mass transfer 

characteristics in a Maxwell fluid past a stretching sheet 

with Ohmic dissipation, thermal radiation and 

thermophoresis. Wang and Tan (2008) addressed the 
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stability analysis of double-diffusive convection of a 

Maxwell fluid in a porous medium.  

Recently, Ishak et al. (2015) examined the effect of 

magnetohydrodynamic flow and heat transfer of the 

upper-convected Maxwell fluid over a 

stretching/shrinking sheet with prescribed heat flux. 

They obtained numerical solution for their problem. 

Mustapha et al. (2015) also addressed a steady flow of 

Maxwell nanofluid induced by an exponentially 

stretching sheet subject to convective heating. 

Numerical solutions were obtained for the emerging 

non-linear boundary value problem using MATLAB 

built-in function bvp4c. They concluded that velocity 

decreases and temperature increases when the local 

Deborah number is increased. Hayat et al. (2015) 

investigated the convective heat and mass transfer of a 

three-dimensional flow of Maxwell fluid over a 

stretching surface with heat source. Concentration and 

thermal buoyancy effects were accounted for and 

concentration boundary layer thicknesses were found to 

be decreasing functions of stretching ratio. Omowaye 

and Animasaun (2016) analyzed the upper convected 

Maxwell fluid flow in variable thermophysical 

properties over a melting surface situated in hot 

environment subject to thermal stratification. They 

concluded that an increase in stratification parameter 

corresponds to decrease in the heat energy entering into 

the fluid domain from free stream and this significantly 

reduces the overall temperature and temperature 

gradient of UCM fluid as it flows over a melting 

surface.       

Adegbie et al. (2015) presented the dynamics of an 

upper-convected Maxwell fluid flow with heat and 

mass transfer over a melting surface. They accounted 

for the influence of melting heat transfer, thermal and 

solution stratification in their work using the classical 

Runge-Kutta method with shooting technique. Mushtaq 

et al. (2014) took into account the influence of thermal 

radiation of the laminar two-dimensional 

incompressible stagnation point flow of an upper-

convected Maxwell fluid over a stretching sheet. They 

investigated an entirely different aspect of Rosseland 

approximation for thermal radiation. Shateyi et al. 

(2015) explored spectral relaxation method to 

investigate the entropy generation on a flow and heat 

transfer of a Maxwell fluid. Pop et al. (2012) analyzed 

the MHD flow and heat transfer of an upper-convected 

Maxwell fluid over a stretching surface with variable 

thermophysical properties. Koriko et al. (2016) 

examined the boundary layer of an upper-convected 

Maxwell fluid flow with variable thermal-physical 

properties over a melting thermally stratified surface. 

They employed the classical Runge-Kutta method with 

shooting technique to find that the transverse velocity, 

longitudinal velocity and temperature of the UCM fluid 

were increasing functions of temperature-dependent 

viscous and thermal conductivity parameters.   

Literature survey reveals that little attention has been 

paid to the slip flow, heat and mass transfer of non-

Newtonian fluids especially Maxwell fluid. Fluid 

patterns characterized by the slip boundary conditions 

have special significances in many applications. In 

some instances, the fluids present a loss of adhesion at 

the wetted wall which compels it to slide along the 

wall. Consideration for no slip condition seems 

unrealistic for many non-Newtonian flows because they 

exhibit macroscopic wall slip. Particularly, no-slip 

condition is inadequate for rough surfaces and in micro 

electromechanical system (MEMS). The fluid which 

exhibits boundary slip finds applications in technology 

such as in the polishing of artificial heart and internal 

cavities in a variety of manufactured parts is achieved 

by imbedding such as fluids as abrasive [Sajid et al. 

(2008)].       

