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ABSTRACT 

In this study, the response of two homogeneous parallel beams with two-parameter Pasternak elastic foundation 

subjected to a constant uniform partially distributed moving force is considered. On the basis of Euler-Bernoulli 

beam theory, the fourth order partial differential equations of motion describing the behavior of the beams when 

subjected to a moving force were formulated. In order to solve the resulting initial-boundary value problem, 

finite Fourier sine integral technique and differential transform scheme were employed to obtain the analytical 

solution. The dynamic responses of the two beams obtained was investigated under moving force conditions 

using MATLAB. The effects of speed of the moving force, layer parameters such as stiffness (K_0) and shear 

modulus (G_0) have been conducted for the moving force. Various values of speed of the moving load, stiffness 

parameters and shear modulus were considered. The results obtained indicates that response amplitudes of both 

the upper and lower beams increases with increase in the speed of the moving load. Increasing the stiffness 

parameter is observed to cause a decrease in the response amplitudes of the beams. The response amplitudes 

decreases with increase in the shear modulus of the linear elastic layer. 

Keywords: Dynamic response, Two-parameter Pasternak elastic Foundation, Euler-Bernoulli beam, Moving 

Force, Foundation Parameter

INTRODUCTION 

This work is concerned with the study of elastic beams. Beams 

used in various mechanical systems are subjected to forces 

which cause them to deform. The dynamic behaviour of beam-

type structures on elastic foundations under the influence of 

moving loads has been subject of concern to numerous 

researchers in the field of mechanical and structural engineering. 

Sun (2001), Sun and Deng (1998)]. Fryba (1999), in particular 

presented a detailed solution techniques to problems of moving 

loads on Euler-Bernoulli beam supported with one-parameter 

foundation model. The analysis of such structures supported by 

elastic foundations traversed by moving loads, mostly 

considered the relatively simple model of Winkler (1867) which 

consists of linear independent layer of closely-spaced elastic 

springs. The constant of proportionality of these springs is 

termed modulus of subgrade reaction. The Winkler’s model 

which is also termed one-parameter models (Eisemberger and 

Claslomik, 1987) could not adequately represent the 

characteristics of foundation materials in engineering 

applications since it assumes no interaction between the lateral 

springs. In an attempt to eliminate the shortcoming attributed to 

one-parameter foundation model, an improved theory called a 

two-parameter foundation model was proposed by Pasternak 

(1954) for the analysis of the dynamic behavior of beams under 

moving loads. This model has been considered to find a 

physically close and mathematically simple foundation model to 

represent foundation layer. The two-parameter Pasternak model 

was achieved when the ends of the vertical springs are connected 

with an incompressible vertical element of a beam, which 

deforms only by transverse shear. The two parameters of the 

foundation layer are the stiffness of the springs and the shear 

rigidity of the beam. Among other proposed elastic foundation 

models such as; Filonenko-Borodich (1940), Hetenyi (1946), 

Kerr (1964), the most natural extension of the one-parameter 

elastic foundation model is the two-parameter elastic foundation 

model of Pasternak, with shear modulus as second parameter. 

The dynamic analysis of beam-type structures supported by two-

parameters foundation models under moving loads with uniform 

velocity has been investigated. The reactive measure of the 

elastic layer under the action of a distributed load as described 

by Kerr (1964) was introduced in the formulation of the 

differential equation of motion. The results obtained indicated 

that a two-parameter elastic foundation model is a more realistic 

representation of foundation models on the basis of practical 

considerations particularly for rocks or gravelly soils.  

Forced transverse vibration & analysis of a simply supported 

and elastically connected double-beam system was conducted 

by Oniszczuk (2003). The system was subjected to an arbitrary 

distributed moving load. The method of classical modal 

expansion was applied to determine the dynamic responses of 
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the beams due to the harmonic forces of excitation. Lancu et al. 

(2006) applied a finite element method to investigate the 

bending behaviour of beams resting on two-parameter elastic 

foundation. Li and Hua (2007) investigated the vibration of two 

beams. The beams were elastically connected under different 

boundary supports. The method of spatial finite element was 

utilized to obtain some numerical solutions required for the 

natural frequencies. 

