FUDMA Journal of Sciences (FJS)

A STUDY ON SOME SUBSTRUCTURES OF ORDERED MULTISETS

${ }^{*}$ Balogun, F. and ${ }^{2}$ Tella, Y.
${ }^{1}$ Department of Mathematical SciencesFederal University Dutsinma, Katsina, Nigeria
${ }^{2}$ Department of Mathematical Sciences
Kaduna State University, Kaduna, Nigeria
Email of corresponding author: fbalogun@fudutsinma.edu.ng

Abstract

In this work, the concepts of chains and antichains of partially ordered sets are studied on multisets where repetition is significant. A partial multiset ordering, $\leqslant_{\mathcal{M}}$, is defined on a finite multiset M in order to introduce hierarchies between its points. Properties of the structure, $\mathcal{M}=\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$, and its substructures obtained via this partial multiset ordering are presented. In the sequel, the concept of semimset chain is introduced and some results are outlined.

AMS subject classification: 03E04, 06A06
Keywords and phrases: Partially ordered multiset, multiset chain, multiset antichain, semimset chain.

INTRODUCTION

In a classical set, two mathematical objects are either equal or different. Howbeit, in real life applications, mathematical objects are not necessarily distinct, and each occurrence of an object in an event is significant for computations in order to obtain accurate and exact results or outcomes. Instances where repetition of objects is momentous include, the prime factorization of an integer $n>0$, repeated roots of polynomial equations, repeated observations in a statistical sample and repeated hydrogen atom in a water molecule, to mention a few. A mathematical model or structure that allows and deals with repeated occurrences of any object is known as a multiset (or mset). The concept of multiple membership has become wellestablished and has found applications in various areas such as logic, linguistic and computer science among others.
Many researches have appeared on extending notions and related results on orderings from the classical or Cantorian sets to multisets (Dershowitz and Manna, 1979; Conders et al., 2007; Singh et al., 2012; Balogun and Tella, 2017, Balogun and Singh, 2017). A lot of previous works have been concerned with the study of mset orderings on the class $M(S)$, of finite msets defined over a given set S. Dershowitz and Manna (1979) proposed an mset ordering on $M(S)$, this is usually referred to as the standard mset ordering. Several definitions of multiset orderings have been proposed by building on the DershowitzManna mset ordering, each embodying certain limitations and advantages over others (see Tella et al., 2013 for a comparative study of mset orderings). Well-founded partial orderings on $M(S)$ are employed in proving termination of production systems, programs defined in terms of rewriting rules (Bachmair et al., 1986; Dershowitz and Manna, 1979). These orderings are also employed in the theory of partitions (Brandt, 1982).
The theory of partially ordered structures is relatively well developed in the classical setting (see the survey article Trotter, 1995, and monograph Trotter, 1992 for details on partially ordered sets (or posets)). In this work, the notion of a partially ordered multiset (or pomset) is studied using a finite mset M. In order to introduce hierarchies between the points of the mset M, we build on an idea of ordered multisets suggested in Girish and Sunil (2009). Our proposed hierarchy is achieved by defining an ordering on M using the ordering induced by the base set S, and an ordering on the set of the multiplicities of the elements of S.

Pomsets have applications in database systems, distributed computing and geographical information system to mention a few. To make the article self-contained, we present some basic definitions and notations on msets in section 2 . In the next section, we define a pomset \mathcal{M}, and present some properties of the ordered multiset structure $\mathcal{M}=\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$. Substructures of \mathcal{M} are presented in section 4. In section 5 , the concept of semimset chain is introduced and some results are outlined.

