
FUDMA Journal of Sciences (FJS)

Maiden Edition

Vol. 1 No. 1, November, 2017, pp 49-57

FUDMA Journal of Science (FJS) Vol. 1 No. 1, November, 2017, 49-57

49

49

SEQURESQL – A FRAMEWORK FOR QUERY OPTIMIZATION AND PRIVACY ON OUTSOURCED DATA

1*Dima, R.M., 2Obunadike, G.N.

Department of Mathematical Sciences and Information Technology,

Faculty of Science,

Federal University Dutsin-ma,

Dutsin-ma, Katsina State.
1rdzer@fudutsinma.edu.ng

2gobunadike@fudutsinma.edu.ng

*Corresponding author: Dima, R.M. rdzer@fudutsinma.edu.ng

Abstract

Database outsourcing has become a trend in the information technology industry because it offers

scalability to the enormous amount of digital content stored and generated on a daily basis by

individuals and corporations. In large outsourced databases the efficiency of data retrieval,

especially as it relates to privacy, remains an open challenge, because traditional query languages

cannot work with encrypted data. While several architectures, techniques and tools have been

proffered to ensure that privacy and performance are balanced and optimized, each of these

approaches has its limitations. This research proposes a novel framework which focuses on

optimizing server-side data retrieval and query efficiency through the use of hash map and AES

128-bit encryption algorithm. The design and implementation of secureSQL is built on the client-

side without any alteration to the DBMS structure. SecureSQL model guarantees efficiency and is

able to execute 20 out of the 22 Transaction Processing Performance Council (TPC-H) benchmark

queries while ensuring privacy. This is proof that it is not restricted to simple query constructs but

is able to handle even complex queries involving nested sub queries and joins. The execution time

of queries between the client and database on the cloud is minimized, with a 0(1) time complexity

as is evident in the comparative performance analysis between secureSQL and the traditional

method. This is quantified using numerical results.

Keywords: Cloud Database, Data Privacy, Hash Map, Query Processing, Encryption, DaaS, Relational Database.

Introduction

Enterprises are becoming data-centric and increasingly

producing huge amounts of data daily (Liu and Ting, 2010).

Database outsourcing is a model that employs cloud

computing technology to offer scalability, availability, broad

network access and on-demand self-service among other

obvious advantages to the digital content that is stored and

transmitted to and from the storage servers. Cloud

computing is an elevated form of grid computing, parallel or

distributed computing which evolves to accelerate the idea of

sharing resources expeditiously by offering access and the

use of multiple server-based computational resources via

digital networks where user may access the server resources

using any kind of computing devices. A key problem in

outsourcing the storage and processing of data is that part of

the data may be sensitive, such as business secrets, credit

card numbers, health records or other personal information

(Kamara and Lauter, 2010).

Databases are traditionally protected by means of access

control mechanism. This method guarantees security only

when the data resides on a trusted server. Cloud database

poses security risks to the sensitive contents due to possible

malicious activities by internal and external parties. This

challenge can be addressed by encrypting data before

outsourcing in order to keep them hidden from the service

provider (Davida et. al., 1981).

The storage and processing of encrypted data on storage

servers is very desirable but implies a sacrifice of

functionality for security (Song et al., 2000). Traditional

encryption schemes prevent the execution of most SQL

queries through the DBMS engine and conventional query

languages cannot work with encrypted data.

In large outsourced databases, storing data is not

problematic, retrieval is the challenge. Raybourn (2013)

states that, the efficiency of data retrieval from untrusted

servers especially as it relates to security, remains an open

challenge. Before data encryption, one can send a precise

query to the server and retrieve only the information needed.

But to preserve the privacy of the data it is usually

encrypted. Thus one cannot make selections on the server

anymore because query languages cannot work with

encrypted data thus limiting the computation. Therefore for

each query there is need to download the database and do the

decryption and querying on the computer before re-

encrypting and uploading. Network connectivity and

bandwidth problems further make the process tiring and

cumbersome. The encryption key can be sent to the Cloud

Service Provider (CSP) to do the decryption of the data, but

this ends up in the same situation of vulnerability to

snooping administrators, hackers, compromised servers.