A great number of the analysis conducted employed the method 

of integral Fourier series transformation to solve differential 

equations of motion of beams under the influence of forced 

vibration [Fryba (1999), Mallik et al. (2006), Yong and Yang 

(2008), Rajib U.I (2012)]. On the basis of Rayleigh beam theory, 

forced response vibration analysis of double beam system 

supported by a two-parameter foundation with compressive 

axial loading was developed by Mohammadi and Nasirshoaibi 

(2015). The governing fourth order partial differential equations 

describing the motion of the beams were formulated and solved 

using variable separable method and classical modal expansion 

method. The resultant dynamic vibration developed in response 

to forces induced by harmonic excitation was discussed. The 

condition of resonance was developed and analyzed. This is to 

prevent the possibility that a resonance condition would occur 

which can cause a sudden catastrophic failure of mechanical or 

structural element. 

The analysis of the forced response vibration of a simply 

supported double Euler-Bernoulli beam system which is 

elastically connected by Pasternak middle layer under a uniform 

distributed moving force is studied in this paper. 

MATHEMATICAL FORMULATION OF THE 

PROBLEM 

The elastically connected beams subjected to a moving force 

shown in Figure 1a. The response of the beams to a moving force 

is the object of investigation. The study includes determining the 

deflections of two beams when subjected to a moving force. The 

formulation of the governing equation for the two elastically 

connected beams, assumed that the mass of each of the beams is 

negligible when compared with the mass of the force. The force 

considered here is in the form of a moving force of constant 

magnitude. 

The force is a uniform partially distributed force. The behavior 

of the beam material is linearly elastic and the cross section is 

identical through the length x=0 to x=L of the beam whose plane 

of geometry is one. The cross-section shear modulus is not 

negligible while ignoring elastic axial deformations. Also the 

axial forces 𝐹0 acting at the beam ends does not vary with time. 

It should also be noted that the two beams are undamped 

identical having the same length 𝐿, and mass per unit length 𝜇. 

 

 

 

 

 

 

 

 

 

 

 

 

 
The beams has been modeled as two-parameter Pasternak model and was subjected to a distributed moving force. According to the 

Euler-Bernoulli beam theory, the dynamic responses 𝑦1(𝑥, 𝑡)  of the upper beam and 𝑦2(𝑥, 𝑡) of the lower beam satisfies the 

following pair of fourth order governing partial differential equations: 

 

𝐸𝐼
𝜕4𝑦1(𝑥,𝑡)

𝜕𝑥4 + 𝜇
𝜕2𝑦1(𝑥,𝑡)

𝜕𝑡2 − 𝐾0[𝑦1(𝑥, 𝑡) − 𝑦2(𝑥, 𝑡)] −𝐺0 [
𝜕2𝑦1(𝑥,𝑡)

𝜕𝑥2 −
𝜕2𝑦2(𝑥,𝑡)

𝜕𝑥2 ] = 𝑅1(𝑥, 𝑡)   (1) 

and 

𝐸𝐼
𝜕4𝑦2(𝑥,𝑡)

𝜕𝑥4 + 𝜇
𝜕2𝑦2(𝑥,𝑡)

𝜕𝑡2 − 𝐾0[𝑦2(𝑥, 𝑡) − 𝑦1(𝑥, 𝑡)] −𝐺0 [
𝜕2𝑦2(𝑥,𝑡)

𝜕𝑥2 −
𝜕2𝑦1(𝑥,𝑡)

𝜕𝑥2 ] = 0                                                (2) 

where 𝑅1(𝑥, 𝑡) is the applied force defined as: 

𝑅1(𝑥, 𝑡) = {
  −

𝑃

𝜀
[𝐻 (𝑥 − 𝜉 +

𝜀

2
) − 𝐻 (𝑥 − 𝜉 −

𝜀

2
)] ;             𝜉 = 𝑣𝑡 +

𝜀

2
 

 0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                   

     (3) 

The boundary conditions associated with equations (1) and (2) are: 