In all the aforementioned investigations, the effects of 

slip conditions have not been taken into account for 

Maxwell fluids. Such effects are very important for 

non-Newtonian viscoelastic Maxwell fluid like polymer 

melts which exhibit wall slip. Hayat et al. (2010) 

studied the slip effects on the magnetohydrodynamic 

peristaltic flow of a Maxwell fluid in a planar channel 

saturated with porous medium. Vieru and Zafar (2013) 

discussed the Couette flows of a Maxwell fluid 

produced by the motion of a flat plate. They analyzed 

the flow with the assumption that the relative velocity 

between the fluid at the wall and the wall is 

proportional to the shear rate at the wall under the slip 

condition at boundaries. They obtained velocity fields 

corresponding to both slip and non slip conditions for 

Maxwell and Newtonian fluids. The slip flow rate of a 

non-Newtonian Maxwell fluid past a stretching sheet 

was investigated by Sajid et al. (2014). Liu and Guo 

(2017) recently examined the magnetohydrodynamic 

flow of a generalized Maxwell fluid induced by a 

moving plate where the second-order slip between the 

wall and the fluid was considered. They concluded that 

the velocity corresponding to flows with slip condition 

is lower than for flow with nonslip conditions, and the 

velocity with second-order slip condition is lower than 

that with first-order slip condition.  

In this work, the steady laminar magnetohydrodynamic 

flow with velocity slip, mass and heat transfer with 

thermal slip in a Maxwell fluid over a porous stretching 

sheet is examined. To the best of the authors’ 

knowledge, the detailed survey of literature shows that 

no attention has given to the combined effects of 

thermal and velocity slip on hydromagnetic flow of 

viscoelastic Maxwell fluid, heat and mass transfer over 

a permeable stretching surface. The mathematical 

model is proposed in the form of partial differential 
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equations. Similarity transformation is applied to 

convert the equations into dimensionless forms of 

ordinary differential equations. Numerical solution is 

sought using the Runge-Kutta-Fehlberg integration 

scheme with shooting technique. The numerical 

integrations are performed over a substantially large 

domain to satisfy the outer boundary layer conditions 

and a satisfactory convergence criterion is ensured in all 

cases. Physical quantities are analyzed against the 

varying emerging parameters using graphs and tables.            

MATHEMATICAL MODEL 

Consider a two-dimensional steady and incompressible 

boundary layer flow of an upper-convected Maxwell 

fluid over a stretching sheet with surface temperature 

wT  and species concentration wC . The stretching 

velocity of the sheet is bxuw   with b  being a 

constant. Let the wall constant mass transfer be wV  

with 0wV  for injection and 0wV  for suction 

where wV  will be determined later. The flow is 

presumed to be generated by stretching sheet issuing 

from a thin slit at the origin. The sheet is then stretched 

in such a way that the speed at any point on the sheet 

becomes proportional to the distance from the origin. 

The respective free stream temperature and species 

concentration are 
T  and 

C . The coordinate system 

x - axis is along the stretching sheet while y - axis is 

normal to the sheet. The flow is subjected to a 

transverse and uniform magnetic field of strength 0B , 

which is applied in the positive y - direction, normal to 

the surface. The induced magnetic field is assumed to 

be very small in comparison to the applied magnetic 

field. The chemical reaction is also presumed to occur 

over the surface but not in the fluid. Based on these 

assumptions and following Sadeghy et al. (2005) and 

Hayat and Sajid (2007), the governing equations of the 

conservation of mass, momentum, energy and species 

concentration, using an order magnitude analysis of the 

y-direction momentum equation (normal to the sheet) 

and the usual boundary layer assumptions with 

negligible pressure gradient where other 

thermophysical properties are kept as constants in the 

presence of magnetic field, past a stretching sheet can 

be expressed as follows: 
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where x , y , u , v , T , C ,  , 0k ,  , 0B ,  , 

pC ,   and mD  are coordinate axes along the 

continuous surface in the direction of motion and 

normal to it, velocity components in the directions of x  

and y  axes, fluid temperature inside the boundary 

layer, species concentration of the fluid, kinematic 

viscosity, relaxation time, electrical conductivity, 

magnetic field flux, fluid density, specific heat at 

constant pressure, thermal conductivity and mass 

diffusivity respectively. 

