

 A SECURITY ARCHITECTURE …… Okunade & Osunade FJS

FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 28 -36
28

FUDMA Journal of Sciences (FJS)

 ISSN: 2616-1370

Vol. 2 No. 2, June, 2018, pp. 28 - 36

A SECURITY ARCHITECTURE FOR SOFTWARE DEFINED NETWORK (SDN)

*1Okunade Oluwasogo Adekunle and 2Osunade Oluwaseyi

Department of Computer Science, Faculty of Sciences, National Open University of Nigeria,

91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja, Nigeria.

Department of Computer Science, Faculty of Science, University of Ibadan, Ibadan, Oyo State, Nigeria

ABSTRACT

Software defined network is emerging network architecture with promising future in network

field. It is dynamic, manageable, cost effective, and adaptable networking where control and data

plane are decoupled, and control plane is centrally located to control application and data planes.

OpenFlow is an example of Software Defined Network (SDN) Southbound, which provides an

open standard based interface between the SDN controller and data planes to control how data

packets are forwarded through the network. As a result of rapid changes in networking, SDN

program-ability and control logic centralization capabilities introduces new fault and easily attack

planes, that open doors for threats that where not exist or harder to exploit. The paper present SDN

architecture with security control level, this provide secured SDN paradigm with machine learning

white/black list, where users application can be easily tested and group accordingly (malicious

attack or legitimate packet).

Keywords-Software Defined Network (SDN), OpenFlow, Flow Table, Security Control,

White/Black List

INTRODUCTION

Despite the fact that Internet has led to the creation of

digital globalization; traditional Internet Protocols (IP)

networks are complex and very hard to manage

especially in the area of network configuration,

according to the predefined policies and to reconfigure

it to respond to faults, loads and changes. The basic

concept of software defined network (SDN) is to

separates the network control (brains) from forwarding

(muscle) planes to make it easier to optimize (Haripriya

and Sangeethalakshmi, 2015). Most common protocol

used in SDN network to facilitate the communication

between Controller and switches/routers is called

OpenFlow. Southbound Application Programme

Interface (API) is an interface between the Control and

Data planes, this is where the protocols can be find.

There are different types of protocols but the most

commonly used among them is OpenFlow, it is an open

standard communication protocol that enables the

control plane to interact with the forwarding plane.

People often point to OpenFlow as being synonymous

with SDN, but it is only a single element in the overall

SDN architecture. Figure 1, shows a traditional

network of five devices with each comprising of a

control plane that provides information used to build a

forwarding table, application and forwarding table used

to determine received frames or packets destination.

 A SECURITY ARCHITECTURE …… Okunade & Osunade FJS

FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 28 -36
29

 Fig. 1: Application planes separated from combined Control and Data planes of Traditional Network

In traditional networks, routers and other network

devices encompass both data and control function.

Making it difficult to adjust the network infrastructure

and operation rather than the predefined policies

regardless of faults, loads and changes that may later

occurs (Furqan, Iyad and Ahmed, 2013). The control

plane is an element of a router or switch that determines

how each device within a network interacts with its

neighbours. Examples of control plane protocols are;

routing protocols, such as Open Shortest Path First

(OSPF), Border Gateway Protocol (BGP), and

Spanning Tree Protocol (STP). These protocols

determine the optimal port or interface to forward

packets (that is, the data plane). While the control plane

protocols scale correctly, and provide a high level of

network resiliency. They pose limitations for example,

routing protocols may only able to determine the best

path through a network based on static metrics such as

interface bandwidth or hop count. Likewise, control

plane protocols do not typically have any visibility into

the applications running over the network, or how the

network may be affecting application performance.

Data plane functionality includes features such as’

quality of service (QoS), encryption, Network Address

Translation (NAT) and access control lists (ACLs).