MULTISETS

Formally, an mset is a mapping from some ground or generic set say S, into some set of numbers. The root set of an mset M (denoted by M^{*}), is the set $\{x \in S \mid M(x)>0\}$, where $M(x)$ represents the multiplicity of the element x in M. An mset is completely described by its root set and the multiplicities of each element of the root set. Each individual occurrence of an object in an mset is called its element, while objects of an mset are the distinguishable elements. For instance, in the mset $M=$ [1,2,3,4,1,3,1,4], the objects of M are; 1,2,3,4. While the elements of M are; $1,2,3,4,1,3,1,4$. The cardinality of an mset is the sum of the multiplicities of all its objects. In most of the known application areas, objects are allowed to repeat in an mset finitely. Infinite and negative multiplicities of objects have also been studied in the literature (Blizard, 1990). In this work, we consider finite msets whose objects have nonnegative integral multiplicities. The use of square brackets to represent an mset has become almost standard (Meyer and McRobbie, 1982). An mset containing one occurrence of x_{1}, two occurrences of x_{2} and three occurrences of x_{3} can be represented using any of the following: $\left[\left[x_{1}, x_{2}, x_{2}, x_{3}, x_{3}, x_{3}\right]\right], \quad\left[x_{1}, x_{2}, x_{2}, x_{3}, x_{3}, x_{3}\right]$, $\left[x_{1}, x_{2}, x_{3}\right]_{1,2,3},\left[x_{1}{ }^{1}, x_{2}{ }^{2}, x_{3}{ }^{3}\right]$, or $\left[x_{1} 1, x_{2} 2, x_{3} 3\right]$, depending on one's preference. We shall adopt the representation, $M=$ [$\left.m_{1} x_{1}, m_{2} x_{2}, \ldots, m_{r} x_{r}\right]$. A point in a finite mset M shall be denoted by $m_{i} x_{i}$, where m_{i} is the multiplicity of the element x_{i} in M, for $1 \leq i \leq r$, i.e., a point represents an object in M together with its multiplicity. Given two msets M and N in $M(S)$, the mset M is a submset of N, denoted by $M \subseteq N$, if $M(x) \leq N(x)$ for all $x \in S$, and M is a proper submset of N if and only if $M(x)<N(x)$ for at least one x. A submset of a given mset that contains all multiplicities of common elements is called a whole submset. A full submset contains all objects of the parent mset. The union of two msets M and N is the mset given
by $(M \cup N)(x)=\max \{m, n\}$ such that, $m x \in M$ and $n x \in N$ for all $x \in S$. The intersection of M and N is the mset given by $(M \cap N)(x)=\min \{m, n\}$ such that, $m x \in M$ and $n x \in N$ for all $x \in S$. In Blizard (1989), a deep survey and axiomatic introduction of msets is presented (see also Singh et al., 2007; Singh and Isah, 2016 for further details on msets).

The Structure $\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$
We present the following definition to introduce hierarchies between the points of a finite mset M, using a partially ordered base set and an ordered set of multiplicities. This definition gives a non-trivial involvement of the multiplicities in ordering the points of the mset M.

Definition 1

Let (S, \preccurlyeq) and (\mathbb{N}, \leq) be ordered sets, where the ordering on \mathbb{N} could be (but not necessarily) the natural ordering. For any pair of points $m_{i} x_{i}$ and $m_{j} x_{j}$ in $M \in M(S), m_{i} x_{i} \leqslant \leq_{\mathcal{M}} m_{j} x_{j}$ if and only if $\left(x_{i} \leqslant x_{j}\right) \wedge\left(m_{i} \leq m_{j}\right)$. The points $m_{i} x_{i}$ and $m_{j} x_{j}$ coincide i.e., $m_{i} x_{i}==m_{j} x_{j}$ if and only if $x_{i}=x_{j}\left(m_{i}=m_{j}\right.$ follows from the principle of uniqueness of the multiplicity of an object in an mset). The points $m_{i} x_{i}$ and $m_{j} x_{j}$ in M are said to be comparable in \mathcal{M} if and only if $m_{i} x_{i} \leqslant \leq_{\mathcal{M}} m_{j} x_{j} \vee$ $m_{j} x_{j} \leqslant \leq_{\mathcal{M}} m_{i} x_{i}$, otherwise they are incomparable, denoted by $m_{i} x_{i} \| m_{i} x_{j}$.

Remark 1

By definition 1, a point $m_{i} x_{i}$ does not precede another point $m_{j} x_{j}$ under $\leqslant \leq_{\mathcal{M}}$ if any of the following conditions hold:
i. $\quad m_{i} x_{i} * \leq_{\mathcal{M}} m_{j} x_{j}$
ii. $\quad m_{i} x_{i} \preccurlyeq \$_{\mathcal{M}} m_{j} x_{j}$
iii. $\quad m_{i} x_{i} \$ 士_{\mathcal{M}} m_{j} x_{j}$

The points $m_{i} x_{i}$ and $m_{j} x_{j}$ are incomparable if any of conditions i or ii holds, or $\left[\left(m_{i} x_{i} \not ڭ_{\mathcal{M}} m_{j} x_{j}\right) \wedge\left(m_{i} x_{i} \ngtr>_{\mathcal{M}} m_{j} x_{j}\right)\right]$.