The boundary conditions for the problem are:  


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
 , wCC      at 0y   (5) 

0 Uu ,  TT , CC  as y   (6) 
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where bxuw  , 

2
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,  l , d , M  and 

N  are the reference length of the sheet, a constant, 

velocity and  thermal slip factors respectively. It should 

be noted that 0 NM  corresponds to no-slip 

condition. The above boundary condition is valid when 

lx   which occurs very near to the slit. 

Introducing the following dimensionless quantities, the 

mathematical analysis of the problem is simplified by 

using the following similarity transforms: 
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The continuity equation (1) is satisfied if a stream function  yx,  is chosen as: 
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Using the above similarity transformation quantities, the governing equations (2) - (4) are transformed to the 

following coupled nonlinear ordinary differential equations: 
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where the parameters are defined as: 

akK 0  is the Deborah number,   is the similarity 

variable, prime is the differentiation with respect to  , 

f  ,   and   are the  dimensionless velocity, 

temperature and species concentration respectively, 
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Other important physical quantities of interest which 

are germane to the technological and engineering 

applications of the problem are the skin friction 

coefficient fC , Nusselt number xNu  and  Sherwood 

number xSh  which are defined as follows: 
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where the wall shear stress w , heat flux  wq  and mass flux wh  are given by: 
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x   is the local Reynolds number.  
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NUMERICAL PROCEDURE 

An efficient fourth-fifth order Runge-Kutta-Fehlberg 

method alongside the shooting technique has been 

employed to investigate the flow model for the above 

coupled nonlinear ordinary differential equations (9) - 

(11) with mixed boundary conditions in equations (12) 

and (13) for different values of emerging parameter, 

namely: Deborah Number K, magnetic interaction 

parameter Mn , Prandtl number Pr , Schmidt number 

Sc , velocity slip parameter A  and thermal slip 

parameter B . The nonlinear differential equations (9) – 

(11) are first decomposed into a system of first order 

differential equations. The coupled ordinary differential 

equations (9) - (11) are third order in )(f  and second 

order in )( and )(  which have been reduced to a 

system of seven simultaneous equations for seven 

unknowns. To numerically solve this system of 

equations using Runge-Kutta-Fehlberg method, the 

solutions require seven initial boundary conditions in 

all but two initial conditions in )(f , one initial 

condition in each )(  and )(  are available. 

However, the values of )(f  , )(  and )(  are 

known at  . These free stream conditions are 

utilized to produce unknown initial conditions at 

0  by employing shooting technique. The most 

important of this algorithm is to choose the appropriate 

finite value of 
 . Therefore, in order to estimate the 

value of  
 , some initial guess values are started with 

and the boundary value problems consisting of 

equations  (9) - (11) are solved to obtain )0(f  , 

)0(   and )0(  . The solution is repeated with 

another larger value of 
  until two successive values 

of )0(f  , )0(   and )0(   differ only after the 

desired significant digit. The last value 
  is taken as 

the finite value of the limit 
  for the particular set of 

physical parameters for determining the velocity, 

temperature and the species concentration, which are 

respectively )(f  , )(  and )(  in the boundary 

layer. After getting all the initial conditions, this system 

of simultaneous equations is solved using the fourth-

fifth order Runge-Kutta-Fehlberg integration scheme. 

The value of  10  has been selected to be 

appropriate in nearly all cases for the physical 

parameters governing the flow. Thus, the coupled 

boundary value problem of third order in )(f , 

second order in )(  and )(  has been reduced to a 

system of seven simultaneous equations of first order 

for seven unknown variables as follow:           

The equations (9) – (11) can be expressed as:                        
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  fPr                      (17) 

  fSc                 (18) 

The following new variables can be defined for the following equations: 

 ff 1  ,  ff 2 ,  ff 3 ,  4f ,   5f  ,  6f ,   7f   (19) 

The coupled higher order nonlinear differential equations and the mixed boundary conditions are transformed to 

seven equivalent first-order differential equations as follows: 
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Also, the boundary conditions are transformed as:  