These features directly affect how a packet is

forwarded, including being dropped. However, many of

these features are static in nature and determined by the

fixed configuration of the network device. There is

typically no mechanism to modify the configuration of

these features based on the dynamic conditions of the

network or its applications. Finally, configuration of

these features is typically done on a device-by-device

basis (Mitchiner and Prasad, 2014), greatly limiting the

scalability of applying the required functionality. While

SDN abstracts this concept and places the control plane

functions on SDN controller, where this controller can

be a server running SDN software see Figure 3 where

business requirements changes.

APP APP APP

Control & Data

Plane combined

APP APP APP

Control & Data

Plane combined

APP APP APP

Control & Data

Plane combined

APP APP APP

Control & Data

Plane combined

APP APP APP

Control & Data

Plane combined

 A SECURITY ARCHITECTURE …… Okunade & Osunade FJS

FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 28 -36
30

Fig. 2: Software Defined Network (SDN) with decoupled Control Plane from Data Plane

By using an API, your controller can implement

network commands to multiple devices without the

need to learn the command line syntax of multiple

vendor products. These are few of the benefits seen

with SDN. The control plane is responsible for

configuration of the node and programming the paths

that will be used for data flows. Once these paths have

been determined, they are pushed down to the data

plane. Data forwarding at the hardware level is based

on this control information. Once the flow management

(forwarding policy) has been defined, the only way to

make an adjustment to the policy is via changes to the

configuration of the devices. The change in the location

and intensity of flows over time requires a flexible

approach for successful network resource management.

The numbers of handheld devices like smartphones,

tablets, and notebooks have greatly increased the

pressure on enterprise resources. Network resources

changes rapidly and management of Quality of Service

(QoS) security become challenging (Muhammad,

Shyamala, Ali and Bill, 2014). In a security and

dependability perspective, one of the key ingredients to

guarantee a highly robust system is fault and intrusion

tolerance (Diego, Fernando, Ramos and Paulo, (2013).

According to Mark, Marco, Arjun and Nate (2013)

Networks are expected to operate without disruption,

even in the presence of device or link failures.

However, Network programmability and control logic

centralization capabilities introduces new fault and

attack planes, which open the doors for new threats that

did not exist before or were harder to exploit (Diego, et

al., 2013). OpenFlow (OF) paradigm embraces third

party development efforts, and therefore suffers from

potential trust issue on OF applications (apps). The

abuse of such trust could lead to various types of

attacks impacting the entire network (Xitao, Yan and

Chengchen, 2013). This can be seen as attractive

honeypots for malicious users and major concern for

less prepared network operators.

The ability to control the network by means of software

(always subject to bugs and a score of other

vulnerabilities) and centralization of the network

intelligence in the controller(s) can make anyone with

APP AP

P

APP

SDN Controller

Operating System

Data Plane

Flow table

Data Plane

Flow table

Data Plane

Flow table

Data Plane

Flow table

Data Plane

Flow table

Application

Plane

Control

Plane

Data

Plane

 A SECURITY ARCHITECTURE …… Okunade & Osunade FJS

FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 28 -36
31

unlawful access to the servers (impersonation)

potentially control the entire network unlawfully. The

question now is; how can the Software-Defined

Network be protected from malicious attack? Since

potential security vulnerabilities exist across the SDN

platform. At the controller-application level, questions

have been raised around authentication and

authorization mechanisms to enable multiple

organizations to access network resources while

providing the appropriate protection of these resources.

However, with multiple controllers communicating or

processing communication with a single, centralized

controller, authorization and access control becomes

more complex, potential for unauthorized access

increases and could lead to manipulation of the node

configuration and/or traffic through the node for

malicious intent (Seungwon, Vinod, Phillip and Guofei,

2013). The remainder of this paper is organized as

follows : literature review that reveals the status of

other authors in the field, methodology that stated the

approach applied to resolve the challenges, result gave

the outcome of the research, discussion gave incite on

the result gotten from the research and finally logical

conclusion is made.