𝐿 

𝑊𝑖𝑛𝑘𝑙𝑒𝑟 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 

 
Figure 1a: A double-beam system subjected to a moving force. [Abu-Hilal (2006)] 
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𝑦1(0, 𝑡) = 0 = 𝑦1(𝐿, 𝑡);     
𝜕2𝑦1(0,𝑡)

𝜕𝑥2 = 0 =
𝜕2𝑦1(𝐿,𝑡)

𝜕𝑥2         (4) 

 

𝑦2(0, 𝑡) = 0 = 𝑦2(𝐿, 𝑡);    
𝜕2𝑦2(0,𝑡)

𝜕𝑥2 = 0 =
𝜕2𝑦2(𝐿,𝑡)

𝜕𝑥2        (5) 

and the corresponding initial conditions are: 

    
 1

1

,0
,0 0

y x
y x

t


 


;     

 2

2

,0
,0 0

y x
y x

t


 


      (6) 

The symbols and parameters used in equations (1)-(2) have the following meanings unless otherwise redefined in the subsequent 

discussions. 

E -Young modulus of elasticity,  I - Cross-sectional moment of inertial   

EI - Flexural rigidity of the beam,  𝑅1- Uniform partially distributed force of constant magnitude 


   - Constant mass per 

unit length of the beam,   K0  - Stiffness parameter 

𝐺0   - Shear modulus that account for the shear interaction among the springs 

L  - length of the beam,  H   - Heaviside function such that 𝛿(𝑥) = 𝐻1(𝑥) and 𝛿(𝑥 − 𝑣𝑡)is the Dirac delta functions at point 

𝑥 = 𝑣𝑡., 𝑥   - Axial coordinate,  𝑣   - Velocity of the moving force, 𝑡    - Time, 𝜀 − Fixed length of the beam 

Thus, the initial boundary-value problem to be analysed is described in equations (1) - (6) 

 

METHOD OF SOLUTION 

In order to solve the initial boundary-value problem described in 

equations (1)-(6), integral transformation was first introduced. 

This method is adopted since it has been proved suitable in the 

study of moving loads [Gbadeyan and Oni (1995), Rajib UI, et 

al. (2012)]; Mohammadi and Nasirshoaibi (2015)]. The second 

stage of solution was achieved by using differential transform 

method which has equally been demonstrated to be efficient in 

the solution of both linear and non-linear partial and ordinary 

differential equations [Zhon (1986), Allennejad el al. (2009), 

Raslan et al (2012), Gbadeyan and Hammed (2017)]. 

Therefore, the initial boundary value problem described in 

equations (1)-(2) is solved by assuming the following finite 

Fourier sine integral transformation in the equations. 

 

�̅�𝑚(𝑛, 𝑡) = ∫ 𝑦𝑚(𝑥, 𝑡)
𝐿

0

𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿
𝑑𝑥 ;      𝑚 = 1, 2 ;   𝑛 = 1, 2, … 

and the corresponding inverse is of the form 

𝑦𝑚(𝑥, 𝑡) =
2

𝐿
∑ �̅�𝑚(𝑛, 𝑡) 𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿

∞

𝑛=1

,      𝑚 = 1, 2. 

In view of equations (4)-(6), equation (7) is applied to equation (1) and (2) respectively. After some simplifications, the resulting 

equations are:  

�̅̈�1(𝑛, 𝑡) + 𝜔𝑛
2 �̅�1(𝑛, 𝑡) + 𝛼𝑛�̅�1(𝑛, 𝑡) + 𝛽𝑛�̅�2(𝑛, 𝑡) =

𝑀𝑔

𝜇
𝑠𝑖𝑛

𝑛𝜋𝑣𝑡

𝐿
 

and  

�̅̈�2(𝑛, 𝑡) + 𝜔𝑛
2 �̅�2(𝑛, 𝑡) + 𝛼𝑛�̅�2(𝑛, 𝑡) + 𝛽𝑛�̅�1(𝑛, 𝑡) = 0 

where  

𝛼𝑛 =
1

𝜇
[
𝑛2𝜋2

𝐿2 G0 − K0]   and    β𝑛 =
1

𝜇
(K0 − G0

𝑛2𝜋2

𝐿2 ) 

𝜔𝑛
2 =

𝐸𝐼

𝜇

𝑛4𝜋4

𝐿4  such that 𝜔𝑛 is the natural frequency of the beam. 