  Sf 01 ,    00 32 Aff   ,    010 54 Bff   ,   106 f    (21)    

  02 f ,   04 f ,   06 f            

Hence, the boundary value problem in equations (9) – 

(11) with the boundary conditions (12) and (13) is now 

converted into an initial value problem in equation (20) 

with the initial conditions in equation (21). Then, the 

initial value problem is solved by employing Runge-

Kutta-Fehlberg integrating scheme appropriately 

guessing the missing initial values using the shooting 

method. For several sets of emerging parameters, the 

step size of 001.0  is used for the computational 

purposes by translating the algorithm into MAPLE codes 

as described by Heck (2003) and error tolerance of 
710

 

is used in all the cases. The results obtained are 

presented through plots for velocity, temperature and 

species concentration fields and through tables for local  

skin-friction coefficient, Nusselt and Sherwood numbers. 

 

DISCUSSION OF RESULTS 

The numerical solutions are obtained for the velocity, 

temperature and species concentration fields for different 

values of governing parameters. The results are 

displayed through graphs in Figures 1-16. It should be 

pointed out that Figures (1) - (5) satisfy the specified 

boundary conditions and Figures (6) - (16)  reveal that 

the far field boundary conditions are satisfied 

asymptotically and hence this supports the accuracy of 

the numerical computations and results. Moreover, the 

behaviour of local skin friction coefficient, Nusselt 

number and Sherwood number due to the variations in 

various emerging parameters is also deliberated in Table 

2. Table 1 depicts a comparison with previously 

published work of Hayat et al. (2011) available in the 

literature, in order to further check the accuracy of the 

present results.            

The velocity field f   for different values of Deborah 

number K , magnetic interaction parameter Mn , 

stretching parameter  , suction parameter S  and 

velocity slip parameter A  are shown in Figures 1-5 

respectively. Figure 1 reveals the influence of K  on the 

flow field. It is evident from this figure that f   is a 

decreasing function of K . This implies that a decrease 

in the fluid velocity corresponds to an enhancement of 

the velocity boundary layer thickness. From the physical 

point of view, when shear stress is eliminated, the fluid 

will come to rest. This kind of phenomenon is 

experienced in many polymeric liquids that cannot be 
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defined in the viscous fluid model. Higher values of K  

will produce a retarding force between two adjacent 

layers in the flow. For this reason, there will be a 

reduction in the velocity field and corresponding 

associated effect is noticed in the boundary layer 

thickness. Figure 2 shows the effect of Mn  on f  . It is 

obvious that an increase in the values of Mn  decrease 

the boundary layer thickness in the flow field. Figures 3 

and 4 display the distinction of velocity field with 

respect to the variation in suction parameter S  and 

stretching parameter  . On observing these figures, as 

the values of S  increases, the velocity field decreases as 

anticipated. However, the velocity field increases as the 

values of   increase. In the same manner, Figure 5 

establishes that the velocity distribution is seen to 

increase with the increase in the values of A , thereby 

decreasing the boundary layer thickness.  

      

Figures 6 - 11 illustrate the variations of   with respect 

to   for various values of K , Mn ,  ,       Pr , B  

and S  respectively. From Figures 6 and 7, it is observed 

that K  and Mn  have opposite effects on  . An 

increase in K corresponds to an increment in the fluid 

temperature whereas the result of increasing Mn  

reduces the thermal boundary layer thickness in the flow 

field. The thermal boundary layers also decrease as the 

values of   and Pr  increase as displayed in Figures 8 

and 9. Higher estimation of Pr  is found to decay the 

temperature field. This is due to the fact that 

Pr expresses the ratio of momentum diffusivity to 

thermal diffusivity. Thus, small values of Pr  implies 

that the thermal diffusivity dominates and for higher 

estimation of Pr , the momentum diffusivity dominates. 

As the values of suction parameter S  increase, the 

temperature field decreases as shown in Figure 10. 

Consequently, the thermal boundary layer thickness and 

the surface temperature are also decreasing. Figure 11 

demonstrates the variation of temperature with thermal 

slip parameter B . B  is found to enhance the thermal 

boundary layer thickness.    