LITERATURE REVIEW

Software-Defined Network (SDN) creates an

environment where all switches and routers take their

traffic forwarding clues from a centralized management

controller that communicates with network elements

which can simplify manage and improve visibility into

the network. SDN has the following three layers/plane;

1. Application Plane/Layer: Control layer implement

logic for flow control

2. Control Plane/Layer: This runs applications to

control network flows

3. Data Plane/Infrastructure Layer: this is a Data

plane consists of the Network switch or router

The application layer contains network applications that

introduces new network features, such as security and

manage-ability, forwarding schemes or assist the

control layer in the network configuration (Wolfgang

and Michael, 2014). The application layer can receive

an abstracted and global view of the network from the

controllers and use that information to provide

appropriate guidance to the control layer. The interface

between the application layer and the control layer is

referred to as the northbound interface. This is the

interface through which the SDN Application layer

communicates with the Control Layer to expose the

program-ability of the network (Wolfgang and Michael,

2014). SDN controller manages the forwarding state of

the switches in the SDN, this management is done

through a vendor neutral API that allows the controller

to address a wide variety of operator requirements

without changing any of the lower level aspects of the

network, including topology. With the decoupling of

the control and data planes, SDN enables applications

to deal with a single abstracted network device without

concern for the details of how the device operates.

Network applications see a single API to the controller.

Thus it is possible to quickly create and deploy new

applications to orchestrate network traffic flow to meet

specific enterprise requirement for performance or

security using API. Examples of north bounds interface

are FML, Procera, Frenetic, RESTful and so on.

The OpenFlow protocol provides an interface that

allows control software to program switches in the

network, this is called southbound (Raj & Subharthi,

2013 and Wolfgang & Michael, 2014). Southbound is a

protocol of OpenFlow which separates the control plane

from the data plane to enable centralized and fine

grained control of network flows. Examples of

Southbound are OpenFlow, ForCES, PCEPNetConf,

IRS and so on. OpenFlow is an example of Software

Defined Networking (SDN), which provides an open,

standards based interface to control how data packets

are forwarded through the network, Controller

communicates with a physical or virtual switch data

plane through protocol that conveys the instructions to

the data plane on how to forward data.

 A SECURITY ARCHITECTURE …… Okunade & Osunade FJS

FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 28 -36
32

Fig. 3: Software Defined Network Architecture (Source: William, 2013).

This is a Software-Defined Network (SDN) package

that enables networks to be software controlled, and

used to dynamically change the network configuration,

It is the most common example of southbound

interface, which is standardized by the Open

Networking Foundation (ONF). OpenFlow is a protocol

that describes the interaction of one or more control

servers with OpenFlow compliant switches. An

OpenFlow controller installs flow table entries in

switches, so that these switches can forward traffic

according to entries. OpenFlow switches depend on

configuration by controllers (Wolfgang and Michael,

2014). OpenFlow allows network switches to be

configured using programmable interfaces,

monitored/inspect network traffic and routing of

packets (Yutaka, Hung-Hsuan and Kyoji, 2013).

OpenFlow protocol specifies the interactions between

the control plane running in the controller and the

infrastructure; it is a foundational element for building

SDN solutions. OpenFlow framework is an

embodiment of the SDN concept, framework for the

implementations of Software Defined Network (SDN)

paradigm that enable communication between the

controller and the switches uses a standardized

OpenFlow protocol. In an OpenFlow environment, flow

tables are used by devices rather than routing or MAC

address table. Switches implement policy using

efficient packet processing hardware: this is a secure

channel that connects the switch to a remote control

process (called the controller), allowing commands and

packets to be sent between a controller and the switch

using the OpenFlow Protocol Eddie et al, (2000) in

McKeown et al, (2008). An OpenFlow network consists

of a distributed collection of switches managed by a

program running on a logically centralized controller,

each switch has a flow table that stores a list of rules for

processing packets and, each rule consists of a pattern

(matching on packet header fields) and actions (such as

forwarding, dropping, flooding, or modifying the

packets, or sending them to the controller). OpenFlow

Protocol provides an open and standard way for a

controller to communicate with a switch (McKeown, et.

al., 2008).