Definition 2

The relation $\leqslant \leq_{\mathcal{M}}$ on M is reflexive if and only if $m_{i} x_{i} \leqslant \leq_{\mathcal{M}} m_{i} x_{i}$ for any point $m_{i} x_{i} \in M$. It is antisymmetric if and only if $\left(m_{i} x_{i} \leqslant \leq_{\mathcal{M}} m_{j} x_{j}\right) \wedge\left(m_{j} x_{j} \leqslant \leq_{\mathcal{M}} m_{i} x_{i}\right)$ implies $m_{i} x_{i}==m_{j} x_{j}$ for all $m_{i} x_{i}, m_{j} x_{j}$ in M, and transitive if and only if $\left(m_{i} x_{i} \leqslant \leq_{\mathcal{M}} m_{j} x_{j}\right) \wedge\left(m_{j} x_{j} \leqslant \leq_{\mathcal{M}} m_{k} x_{k}\right)$ implies $m_{i} x_{i} \leqslant$ $\leq_{\mathcal{M}} m_{k} x_{k}$. The relation $\preccurlyeq \leq_{\mathcal{M}}$ is a partial mset order if it is reflexive, antisymmetric and transitive, and a strict partial mset order (denoted by $\ll_{\mathcal{M}}$) if it is irreflexive and transitive.

Definition 3

A pomset \mathcal{M} is a pair $\left(M, \leqslant \leq_{\mathcal{M}}\right)$, where M is an mset and $\leqslant \leq_{\mathcal{M}}$ is a partial mset order on M.
We have the following results:

Theorem 1

Let S be a partially ordered set. For any $M \in M(S), \mathcal{M}=\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$ is a pomset.
Proof
Let $x_{i} \in S$ and $m_{i} \in \mathbb{N}$, for $i=1,2, \ldots, n$. In particular $x_{i} \in M^{*}$ for any point $m_{i} x_{i} \in M$, where $M^{*} \subseteq S$ is the root set of M.
For any $m_{i} x_{i}$ in $M, x_{i} \leqslant x_{i}$ and $m_{i} \leq m_{i}$. Thus, $m_{i} x_{i} \leqslant \leq_{\mathcal{M}} m_{i} x_{i}$ and $\left(M, \leqslant \leq_{\mathcal{M}}\right)$ is reflexive.
For antisymmetry, suppose that $m_{i} x_{i} \leqslant \leq_{\mathcal{M}} m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq_{\mathcal{M}} m_{i} x_{i}$ in \mathcal{M}. Then, $x_{i} \leqslant x_{j}$ and $x_{j} \leqslant x_{i}$
Thus, $x_{i}=x_{j}$ (since S is partially ordered)
Also, $m_{i} \leq m_{j}$ and $m_{j} \leq m_{i}$ implies
$m_{i}=m_{j}$ for any $m_{i}, m_{j} \in \mathbb{N}$
(1) and (2) imply $m_{i} x_{i}==m_{j} x_{j}$, therefore $\leqslant \leq_{\mathcal{M}}$ is antisymmetric.

Let $m_{i} x_{i}, m_{j} x_{j}, m_{k} x_{k}$ be points in M such that $m_{i} x_{i} \leqslant \leq_{\mathcal{M}} m_{j} x_{j} \leqslant \leq_{\mathcal{M}} m_{k} x_{k}$
Thus, $x_{i} \leqslant x_{j} \leqslant x_{k}$
In particular, $x_{i} \leqslant x_{k}$
Similarly,
$m_{i} \leq m_{j} \leq m_{k}$ implies
$m_{i} \leq m_{k}$
(3) and (4) imply $m_{i} x_{i} \preccurlyeq \leq_{\mathcal{M}} m_{k} x_{k}$, thus $\preccurlyeq \leq_{\mathcal{M}}$ is transitive.

Therefore $\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$ is a pomset.