Thus, the governing fourth order partial differential equations 

(1) and (2) have thereby, been reduced to the second order 

ordinary differential equations (9) and (10) using finite Fourier 

sine transformation. 

 

DIFFERENTIAL TRANSFORM METHOD (DTM) 

The reduced governing differential equations of beam motion 

(9) and (10) are solved using DTM. The concept of DTM which 

was introduced by Zhou (1986) to solve initial boundary-value 

problems in engineering applications have been applied by a 

great number of researchers to solve a wide range of moving 

load vibration-induced problems concerning mechanical 

systems [Ho and Chen (1998), Atternejad and Shahba (2008), 

Gbadeyan and Agboola (2012), Raslan et al. (2012), Gbadeyan 

and Hammed (2017)]. 

The basic idea involves considering an analytic function 

�̅�𝑚(𝑛, 𝑡) having a continuous deivatives within the considered 

domain such that 

(7) 

(8) 

(9) 

(10) 

(10a) 
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Y𝑚(𝑘) =
1

𝑘!
[
𝑑𝑘�̅�𝑚(𝑛, 𝑡)

𝑑𝑡𝑘 ]
𝑥=𝑥0

 

where �̅�𝑚(𝑛, 𝑡)  is the original function and 𝑌𝑚(𝑘) is the transformed function. The differential inverse transform of  𝑌𝑚(𝑘) is 

defined as 

�̅�𝑚(𝑛, 𝑡) = ∑ 𝑌𝑚(𝑘)(𝑡 − 𝑡0)𝑘

∞

𝑘=0

 

Considering equations (11) and (12), the resulting equation is 

�̅�𝑚(𝑛, 𝑡) = ∑
(𝑡 − 𝑡0)𝑘

𝑘!

𝑑𝑘 𝑌𝑚(𝑘)

𝑑𝑡𝑘

∞

𝑘=0

|

𝑡=0

 

When the values of 𝑡0 = 0, equation (13) yields 

�̅�𝑚(𝑛, 𝑡) = ∑
𝑡𝑘

𝑘!
[
𝑑𝑘 𝑌𝑚(𝑘)

𝑑𝑡𝑘 ]
𝑡=0

∞

𝑘=0

 

Hence, 

�̅�𝑚(𝑛, 𝑡) = ∑ 𝑌𝑚(𝑘)𝑡𝑘

∞

𝑘=0

 

 

The main difference between Taylor series method and 

differential transform method is that the former requires 

computations of higher order derivatives that are quite 

formidable while the latter involves iterative procedure instead. 

In real life application similar to the present situation, the 

function �̅�𝑚(𝑛, 𝑡) should be a finite series such that equation 

(15) becomes 

�̅�𝑚(𝑛, 𝑡) = ∑ 𝑌𝑚(𝑘)𝑡𝑘𝑁
𝑘=0                                           (16) 

Hence, ∑ 𝑌𝑚(𝑘)𝑡𝑘∞
𝑘=𝑁+1  is regarded as negligibly small such 

that the values of 𝑁 is decided by the convergence of natural 

frequency in this study. The fundamental operations that are 

frequently used in the transformation of the equation of motion 

and the boundary conditions are listed in the Tables 1 and 2. 