Available query mechanisms reviewed, which allow server-

side computations on encrypted data are limited as to nature

mailto:1rdzer@fudutsinma.edu.ng
mailto:rdzer@fudutsinma.edu.ng

SEQURESQL – A FRAMEWORK… Dima, R.M., Obunadike, G.N. FJS

FUDMA Journal of Science (FJS) Vol. 1 No. 1, November, 2017, 49-57

50

50

of data and queries they can execute. More so, security

measures typically introduce significant computational

overhead to the running time of general database operations

due to cost of decryption which results in a potential

disadvantage of performance degradation of queries. In

essence, data retrieval is constrained. So the question arises:

“What can be done to improve performance without trading

off the security of a database system in the cloud?”

This research proposes a novel framework called secureSQL

which aims at optimizing server-side data retrieval and query

efficiency through the use of hash map and AES 128-bit

encryption algorithm. SecureSQL model guarantees

efficiency and is able to execute 20 out of the 22 Transaction

Processing Performance Council (TPC-H) benchmark

queries while ensuring privacy. The execution time of

queries between the client and database on the cloud is

minimized, with a 0(1) time complexity as is evident in the

comparative performance analysis between secureSQL and

the traditional method.

Review of Related Literature

The DaaS model was first introduced by Hacigumus et al.,

(2002a). In his work, protecting the database records of a

client from an untrusted database service provider was

considered, by developing a model: NetDB2.

Querying data in encrypted form on an outsourced database

focuses on devising techniques that allow computations on

data that is encrypted using conventional encryption

algorithms or the design and use of customized

cryptographic schemes such as order-preserving or prefix-

preserving encryption that allow computations to be

performed on the data and they are applicable to numerical

data or string data (Elmasri, 2008); but they do not provide a

strong protection as they tend to leak a lot of information

(Jacob, 2010). Generally, searchable encryption techniques

such as the probabilistic scheme proposed by Song et. al.

(2000) or the fully homomorphic encryption by Gentry

(2009) tend to be computationally expensive and unable to

scale as the size of the data increases.

Hacigumus et al. (2002b) explored techniques to execute

SQL queries over encrypted data by processing as much of

the query as possible at the server side without decryption

and the remainder at the client side. This was done by using

an algebraic framework (bucketization) for query rewriting

to split (partition) the query for computation at both the

server and client side thus minimizing computation at the

client side by using metadata as index. Although privacy

from the Service Provider was achieved with reasonable

overhead, the technique employed could not handle

aggregate functions like SUM, COUNT, AVG, MIN and

MAX on encrypted numerical data. It was inapplicable for

string data as well because the response of a query generated

lots of additional data leading to high computational and

communication overhead.

Popa et al. (2011), in their work: CryptDB implemented an

approach that is built on top of the existing relational

database management systems (RDBMS) and protects the

privacy of database records in the cloud. It uses the concept

of “onions”. An onion consists of multiple layers of

encryption schemes on a single data value before storing on

the server. The removal of onion layer leads to performance

problems. Any query which needs to remove a layer of onion

runs slower when it is executed the first time because of the

time taken to remove the onion layer.

Alhanjouri and Al Derawi (2012) proposed a mechanism to

query encrypted data and make a tradeoff between the

performance and the security by using the hash map data

structure stored in the metadata component of the layer. The

hash map stores the mapping between the plain text and the

encrypted text as key:value pair. The work is implemented as

a layer above the DBMS to manage the query process. The

layer is placed on the same place with the database

management system which is a limitation in the outsourced

database scenario. Also, the encryption/decryption key is

kept on the server side.

Sharma et al. (2013) did a research that aims to strike a

balance between security and efficient query processing on

encrypted databases by allowing users to query directly over

the encrypted column without decrypting all the records

thereby improving the performance of the system. They

employ a technique which suggests two tables for a single

main table. One table stores sensitive columns in encrypted

format and the other table stores the encryption/decryption

keys in encrypted format along with the content of the first

table in plain text thereby hiding the relationship. Data

retrieval is limited to less than 40% of the total. Also, the

method is not suitable for the cloud environment.

In his dissertation, Kaul (2013) introduced a framework for

solving the problem of executing queries efficiently at the

cloud resident server while maintaining data security.

PhantomDB maintains data security by using the onion

method of Popa et al. (2011) which are carefully chosen to

allow efficient query processing at the server. PhantomDB

introduces the concept of Arithmetic Engine and Round

Communication, which allow it to support all the standard

SQL constructs with the exception of similarity operators. A

hybrid storage model which takes unique features of

PhantomDB into consideration while deciding the layout of

relational data on disk is introduced to guarantee efficiency.

A framework that is efficient without altering the structure of

the DBMS will be preferable.