Theorem 2

Let $\left(S, \preccurlyeq_{1}\right)$ and $\left(S, \preccurlyeq_{2}\right)$ be two posets. If $\mathcal{M}=\left(M, \preccurlyeq_{1} \leq_{1}\right)$ and $\mathcal{N}=\left(M, \preccurlyeq_{2} \leq_{2}\right)$ are pomsets with $M \in M(S)$ then, $\mathcal{M} \cap \mathcal{N}=$ $\left(M, \preccurlyeq \leq_{\mathcal{M \cap N}}\right)$ is a pomset. Where $\leqslant \leq_{\mathcal{M \cap N}}=\leqslant_{1} \leq_{1} \cap \preccurlyeq_{2} \leq_{2}$.
Proof
For any point $m_{i} x_{i}$ in M, clearly $m_{i} x_{i} \preccurlyeq_{1} \leq_{1} m_{i} x_{i}$ and $m_{i} x_{i} \preccurlyeq_{2} \leq_{2} m_{i} x_{i}$ since $\preccurlyeq_{1} \leq_{1}$ and $\preccurlyeq_{2} \leq_{2}$ are partial mset orders. Thus, $m_{i} x_{i} \leqslant_{\leq_{\mathcal{M} \cap \mathcal{N}}} m_{i} x_{i}$ (reflexive property)
Next, let $m_{i} x_{i}$ and $m_{j} x_{j}$ be points in M such that
$m_{i} x_{i} \leqslant_{\leq_{\mathcal{M} \cap \mathcal{N}}} m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq_{\mathcal{M} \cap \mathcal{N}} m_{i} x_{i}$
From (1) we have,
$m_{i} x_{i} \preccurlyeq_{1} \leq_{1} m_{j} x_{j}$ and $m_{j} x_{j} \leqslant_{1} \leq_{1} m_{i} x_{i}$
Since $\preccurlyeq_{1} \leq_{1}$ is antisymmetric, we have
$m_{i} x_{i}={ }_{1}={ }_{1} m_{j} x_{j}$
Similarly, from (1) we have,
$m_{i} x_{i} \preccurlyeq_{2} \leq_{2} m_{j} x_{j}$ and $m_{j} x_{j} \preccurlyeq_{2} \leq_{2} m_{i} x_{i}$
imply
$m_{i} x_{i}={ }_{2}={ }_{2} m_{j} x_{j}$
From (2) - (5) we have,
$m_{i} x_{i} \leqslant \leq_{\mathcal{M} \cap \mathcal{N}} m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq_{\mathcal{M} \cap \mathcal{N}} m_{i} x_{i}$ imply $m_{i} x_{i}==m_{j} x_{j}$
Therefore, $\preccurlyeq \leq_{\mathcal{M} \cap \mathcal{N}}$ is antisymmetric.
For transitivity,
let $m_{i} x_{i}, m_{j} x_{j}$ and $m_{k} x_{k}$ be points in M such that,
$m_{i} x_{i} \leqslant \leq_{\mathcal{M} \cap \mathcal{N}} m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq_{\mathcal{M} \cap \mathcal{N}} m_{k} x_{k}$
Now,
$m_{i} x_{i} \preccurlyeq \leq_{\mathcal{M} \cap \mathcal{N}} m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq_{\mathcal{M} \cap \mathcal{N}} m_{k} x_{k}$ imply
$m_{i} x_{i} \leqslant_{1} \leq_{1} m_{j} x_{j}$ and $m_{j} x_{j} \leqslant_{1} \leq_{1} m_{k} x_{k}$
Since $\preccurlyeq_{1} \leq_{1}$ is transitive, we have
$m_{i} x_{i} \leqslant_{1} \leq_{1} m_{k} x_{k}$
Similarly,
$m_{i} x_{i} \leqslant_{2} \leq_{2} m_{j} x_{j}$ and $m_{j} x_{j} \preccurlyeq_{2} \leq_{2} m_{k} x_{k}$ imply,
$m_{i} x_{i} \preccurlyeq_{2} \leq_{2} m_{k} x_{k}$
From (6) and (7) we have,

$$
\begin{equation*}
m_{i} x_{i} \leqslant \leq_{\text {MnNS }} m_{k} x_{k} \tag{7}
\end{equation*}
$$

Since $m_{i} x_{i} \leqslant_{\leq_{\mathcal{M} \cap \mathcal{N}}} m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq_{\mathcal{M} \cap \mathcal{N}} m_{k} x_{k}$ imply $m_{i} x_{i} \leqslant \leq_{\mathcal{M} \cap \mathcal{N}} m_{k} x_{k}$, then $\leqslant_{\leq_{\mathcal{M} \cap \mathcal{N}}}$ is transitive.
Therefore, $\mathcal{M} \cap \mathcal{N}=\left(M, \preccurlyeq \leq_{\mathcal{M} \cap \mathcal{N}}\right)$ is a pomset.