 
Table 1: Basic Theorem of Differential Transform Method for Equations of motion 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2:  Theorem of Differential Transform Method for Boundary Conditions 

 
 

 

 

 

 

 

 

 
 

 

 

Original function Transformed function 

𝑦(𝑡) = 𝑢(𝑡) + 𝑣(𝑡) 𝑌(𝑘) = �̅�(𝑘) + �̅�(𝑘) 

𝑦(𝑡) = 𝑐𝑢(𝑡) 𝑌(𝑘) = 𝑐�̅�(𝑘) 

𝑦(𝑡) =
𝑑𝑢(𝑡)

𝑑𝑡
 

𝑌(𝑘) = (𝑘 + 1)�̅�(𝑘 + 1) 

𝑦(𝑡) =
𝑑𝑛𝑢(𝑡)

𝑑𝑡𝑛
 

𝑌(𝑘) = (𝑘 + 1)(𝑘 + 2) … (𝑘 + 𝑛 − 1)(𝑘 + 𝑛)�̅�(𝑘 + 𝑛) 

𝑦(𝑡) = 𝑠𝑖𝑛 𝑎𝑡 
𝑌(𝑘) =

1

𝑘!
𝑎𝑘 𝑠𝑖𝑛 (

𝑘𝜋

2
) 

𝑦(𝑡) = cos at 
𝑌(𝑘) =

1

𝑘!
𝑎𝑘 𝑐𝑜𝑠 (

𝑘𝜋

2
) 

𝑦(𝑡) = 𝑠𝑖𝑛ℎ 𝑎𝑡 
𝑌(𝑘) =

1

2𝑘!
[(𝑎)𝑘 − (−𝑎)𝑘] 

𝑦(𝑡) = 𝑐𝑜𝑠ℎ 𝑎𝑡 
𝑌(𝑘) =

1

2𝑘!
[(𝑎)𝑘 + (−𝑎)𝑘] 

Original BC (𝑥 = 0) T-BC (𝑥 = 0) Original BC (𝑥 = 0) T-BC (𝑥 = 0) 

𝑤(0) = 0 �̅�(0) 𝑤(1) = 0 
∑ �̅�(𝑘)

∞

𝑘=0

= 0 

𝑑𝑤(0)

𝑑𝑥
= 0 

�̅�(1) 𝑑𝑤(1)

𝑑𝑥
= 0 ∑ �̅�(𝑘)

∞

𝑘=0

= 0 

𝑑2𝑤(0)

𝑑𝑥2
= 0 

�̅�(2) 𝑑2𝑤(1)

𝑑𝑥2
= 0 ∑ 𝑘(𝑘 − 1)

∞

𝑘=0

�̅�(𝑘) = 0 

𝑑3𝑤(0)

𝑑𝑥3
= 0 

�̅�(3) 𝑑3𝑤(1)

𝑑𝑥3
= 0 ∑ 𝑘(𝑘 − 1)

∞

𝑘=0

(𝑘 − 2)�̅�(𝑘) = 0 

(3.30) 

(3.31) 

(12) 

(13) 

(14) 

(15) 

(11) 
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In view of equation (16), and with the application of the results in Tables 1 and 2 to equations (9) and (10), the unknown functions 

�̅�𝑚(𝑛, 𝑡) for 𝑚 = 1, 2 are obtained as 

�̅�1(𝑛, 𝑡) = (
𝑀𝑔

𝜇
) (

𝑛𝜋𝑣

𝐿
) [

1

3!
𝑡3 −

1

5!
[[(

𝑛𝜋𝑣

𝐿
)

2
+ 𝜔𝑛

2] + 𝛼𝑛] 𝑡5] +
1

7!
[[(

𝑛𝜋𝑣

𝐿
)

4
+ 𝜔𝑛

2 [[(
𝑛𝜋𝑣

𝐿
)

2
+ 𝜔𝑛

2] + 𝛼𝑛] + 𝛽𝑛
2] 𝑡7 + ⋯ ] 

 

�̅�2(𝑛, 𝑡) = −𝛽𝑛 (
𝑀𝑔

𝐿
) (

𝑛𝜋𝑣

𝐿
) [

1

5!
𝑡5 +

1

7!
[𝜔𝑛

2 + 2𝛼𝑛 + [(
𝑛𝜋𝑣

𝐿
)

2

+ 𝜔𝑛
2]] 𝑡7 + ⋯ ] 

On substituting equations (17) and (18) into equation (8) for the case 𝑚 = 1 and 𝑚 = 2 respectively, the resulting equations are 

𝑦1(𝑥, 𝑡) =
2

𝐿
∑ �̅�1(𝑛, 𝑡) 𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿

∞

𝑛=1

 

 

𝑦2(𝑥, 𝑡) =
2

𝐿
∑ �̅�2(𝑛, 𝑡) 𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿

∞

𝑛=1

 

Hence, 𝑦1(𝑥, 𝑡) and 𝑦2(𝑥, 𝑡) represent the dynamic responses of the simply supported upper and lower Euler-Bernoulli beams with 

Pasternak elastic middle layer under a uniform partially distributed moving force R1(𝑥, 𝑡). 