Bachhav et al.,(2017) gave a comprehensive survey on

numerous models and approaches used for query

optimization to minimize execution time and to improve

resource utilization. They reviewed various research work

done on query optimization for conventional SQL and

MapReduce platforms.

It is pertinent to note that the problems considered in this

research and the solutions proposed, differ from existing

approaches. Since this research focuses on enhancing the

performance and efficiency of queries on cloud databases

with respect to time, the encryption scheme considered

balances the tradeoff of security and performance through

the use of selective attribute based encryption to secure

sensitive data thus minimizing the amount of information

represented in encrypted format. The preservation of data

privacy is achieved through encryption. Query execution is

achieved in almost constant time with the use of hash map

and the application is designed for cloud databases. Also, the

technique is integrated into the structure of the DBMS

without any alterations to the storage model as in the case of

Kaul (2013) as encryption is not expected to alter the

database structure (Jacob, 2010).

SEQURESQL – A FRAMEWORK… Dima, R.M., Obunadike, G.N. FJS

FUDMA Journal of Science (FJS) Vol. 1 No. 1, November, 2017, 49-57

51

51

Proposed Framework

The secureSQL system architecture is a breakdown of the

major functionalities of the system. It employs the client-

server architecture where the client is trusted and the server

is not trusted. The trusted client layer is a customized

application which is built using java applets to enable

secured web browser access and is connected to the database

which is outsourced to a public cloud server. The

architecture is shown in figure 1.

Figure 1: SecureSQL Framework

The encryption layer is expanded and shown in figure 2. The

query execution process is also split into the various

processing units and shown in figure 3. The encryption keys

which are used for client side encryption and decryption of

data are stored on the trusted client layer which is not

accessible to the service provider. Authentication is used to

identify the users of the system and ensure access control for

the entities involved. The owner privileges and that of the

user are clearly distinguished. A user should not encrypt or

upload data to the database. The user can perform queries

and receive results.

Encryption/Decryption Engine

The batch encryption captures the relation, attribute and

primary key in other to encrypt data which is already stored

in the resident database. Single row encryption is used to

perform encryption update on records to be inserted into the

database and this is illustrated in figure 2.

Figure 2: SecureSQL Encryption/Decryption Engine Architecture

The decryption process retrieves results which are still in

encrypted form then decrypts on the client side and compiles

the result (this is necessary because if the query involves

both unencrypted attributes as well as encrypted attributes,

the obtained result has to be compiled before it is displayed

to the user).

In the decryption process, the angular braces “< >” act as a

delimiter which is used by an inbuilt syntax analyzer. It

indicates the beginning and end of an attribute that requires

encryption to be applied to it. Hence, to query an encrypted

attribute, the delimiter is used to group it so that the

decryption function can be applied to it. Example: SELECT

<first_name>, last_name, <salary> FROM employees

LIMIT 10;

This statement indicates that the attributes first_name and

salary are encrypted, thus the < > will decrypt the values and

the result of first_name, last_name and salary records will be

displayed in plaintext values.

Query Execution

A query analyzer is used to check for syntactic and semantic

validity of the query. It checks that we have a valid sequence

of tokens by breaking down a query into an array of tokens,

SEQURESQL – A FRAMEWORK… Dima, R.M., Obunadike, G.N. FJS

FUDMA Journal of Science (FJS) Vol. 1 No. 1, November, 2017, 49-57

52

52

each containing a word, and then examining each token one

character at a time using regular expressions.

The SELECT, FROM, WHERE, GROUP BY, HAVING and

ORDER BY tokens are analyzed one after the other.

Structures with recognizable patterns are then treated

according to the required rule. The final string is a refined

query ready for execution. Since the encryption is done

according to selected fields, the syntax analyzer identifies

which fields require decryption or further encryption by

applying a set of rules to all columns enclosed in angular

braces. This is done for each query posted. The query

transformation relies on some metadata (the hash map)

which stores a key k for secure hashing and indexing.

Different columns use different keys and indexing

expressions.

As shown in figure 3, users that need to access encrypted

data submit their query which is then analyzed to know

which attributes are to be accessed. Every attribute is

associated with index information. Each plaintext query is

mapped onto a corresponding query on the indexing content

and executed in that form at the untrusted server. The hash

map is initialized to fetch the key corresponding to the

needed data then send the query to the cloud database for

execution. Result of the query is returned to client for

decryption and compilation and the final plaintext sent to the

user. If the result is null, then a message is displayed to the

user’s interface as appropriate.