Lemma 3

A total ordering on S does not necessarily induce a total ordering on $\mathcal{M}=\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$.
Proof
Let $x_{1}, x_{2}, \ldots, x_{n}$ be elements of S ordered such that $x_{1} \preccurlyeq x_{2} \preccurlyeq$ $\cdots \leqslant x_{n}$, and suppose \leq is the natural ordering on \mathbb{N}, we have $\left(m_{i} \leq m_{j}\right) \vee\left(m_{j} \leq m_{i}\right)$ for all m_{i}, m_{j} in \mathbb{N}. The case where $x_{i}=x_{j}$ is trivial since $m_{i}=m_{j}$ follows by the principle of uniqueness of the multiplicity of an object.
Suppose $m_{i} \leq m_{j}$ for $i<j$, it follows that $m_{i} x_{i} \preccurlyeq \leq_{\mathcal{M}} m_{j} x_{j}$. If this condition holds for all i, j then $\mathcal{M}=\left(M, \lessgtr \leq_{\mathcal{M}}\right)$ is totally ordered.
Now, suppose $m_{j}<m_{i}$ for some i, j with $i<j$, this implies $m_{i} x_{i}<\not_{\mathcal{M}} m_{j} x_{j}$ for some i, j, hence, \mathcal{M} cannot be totally ordered.
Again, suppose \leq is some other partial ordering on the set \mathbb{N} (say $m_{i} \leq m_{j}$ if and only if m_{i} divides m_{j}, hence, we could have $m_{i} \| m_{j}$ for some $\left.i, j\right)$. Then, M could have points $m_{i} x_{i}$ and $m_{j} x_{j}$ with $m_{i} x_{i} \preccurlyeq \mathbb{K}_{\mathcal{M}} m_{j} x_{j}$. Therefore, a total ordering on S does not necessarily induce a total ordering on \mathcal{M}.

Definition 4

Let $\mathcal{M}=\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$ be a pomset. A point $m_{i} x_{i}$ in M is maximal in \mathcal{M} if for any other point $m_{j} x_{j} \in M$ with $m_{i} x_{i} \leqslant \leq_{\mathcal{M}} m_{j} x_{j}$ we have $m_{i} x_{i}==m_{j} x_{j}$. Similarly, a point $m_{i} x_{i}$ in M is minimal if for any other point $m_{j} x_{j} \in M$ with $m_{j} x_{j} \leqslant \leq_{\mathcal{M}} m_{i} x_{i}$ we have $m_{i} x_{i}==m_{j} x_{j}$. If such points are unique, they are called maximum and minimum points, respectively.

Remark 2

Observe that with the definition of the ordering $\leqslant_{\leq_{\mathcal{M}}}$, a point $m_{i} x_{i}$ being maximal in ($M, \preccurlyeq \leq_{\mathcal{M}}$) does not imply that the generating object x_{i} is maximal in (S, \preccurlyeq). This is illustrated in the following example:

Example 1

Let \mathcal{M} be the pomset with only two points say [$10 x_{1}, 5 x_{2}$], where $x_{1} \preccurlyeq x_{2}$ in (S, \preccurlyeq) and \leq is the natural ordering on \mathbb{N}.
Now, $x_{1} \leqslant x_{2}$ and $10>5$, thus by definition 1 , we have, $10 x_{1} \leqslant \Psi_{\mathcal{M}} 5 x_{2}$ and $5 x_{2} * \leq_{\mathcal{M}} 10 x_{1}$ in \mathcal{M}, and hence $10 x_{1}$ and $5 x_{2}$ are both maximal in $\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$. The point $10 x_{1}$ is maximal in $\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$ but its generating object x_{1} is not maximal in $(S, \preccurlyeq$).