Controller machine manages a collection of

programmable switches, defines the forwarding policy

for the network and configures the switches through an

open and standard (south bound) interface. A controller

associates packets with their senders by managing all

the bindings between names and addresses, it

essentially takes over DNS, DHCP and authenticates all

users when they join and keeping track of which switch

 A SECURITY ARCHITECTURE …… Okunade & Osunade FJS

FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 28 -36
33

port (or access point) they are connected to (McKeown,

et. al., 2008).The controller derive the desired

forwarding data in software, send OpenFlow messages

to update the forwarding table in the device and the

messages can add, update or delete entries in the

forwarding table. Controller drives a level of network

convergence; consider changing the entire

configuration on your network to support new network

path every 10 minutes. SDN Controller defines the data

flows that occur in the SDN data plane: each flow

through the network must first get permission from the

controller, which verifies that the communication is

permissible by the network policy. The controller is

dynamical enough to make changes to network

elements based on feedback or code without human

intervention (Bruce, Rossi, 2016). If the controller

allows a flow, it computes a route for the flow to take

and adds an entry for that flow in each of the switches

along the path. With all complex functions subsumed

by the controller, switches simply manage flow tables

whose entries can be populated only by the controller.

A controller accomplishes this network programming

via software and it is in this software that SDN's

promise of flexibility comes in. The controller is a

platform on which software is run, as well as being a

communication gateway that software can

communicate through. Most controller architectures are

modular, allowing the controller to communicate with

different kinds of devices using different methods as

required.

SDN architecture is remarkably flexible: it can operate

with different types of switches and at different

protocol layers. SDN controllers and switches can be

implemented for Ethernet switches (Layer 2), Internet

routers (Layer 3), transport (Layer 4) switching, or

application layer switching and routing. SDN relies on

the common functions found on networking devices,

which essentially involve forwarding packets based on

some form of flow definition. It encapsulates and

forwards the first packet of a flow to an SDN controller,

enabling the controller to decide whether the flow

should be added to the switch flow table. Switch

forward incoming packets out; the appropriate port

based on the flow table in which the flow table may

include priority information dictated by the controller.

Switch can drop packets on a particular flow

temporarily or permanently as dictated by the

controller.

SDN controller communicates with OpenFlow

compatible switches using the OpenFlow protocol,

running over the Secure Sockets Layer (SSL). Each

switch connects to other OpenFlow switches and

possibly to end-user devices that are the sources and

destinations of packet flows. Within each switch, a

series of tables typically implemented in hardware or

firmware are used to manage the flows of packets

through the switch.

Flow table tells switch how to process each data flow

by associating an action with each flow table entry.

Flow table consist of flow rules that guide the controller

on action to be perform on a given particular packet.

OpenFlow enabled device has an internal flowtable and

a standardized interface to add and remove flow entries

remotely (Naous, Erickson, Covington, Appenzeller

and McKeown, 2008). Flow table is the basic building

block of the logical switch architecture, each packet

that enters a switch passes through one or more flow

tables. Each flow table contains entries consisting of six

components;Match Fields, Priority, Counters,

Instructions, Timeouts and Cookie.

SDN switches are controlled by a Network Operating

System (NOS) that collects information using the API

and manipulates their forwarding plane, providing an

abstract model of the network topology to the SDN

controller hosting the applications. The controller can

therefore exploit complete knowledge of the network to

optimize flow management and support service user

requirements of scalability and flexibility. Yutaka et. al.