Figure 3: SecureSQL Query Execution Process

Users that only need to access the clear text content of the database submit the query directly to the server that stores the

database and receive the clear text result with standard approaches.

Table 1: Query Execution Algorithm

S/No. Algorithm

1 Start:

2 Define NewQuery as String

3 Define ValuesMap as Dictionary

4 LOOP (string Y in query.split(‘ ‘))

5 TEST: Y[0] == ‘<’ and Y[Y.length-1] == ‘>’ THEN

6 TEST: ValuesMap.HasKey(y) THEN

7 NewQuery += ValuesMap.GetValue(Y);

8 ELSE

9 NewQuery += AES_DECRYPT(Y);

10 ELSE

11 NewQuery += Y;

12 ENDLOOP

13 RETURN NewQuery;

14 End

SEQURESQL – A FRAMEWORK… Dima, R.M., Obunadike, G.N. FJS

FUDMA Journal of Science (FJS) Vol. 1 No. 1, November, 2017, 49-57

53

53

Table 1 is an algorithm that explains the query execution

process. Line 2 declares a string variable to hold our query;

line 3 declares a dictionary to hold our key-value pairs in a

hash map; line 4 breaks query into bits using an empty space

as delimiter; line 5 determines if the column is to be

encrypted or decrypted; line 6 looks into the hash map first

for the value; line 7 if found, get value from the hash map

instead of running a fresh decryption querying the database;

line 9 otherwise, run a new decryption for it; line 11 if it is

an ordinary column not requiring encryption or decryption;

line 13 new query returned for execution.

SecureSQL Design Specification

A provably secure encryption scheme – Advanced

Encryption Standard which is implemented in a non-

deterministic mode is used to ensure privacy of data.

Performance with respect to queries is the key, even as the

database is increased in scale, it is expected that the

efficiency should not be compromised. Thus, hash map is

used to achieve some constancy in time. The hashmap

function is used to store the encrypted values as key:

value pair by mapping the key to a given range.

The implementation of hash map in this system ensures that

the key:value pairs (plaintext:ciphertext) are stored in the

metadata along with the schema of the database on the

server. The hash map keys are values gotten from already

existing data stored on the server, but when loaded on to the

hash map at execution time, the keys become available in

memory on the client side. Hash map is initialized in a

millionth of a second which is quite negligible. It ensures

that simple querying conditions do not require decrypting

fields before being executed and this positively influences

the time.

Example: SELECT salary, last_name FROM employees

WHERE id=’12GT098’;

If ‘id’ is the encrypted field, the query will not be executed.

Thus, the hash map then serves as a lookup from which a

replacement would be done at run-time by matching keys

with corresponding values. So, as explained in the query

execution process, the encrypted column is enclosed in

angular braces < > which acts as a placeholder, and therefore

treated as requiring decryption.

 SELECT salary, last_name FROM employees

WHERE id=’<12GT098>’;

Performance Evaluation

The experimental setup, consist of the google cloud SQL

storage infrastructure with MySQL database. Data generated

using TPC-H dbgen is used for the experiment. The primary

keys and other schema dependencies are as defined by TPC-

H. Application modules which incorporate the functionalities

of the system architecture are implemented and they form

the Client Side Application which is accessed via a

Graphical User Interface.

Query Testing and Results

In order to test the performance, query response time was

taken as a measurement across Data Manipulation Language

(DML) statements with different conditions as expressed in

the 22 TPC-H queries. Two main questions are of interest:

a. What is the scale up of the traditional method and

the proposed method, that is, how does the query

runtime vary with increasing dataset size?

b. How many of the TPC-H queries are actually able

to execute on the proposed system?

Question 1 addresses scalability which is the trend of query

execution time with increasing data size (varying

workloads). Each statement was iterated at least 10 times and

for every attempt query response time was noted and finally

average was calculated for all iterations. The results for

specific TPC-H benchmark queries (1, 2, 6 and 16) are

presented. These specific queries contain all the

characteristics exhibited by all the queries for string data

(equality (=) and pattern matching (LIKE)) and numerical

data (equality and range matching (<. >, =)). The number of

records is plotted on the axis and the execution time for

the different methods on the axis.

TPC-H Query 1 captures a scan of the lineitem relation

which contains 6 million records to retrieve data from nine

columns involving computations of aggregate and range

values with the GROUP BY and ORDER BY clause. Figure 4

is a line graph of mean execution time against varying

number of records for query 1. Besides the wide variation in

time between the two methods, the execution time for

secureSQL is constant on the average despite the increasing

number of records.