Definition 5

Let $\mathcal{M}=\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$ be a pomset, and N a submset of M. A suborder $\leqslant \leq_{\mathcal{K}}$ is the restriction of $\leqslant \leq_{\mathcal{M}}$ to pairs of points in the submset N of M such that,
$n_{i} x_{i} \leqslant \leq_{\mathcal{K}} n_{j} x_{j} \Leftrightarrow n_{i} x_{i} \leqslant \leq_{\mathcal{M}} n_{j} x_{j}$, where $n_{i} \leq m_{i}$. The pair ($N, \leqslant \leq_{\mathcal{K}}$) is called a subpomset of \mathcal{M}.

Definition 6

A subpomset $\mathcal{C}=\left(N, \preccurlyeq \leq_{\mathcal{C}}\right)$ of a pomset $\mathcal{M}=\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$ is called an mset chain if \mathcal{C} is linearly (or totally) ordered. A subpomset \mathcal{A} of \mathcal{M} is called an mset antichain if no two points are comparable in \mathcal{A}. The pomset \mathcal{M} is connected (or is an mset chain) if ($\left.m_{i} x_{i} \leqslant \leq_{\mathcal{M}} m_{j} x_{j}\right) \vee\left(m_{j} x_{j} \leqslant \leq_{\mathcal{M}} m_{i} x_{i}\right)$ holds for all pairs of points $m_{i} x_{i}, m_{j} x_{j} \in M$. Also, \mathcal{M} is an mset antichain if $m_{i} x_{i} \| m_{j} x_{j}$ for all distinct pairs $m_{i} x_{i}, m_{j} x_{j}$ in M

Example 2

Let $M=\left[x_{1}, 3 x_{2}, 5 x_{3}, 3 x_{4}, 8 x_{5}, 2 x_{6}\right]$, where the root set is partially ordered as follows: $x_{1} \leqslant x_{3} \leqslant x_{5}, x_{1} \leqslant x_{4}$, and $x_{2} \leqslant x_{4} \leqslant x_{6}$, and \leq is the natural ordering on \mathbb{N}.
The following are mset chains in \mathcal{M} :

$$
\begin{gathered}
\mathcal{C}_{1}=\left[x_{1}, 5 x_{3}, 8 x_{5}\right] \\
\mathcal{C}_{2}=\left[x_{1}, 3 x_{4}\right] \\
\mathcal{C}_{3}=\left[3 x_{2}, 3 x_{4}\right] \\
\mathcal{C}_{4}=\left[5 x_{3}, 8 x_{5}\right]
\end{gathered}
$$

Also, the following are mset antichains in \mathcal{M} :

$$
\begin{gathered}
\mathcal{A}_{1}=\left[x_{1}, 3 x_{2}, 2 x_{6}\right] \\
\mathcal{A}_{2}=\left[3 x_{2}, 5 x_{3}\right] \\
\mathcal{A}_{3}=\left[5 x_{3}, 2 x_{6}\right]
\end{gathered}
$$

Semimset Chains

With the ordering $\preccurlyeq \leq_{\mathcal{M}}$, cases where the incomparable pairs of points in a given event satisfy condition i or ii below abound.

$$
\text { i. } \quad\left(\left(x_{i} \leqslant x_{j}\right) \vee\left(x_{j} \leqslant x_{i}\right)\right) \wedge\left(\left(m_{i} \nsubseteq m_{j}\right) \vee\left(m_{j} \nsubseteq m_{i}\right)\right)
$$

$$
\text { ii. } \quad\left(\left(x_{i} * x_{j}\right) \vee\left(x_{j} * x_{i}\right)\right) \wedge\left(\left(m_{i} \leq m_{j}\right) \vee\left(m_{j} \leq m_{i}\right)\right)
$$

That is, we have incomparable pairs $m_{i} x_{i}, m_{j} x_{j}$ such that $m_{i} x_{i} \leqslant \mathbb{Z}_{\mathcal{M}} m_{j} x_{j}$ or $m_{i} x_{i} * \leq_{\mathcal{M}} m_{j} x_{j}$.
We define subpomsets whose incomparable points are of the form i or/and ii only as follows:

Definition 7

A subpomset ζ of a pomset \mathcal{M} is called a semimset chain if $m_{i} x_{i} \preccurlyeq \$_{\mathcal{M}} m_{j} x_{j} \vee m_{i} x_{i} * \leq_{\mathcal{M}} m_{j} x_{j}$ holds for all incomparable points $m_{i} x_{i}$ and $m_{j} x_{j}$ in M.