(2013) Propose a novel network system architecture

that protects network devices from intra-LAN attacks

by dynamically isolating infected devices using

OpenFlow on detection. Seungwon et. al. (2013) had

proposed an extension to the OpenFlow data plane

called connection migration, which dramatically

reduces the amount of data to-control-plane interactions

that arise during the Inherent communication bottleneck

that arises between the data plane and the control plane,

which an adversary could exploit by mounting a control

plane saturation attack that may disrupts network

operations.

 A SECURITY ARCHITECTURE …… Okunade & Osunade FJS

FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 28 -36
34

METHODOLOGY

To address the previously stated problem, the research

provides secured SDN architecture concatenated with

security control. Secured SDN paradigm where control

plane check for the authentication of users’ application

through the API to confirm some security measure

using the inbuilt white and black list for legitimacy

confirmation of the users’ application who are

requesting to make use of control plane. If the

application is from the black list it will be discarded but

permitted if from the white list. A machine learning tool

is used to update SDN architecture security black /white

list using the packet flow movement on the table flow

for updating. Figure 4 is the proposed SDN security

architecture with the extension of control plane to

contain some level of security control that interact with

the proposed extended data plane flow table. Figure 5

contains extension of black/white list of the

applications transactions; the extension will

communicate with the control plane security control to

supply the application security status to the flow table

rule through the controller. The supplied security status

is used by the controller to decide particular action(s)

(forward/drop) to be taken on application requesting

rule.

RESULT AND DISCUSSION

Research work comes up with a secured Software

Defined Network (SDN) Security Architecture

(figure 4) that identified the malicious source, and

therefore prevents unauthorized access to the network

by blocking packet from insecure source and

automatically update (the grouping) white/black list.

For subsequence packet(s) use, it compares and

checks through its white/black list to identify the

packet source and update the list using machine

learning tool.

Fig. 4: SDN Security Architecture

MAC Source Mac

Destination

IP Source IP Destination TCP Source Action Count Security

Status

00-16-…2C-A6 00-53-..45-00 127.10.10.1 193.19.50.1 Forward 4 Whitelist

E8-06-…FD-3F 00-15-..99-3C 127.10.10.2 193.19.50.2 Drop 6 Blacklist

Flow

Table

API Application Plane API

SDN Controller Operating System

North bound

Switch / Router and other Network Devices

Controller

Data

Plane

 A SECURITY ARCHITECTURE …… Okunade & Osunade FJS

FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 28 -36
35

With extension of control plane and flow table with

security features, a secured SDN architecture is

designed (figure 6) where user’s application is easily

tested, and permit if not malicious attack while discard

when suspected as suspicious. SDN is easily prevented

from malicious attack, and made secured with some

level of security control implementation into SDN

Architecture that make it a secured SDN Architecture,

this help to prevent malicious attacks by blocking

packages from insecure source/networks. There is an

extension of control plane called security control, this

interact with extended aspect of flow table, consists of

white and black list supplying it resolution based on the

security status of incoming packet(s) to the secured

SDN controller that will then place its security status on

the flow table rule extension through the security

controller. This will be used for decision making on the

action to be perform on the said packet that is packet

security status.

CONCLUSION

Security control system prevents malicious attacks from

accessing SDN environment. Secured architecture

promotes and encourages the openness of the SDN and

prevent against its security challenges. The Security

architecture for Software Defined Network (SDN)

check security status of incoming packets populated by

white/black list security controller for decision making

on the arrived packed either to be permitted for

transaction as legitimate packet or discarded as

malicious packet.

REFERENCES

Bruce, H., Rossi, R. (2016). Software Defined

Networking for Systems and Network Administration

Programs. The USENIX Journal of Education in

System Administration. 2(1).

www.usenix.org/jesa/0201

Diego, K., Fernando, M. V., Ramos and Paulo, V.

(2013). Towards Secure and DependableSoftware-

Defined Networks. HotSDN’13, Hong Kong, China.

ACM 978-1-4503-2178-5/13/08

Eddie, K., Robert, M., Benjie, C., John, J. and

Kaashoek, M. F. (2000). The Click modular router.