Figures 12 - 16 describe the effects of K , Mn , S ,   

and Sc  on the species concentration field. Figure 12 

captures the influence of K  on the species concentration 

distribution. As expected, it is observed that for any 

given value of  , the species concentration becomes 

increased with an increase in K . The variation of   

with different values of Mn  is indicated by Figure 13. It 

is clear that the magnetic interaction parameter decreases 

the species concentration field. In Figures 14 and 15, it is 

interesting to note that S  and   have the same effects 

on the species concentration boundary layer. Both of 

them noticeably decrease the concentration layer 

thicknesses. Figure 16 is plotted to display the influence 

of Sc , which is the ratio of momentum diffusivity to 

mass diffusivity, on species concentration field. It is 

observed that increasing the values of Sc  corresponds 

to a decrease in the species concentration boundary layer 

thickness. This springs from the fact that at high Sc , the 

particles in the fluid concentration are giant with small 

diffusivity. However, the particles in the fluid 

concentration are very small with great diffusivity and 

are scarcely conditioned by the viscosity of the medium 

in the case of a low Sc .  

In Table 1, the numerical values of the local Nusselt 

number in this paper for different values of Pr  and   

in the absence of thermal and velocity slip effects 

without consideration for species concentration in a 

hydrodynamic flow are in good agreement with the 

result published in Hayat et al. (2011). Therefore, this 

validates the presented results to be highly accurate to 

analyze this flow problem. Table 2 presents variations of 

local skin friction coefficient, Nusselt and Sherwood 

numbers in relation to K , Mn , S ,  , B , A  and 

Sc . From this table, as the values of Deborah number, 

magnetic interaction, suction, stretching and thermal slip 

parameters increase, the values of local skin friction 

coefficient increase. However, the local skin friction 

coefficient is found to decrease as the value of velocity 

slip increases. Also, it is worthy to note that as the values 

of K , Mn ,   and B  increase, the local rate of heat 

transfer decreases whereas an increase in the values of  

S , A  and Pr  is found to increase the local heat 

transfer rate. Finally, it is evident from Table 2 that the 

local rate of mass transfer is enhanced by increasing the 

values of Schmidt number, Prandtl number, suction, 

stretching and thermal slip parameters. In contrast, as the 

values of Deborah number, magnetic interaction and 

velocity slip parameters increase, the local Sherwood 

number decreases.  
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Fig. 1: Variation of K  on velocity field when 5.0Mn , 5.0S , 1.0 , 1.0A .  

 

Fig. 2: Variation of Mn on velocity field when 5K , 5.0S , 1.0 , 1.0A . 
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Fig. 3: Variation of S  on velocity field when 5K , 5.0Mn , 1.0 , 1.0A . 

 

Fig. 4: Variation of   on velocity field when 5K , 5.0S , 5.0Mn , 1.0A .  

 

Fig. 5: Variation of A  on velocity field when 5K , 5.0S , 1.0 , 5.0Mn . 
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Fig. 6: Variation of K  on temperature field when 71.0Pr  , 5.0B , 5.0S . 

 

Fig. 7: Variation of Mn  on temperature field when 71.0Pr  , 5.0B , 5K , 5.0S . 

 
Fig. 8: Variation of S  on temperature field when 71.0Pr  , 5.0B , 5K , 5.0 . 
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Fig. 9: Variation of   on temperature field when 71.0Pr  , 5.0B , 5K  5.0S . 

 

Fig. 10: Variation of Pr  on temperature field when 3.0 , 5.0B , 5K  5.0S . 

 

Fig. 11: Variation of B  on temperature field when 71.0Pr  , 3.0 , 5K  5.0S . 
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Fig. 12: Variation of K  on species concentration field when 62.0Sc , 1.0A , 3.0 . 

 

Fig. 13: Variation of Mn  on temperature field when 62.0Sc , 1.0A , 5K . 