Example 3

Let $\mathcal{M}=\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$ be a pomset and $M=\left[6 x_{1}, 4 x_{2}, 6 x_{3}, 5 x_{4}, 4 x_{5}\right]$. Assume that the root set and multiplicities are ordered as follows respectively:
$x_{1} \leqslant x_{2} \leqslant x_{5}, x_{3} \leqslant x_{4}$ and $1<3<5,2<4<6$, i.e., $m_{i}<m_{j}$ if and only if m_{i} and m_{j} are both odd (even) and m_{i} is smaller than m_{j}.
Then, the following are subpomsets of \mathcal{M} :

$$
\begin{aligned}
H_{1} & =\left[2 x_{1}, 4 x_{2}, 3 x_{5}\right] \\
H_{2} & =\left[x_{3}, 3 x_{2}, 5 x_{4}\right] \\
H_{3} & =\left[3 x_{3}, 2 x_{4}, 4 x_{5}\right]
\end{aligned}
$$

H_{1} and H_{2} are semimset chains in \mathcal{M}, while H_{3} is an mset antichain.
Observe that,
For the subpomset H_{1}, we have,

For the subpomset H_{2} we have,

$$
\begin{aligned}
& 2 x_{1} \leqslant \leq_{\mathcal{M}} 4 x_{2} \\
& 2 x_{1} \preccurlyeq ڭ_{\mathcal{M}} 3 x_{5} \\
& 4 x_{2} \preccurlyeq ڭ_{\mathcal{M}} 3 x_{5}
\end{aligned}
$$

$$
\begin{array}{rl}
x_{3} & * \leq_{\mathcal{M}} 3 x_{2} \\
x_{3} & \leqslant \leq_{\mathcal{M}} 5 x_{4} \\
3 x_{2} & \leqslant \leq_{\mathcal{M}} 5 x_{4}
\end{array}
$$

For the subpomset H_{3} we have,

$$
\begin{aligned}
& 3 x_{3} \leqslant ڭ_{\mathcal{M}} 2 x_{4} \\
& 3 x_{3} \not \approx ڭ_{\mathcal{M}} 4 x_{5} \\
& 2 x_{4} * \leq_{\mathcal{M}} 4 x_{5}
\end{aligned}
$$

Remark 3

The notion of semimset chains could be quite useful when characterizing an embedding of the pomset $\mathcal{M}=\left(M, \preccurlyeq \leq_{\mathcal{M}}\right)$ into a linear order. This has application in the scheduling or jump number problem.

Definition 8

A semimset chain ζ in a pomset \mathcal{M} is maximal if it is not strictly contained in any other semimset chain of \mathcal{M}.

Proposition 4

An mset antichain \mathcal{A} in a pomset \mathcal{M} is a semimset chain if its root set is well ordered.
Proof
Let \mathcal{A}^{*} denote the root set of \mathcal{A}. Now, \mathcal{A} is an mset antichain implies that $m_{i} x_{i} \| m_{j} x_{j}$ for all $m_{i} x_{i}, m_{j} x_{j}$, hence neither $m_{i} x_{i} \leqslant \leq_{\mathcal{M}} m_{j} x_{j}$ nor $m_{j} x_{j} \leqslant \leq_{\mathcal{M}} m_{i} x_{i}$ holds in \mathcal{M} for all i, j. But for all $x_{i}, x_{j} \in \mathcal{A}^{*}$, we have $\left(x_{i} \leqslant x_{j}\right) \vee\left(x_{j} \leqslant x_{i}\right)$, suppose $\mathcal{A}^{*}=x_{1} \leqslant x_{2} \leqslant \cdots \preccurlyeq x_{n}$.