ACM Transactions on Computer Systems 18(3), pg.

263-297.

Furqan A., Iyad K., Ahmed S. A. (2013). New

Networking Era: Software Defined Networking.

International Journal of Advanced Research in

Computer Science and Software Engineering. Volume

3, Issue 11, ISSN: 2277 128X. www.ijarcsse.com.

Haripriya, N., and Sangeethalakshmi, G. (2015).

Evaluate Network Security and Measure Performance

of Self Healing in 5G.Haripriya N et al, / (IJCSIT)

International Journal of Computer Science and

Information Technologies, Vol. 6 (4), pgs. 3865-3870.

ISSN:0975-9646. www.ijcsit.com

Mark, R., Marco, C., Arjun, G. and Nate, F. (2013).

FatTire: Declarative Fault Tolerance for Software-

Defined Networks. HotSDN’13, Hong Kong, China.

ACM 978-1-4503-2178-5/13/08

McKeown, N., Anderson, T and Balakrishnan, H.

(2008). OpenFlow: Enabling Innovation in Campus

Networks. ACM SIGCOMM Computer

Communication Review, 38(2), pg. 69-74

Mitchiner, M. M and Prasad, R. (2014). Software-

Defined Networking and Network Programmability:

Use Cases for Defense and Intelligence Communities.

Cisco Public Information

Muhammad, H. R., Shyamala, C. S., Ali, N. and Bill, R.

(2014). A Comparison of Software Defined Network

(SDN) Implementation. 2nd International Workshop on

Survivable and V Robust Optical Networks

(IWSRON). Published by Elsevier B. Procedia

Computer Science 32, pg1050–1055.

www.sciencedirect.com

Naous, J., Erickson, D., Covington, G. A., Appenzeller,

G. and McKeown, N. (2008). Implementing an

OpenFlow Switch on the NetFPGA platform.” ANCS

’08, San Jose, CA, USA. ACM 978-1-60558-346-

4/08/001

Raj, J. and Subharthi, P. (2013). Network Virtualization

and Software Defined Networking for Cloud

Computing: A Survey. Cloud Networking and

Communications IEEE Communications Magazine Pp

24-31

 A SECURITY ARCHITECTURE …… Okunade & Osunade FJS

FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 28 -36
36

Seungwon, S., Vinod, Y., Phillip, P. and Guofei, G.

(2013). AVANT-GUARD: Scalable and Vigilant

Switch FlowManagement in Software-Defined

Networks. CCS’13, Berlin, Germany. ACM

978-1-4503-2477- 9/13/11.

http://dx.doi.org/10.1145/2508859.2516684.

William, S. (2013). Software-Defined Networks and

OpenFlow. The Internet Protocol Journal, Volume

16(1).

Wolfgang, B., and Michael, M. (2014). Software-

Defined Networking Using OpenFlow: Protocols,

Applications and Architectural Design Choices. Future

Internet 2014, 6, pg.302-336; doi:10.3390/fi6020302

ISSN 1999-5903.

www.mdpi.com/journal/futureinternet.

Xitao, W., Yan, C. and Chengchen, H. (2013). Towards

a Secure Controller Platform for OpenFlow

Applications.” HotSDN’13, Hong Kong, China. ACM

978-1-4503-2178-5/13/08.

Yutaka, J., Hung-Hsuan, H. and Kyoji, K. (2013).

Dynamic Isolation of Network Devices Using Open

Flow for Keeping LAN Secure from Intra-LAN Attack.

17th International Conference in Knowledge Based

and Intelligent Information and Engineering Systems –

KES2013. Published by Elsevier B.V. Selection and

peer-review under responsibility of KES International

doi: 10.1016/j.procs.2013.09.163. Science Direct.22,

pg. 810–819 1877-0509. www.sciencedirect.com

http://www.mdpi.com/journal/futureinternet