 

Fig. 14: Variation of S  on species concentration field when 62.0Sc , 1.0A , 5K . 
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Fig. 15: Variation of   on species concentration field when 62.0Sc , 1.0A , 5K . 

 

Fig. 16: Variation of Sc  on species concentration field when 3.0 , 1.0A , 5K . 
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Table 1: Comparison of the values of local Nusselt number  0  for parameters Pr  and   when 5.0S , 

2.0K , 0.0 ScAMn   with convective boundary conditions. 

Pr    
2

1

Re/ xNu  Hayat et 

al. (2011) 

2
1

Re/ xNu  

(Present Work) 

0.5  0.23336 0.23389 

1.0  0.36588 0.36625 

1.5  0.45796 0.45797 

2.0  0.52558 0.52557 

1.0 0.1 0.36588 0.36605 

 0.3 0.40466 0.40473 

 0.8 0.45825 0.45830 

 1.0 0.47254 0.47256 

Table 2: Values of local skin friction coefficient, Nusselt and Sherwood numbers when 1.0K , 4.0 , 

5Mn , 5.0S , 3.0A , 5.0B  : 

K  Mn
 

S    B  A   
Pr
 

Sc
 

)0(f   )0(   - )0(   

0        0.44748648380 1.7171884483 0.52650918336 

0.05        0.44924048847 1.7168179769 0.52587656009 

0.1        0.45101139096 1.7164444768 0.52524311031 

 3       0.40945138478 1.7253144609 0.54148202163 

 5       0.45101139096 1.7164444768 0.52524311031 

 7       0.47921470538 1.7105850549 0.51586332597 

  0.4      0.44556498546 1.5497417149 0.43771808739 

  0.6      0.45670349922 1.8556991433 0.61439952931 

  0.8      0.46888539045 2.0743628798 0.79509239683 

   0.4     0.45101139097 2.6136979637 0.52524311031 

   0.5     0.56491773883 1.7266724783 0.53739249889 

   0.6     0.67927137462 1.2888738914 0.54931777077 

    0.1    0.45101139097 2.6136979637 0.52524311031 

    0.3    0.56491773883 1.7266724783 0.53739249889 

    0.4    0.67927137462 1.2888738914 0.54931777077 

     0.6   0.40500731931 0.4736597134 0.52025764732 

     0.9   0.31027478115 1.0750066594 0.50984564267 

     1.3   0.23663087318 1.7317290774 0.50161323008 

      1  0.45101139025 0.4775382556 0.52524311020 

      5  0.45101139093 1.4807989246 0.52524311030 

      7  0.45101139096 1.7517901039 0.52524311031 

       1 0.45101139097 1.7164444768 0.55739089901 

       3 0.45101139097 1.7164444768 1.62352126635 

       5 0.45101139097 1.7164444768 2.66445599848 
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CONCLUDING REMARKS 

In this paper, the upper-convected Maxwell model with 

thermal and velocity slip effects is employed to 

investigate the heat and mass transfer of Maxwell fluid 

over stretching sheet in the presence of a transversely 

applied uniform magnetic field. The numerical results 

suggest the following:  

 The velocity field increases for higher 

estimation of stretching and magnetic 

interaction parameters but it decays with 

increasing values of Deborah number and 

suction parameter. 

 The temperature distribution is enhanced by 

increasing values of Deborah number and 

thermal slip parameter. However, the 

temperature is a decreasing function of Prandtl 

number, magnetic interaction, suction and 

stretching parameters. 

 The species concentration field increases by 

increasing values of Deborah number and 

thermal slip parameter whereas the field is 

found to decay with increases in the values of 

Schmidt number, magnetic interaction, suction 

and stretching parameters. 

 The Deborah number, magnetic interaction, 

stretching, thermal slip and suction parameters 

have similar effects on the local skin friction 

coefficient. Local rate of heat transfer 

decreases with an increase in the values of 

Deborah number, magnetic interaction, 

stretching and thermal slip parameters. 

However, the local rate of mass transfer is an 

increasing function of the Schmidt number, 

suction, stretching and thermal slip 

parameters.  
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