Since \mathcal{A} is an mset antichain, and $x_{i} \leqslant x_{j}$ for all x_{i}, x_{j} with $i \leq$ j, then it must be the case that $m_{i} \nsubseteq m_{j}$ holds for all points $m_{i} x_{i}, m_{j} x_{j}$. Thus $m_{i} x_{i} \leqslant \mathbb{Z}_{\mathcal{M}} m_{j} x_{j}$ for all $m_{i} x_{i}, m_{j} x_{j} \in \mathcal{A}$. Therefore \mathcal{A} is a semimset chain.

Proposition 5

A semimset chain ζ in a pomset \mathcal{M} is an mset antichain if for all points $m_{i} x_{i}, m_{j} x_{j} \in \zeta$, we have $m_{i} x_{i} \nVdash \leq_{\mathcal{M}} m_{j} x_{j} \vee m_{i} x_{i} \leqslant$ $\xi_{\mathcal{M}} m_{j} x_{j}$.
The result is straightforward since $m_{i} x_{i} \| m_{j} x_{j}$ for all $m_{i} x_{i}, m_{j} x_{j} \in \zeta$.

CONCLUSIONS

 partially ordered base set and an ordered set of multiplicities. This partial mset order is found suitable for extending existing notions on partially ordered sets to ordered msets where repetition is significant. The concept of semimset chains which is peculiar to the defined ordered mset structure was outlined. In a semimset chain (a substructure which is a consequence of definition 1) the ordering between the incomparable points are
of the form $\leqslant \mathbb{K}_{\mathcal{M}}$ or $\mathbb{K} \leq_{\mathcal{M}}$, characterizing an embedding of structures with such incomparable points promises to be useful in modelling application problems like the scheduling problem or jump number problem (Faigle and Schrader, 1984).

REFERENCES

Bachmair, L., Dershowitz, N., and Hsiang, J. (1986). Orderings for equational proofs, in: Proc. IEEE Symp. on Logic in Computer Science, Cambridge, MA, 346-357.

Balogun, F. and Tella, Y. (2017). Some aspects of partially ordered multisets. Theoretical Mathematics and Applications, 7(4):1-16.

Balogun, F. and Singh, D. (2017). Some characterizations for the dimension of ordered multisets. FUDMA Journal of Sciences, 1(1): 84-87.

Blizard, W. (1989). Multiset theory. Notre Dame Journal of Formal Logic, 30: 36-66.

Blizard, W. (1990). Negative membership. Notre Dame Journal of Formal Logic, 31: 346-368.
\backslash Brandt, J. (1982). Cycles of partitions. Proc. American Mathematical Society, 85: 483-486.

Conder, M., Marshall, S., and Slinko, A. (2007). Orders on multisets and discrete cones. Order, 24:277-296.

Dershowitz, N., and Manna, Z. (1979). Proving termination with multiset orderings. Automata, Languages and Programming (Sixth Colloquium, Graz) Lecture Notes in Computer Science, Springer, 71: 188-202.

Faigle, U. and Schrader, R. (1984). Minimizing completion time for a class of scheduling problems. Information Processing Letters, 19(1):27-29.

Girish, K. P, and Sunil, J. J. (2009). General relationship between partially ordered multisets and their chains and antichains. Mathematical communications, 14(2): 193-205.

Meyer, R. K., and McRobbie, M. A. (1982). Multisets and relevant implication I and II. Australasian Journal of Philosophy, 60:107-139 and 265-281.

Singh, D., Ibrahim, A.M., Yohanna, T., and Singh, J.N. (2007). An overview of the applications of multisets. Novi Sad Journal of Mathematics, 37(2): 73-92.

Singh, D., and Isah, A. I. (2016). Mathematics of multisets: a unified approach. Afri. Mat., 27(1): 1139-1146.

Singh, D., Yohanna, T., and Singh, J. N. (2012). Topological sorts of a multiset ordering. International Journal of Computer Science and Software Technology, 5(2): 101-105.

Tella, Y., Singh, D., and Singh, J. N. (2014). A comparative study of multiset orderings. International Journal of Mathematics and Statistics Invention, 2(5): 59-71.

Trotter, W. T. (1992). Combinatorics and partially ordered sets: Dimension Theory, The Johns Hopkins University Press.

Trotter, W.T. (1995). Partially ordered sets, in: R.L. Graham, M. Grotschel, L. Lovasz (Eds.), Handbook of combinatorics, Elsevier, 433-480.