 

RESULTS AND DISCUSSION 

Numerical analysis of the results obtained in equations (19) and 

(20) is conducted. This has to do with situations when the 

elastically connected beams under a partially distributed moving 

force is assumed undamped. The rotatory inertia effects was 

ignored while those of shear modulus was taken into 

consideration. Also, the mass of the beams is assumed negligible 

when compared to that of the moving force. 

In order to obtain the layer shear stiffness effects as well as those 

of other interacting beam parameters, the analytic results 

obtained represented by equations (19) and (20) were simulated 

using MATLAB. These numerical computation was achieved 

for the two beams by making use of the following values: [Abu-

Hilal (2006)] for the purpose of comparison. 𝜇 = 0.075;   𝐸𝐼 =

16,000;   𝑔 = 10;   𝐿 = 6;  𝜀0 = 0.10, 0.20, 0.30, 0.35; 𝑥 =

3; 𝑘 = 10; 𝜋 =
22

7
; 𝑡 = 0.5. Below are simply supported 

moving force graphs

  

(17) 

(18) 

(19) 

(20) 
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Figures 1 – 6 are the graphs showing the response amplitudes of 

the upper and lower beams when subjected to a moving 

distributed force. It is observable that dependent on the various 

values of the interacting parameters of the beams, the deflection 

may be increased or decreased. Figures 1 and 2 are the 

respective plots of variation of velocity of the load on the 

transverse deflection of the upper and lower beams due to a 

moving distributed force. An increase in velocity is observed to 

cause an increase in the response amplitude of both the upper 

and lower beams. Figures 3 and 4 shows the variation due to 

shear modulus 𝐺0 of the foundation layer. Increasing the shear 

modulus is seen to cause a decrease in the absolute response 

amplitude of both the upper and lower beams. However, setting 

the value of shear modulus to zero, the same results as those of 

Abu-Hilal (2006) was obtained. 

With a negligible damping, any decrease in the values of 𝐾0 

implies a weak or decrease in the dynamic coupling of the two 

beams while increasing values of 𝐾0 cause an increase in the 

coupling effect of the beams. Figures 5 and 6 shows the absolute 

response amplitudes of the two beams due to variation of 

stiffness parameter 𝐾0 when traversed by a moving force. 

Increasing the values of 𝐾0 is seen to cause a decrease in the 

response amplitudes of the beams. The absolute response 

amplitudes is observed to be greater in the upper beam when 

compared with those corresponding one observed in the lower 

beam. 

CONCLUSION 

This paper examines the dynamics responses of a double Euler-

Bernoulli beam system which is elastically connected by a two-

parameter Pasternak foundation model under the action of a 

moving distributed force. Finite Fourier sine transformation was 

employed to reduce the fourth order partial differential 

equations describing motion of the beams to second order 

ordinary differential equations. The dynamic response of the 

beams were obtained using differential transformation method. 

Numerical computations were conducted to analyze the 

dynamic responses obtained for the beams. Various values of the 

foundation interacting parameters including those of speed of 

the moving force were considered. 
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The method employed has been found efficient in the solution 

of governing equations of beam motion supported by two-

parameter Pasternak foundation under a distributed moving 

force. The speed of the moving force affects the dynamic 

response of the beams. Shear and stiffness parameters have a 

significant effect on the beam responses. It is observed that 

increasing these foundation parameters causes a decrease in the 

absolute response amplitudes of the beams. This study can be 

extended to a moving mass problem of double beam systems 

where axial forces are taken into account. 
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