Figure 4: Graph of time vs no. of records for tpc-h query 1

SEQURESQL – A FRAMEWORK… Dima, R.M., Obunadike, G.N. FJS

FUDMA Journal of Science (FJS) Vol. 1 No. 1, November, 2017, 49-57

54

54

TPC-H Query 2 entails a scan over five relations with

nested sub-queries, equality tests and the ORDER BY clause

to retrieve data from seven columns. Figure 5 is a line graph

of mean execution time against varying number of records. It

indicates that time increases linearly with the dataset - O(n),

without the hashmap support and with the hash map support

primarily because of the nested sub queries. SecureSQL

performs 13.2% better than the traditional method.

Figure 5: Graph of time vs no. of records for tpc-h query 2

Query 6 selects data from one relation involving one column and computes for aggregate values. Figure 6 is a line graph of

mean execution time against varying number of records for query 6. SecureSQL query execution time is 0(1) despite

increasing number of records.

Figure 6: Graph of time vs no. of records for tpc-h query 6

Query 16 traverses two relations involving nested sub queries and computations of equality, pattern matching, GROUP BY

and ORDER BY clause to retrieve data from four columns. Figure 7 is a line graph of mean execution time against varying

number of records for query 16. SecureSQL query execution time is 0(1) despite increasing number of records.

SEQURESQL – A FRAMEWORK… Dima, R.M., Obunadike, G.N. FJS

FUDMA Journal of Science (FJS) Vol. 1 No. 1, November, 2017, 49-57

55

55

Figure 7: Graph of time vs no. of records for tpc-h query 16

Question 2 is focused on the query response time for

different types of queries in the TPC-H benchmark and

whether they can be successfully executed with the proposed

method. The 22 queries were run and 20 executed

successfully. Figure 8 is a linear graph plotted with query

number on the x-axis and execution time on the y-axis using

base10 log scale, for the raw execution time and the hash

map supported method. . The wide margin between both

methods necessitated the use of log scale on the time axis, in

other to achieve a better visual rendition.

Figure 8: Graph of time vs queries using log scale

Observation and Discussion

On a general note, it can be observed that there is a

significant variation between the execution time using the

traditional method and the time using the proposed method.

Also, with increasing number of records, the proposed

method maintains a degree of constancy in time. Some

exceptionally large figures were observed in the response

time of few queries. This was usually the case when the

query involved complex joins on multiple tables, GROUP

BY, HAVING clause and nested sub queries. Resource

utilization at the client side is another factor. Besides the

exceptions, these modest overheads show that using the

proposed method to query over encrypted data is practical in

many cases with optimal performance.

Comparison of methods

Figure 9 is a chart which represents the number of TPC-H

queries handled by other related methods compared. The

proposed method handles 20 out of the 22 TPC-H queries as

compared to Kaul (2013) – 16 TPC-H queries and

Hacigumus et al., (2002b) – 2 TPC-H queries.

SEQURESQL – A FRAMEWORK… Dima, R.M., Obunadike, G.N. FJS

FUDMA Journal of Science (FJS) Vol. 1 No. 1, November, 2017, 49-57

56

56

Figure 9: Comparison of Queries Handled

Summary and Conclusion

The efficiency of data retrieval in large outsourced

databases, especially as it relates to the privacy of such data

has been an open challenge primarily due to the fact that

traditional query languages cannot work with encrypted data.

Reviewed literature shows that most of the architectural

models and encryption techniques proposed to ensure

efficient performance of queries as well as privacy of

outsourced data have limitations which range from high

computational overhead to restricted query computation.

Based on these limitations, this research proposed an

architectural framework which focused on optimizing server-

side data retrieval and query efficiency through the use of

hash map and AES 128-bit encryption algorithm. The

implementation of this framework known as secureSQL is

built on the client-side without any alteration to the DBMS

structure. A query processing engine was also developed to

process encrypted data. Selective attribute-based encryption

which was incorporated into the encryption algorithm

ensures that computational overhead is minimized.

Observation of the results obtained show that there is a

significant variation between the execution time using the

traditional method of decrypting entire records before

performing queries and the time using the proposed method.

Also, with increasing number of records, the proposed

method maintains some degree of constancy in execution

time. SecureSQL model guarantees efficiency and is able to

execute 20 out of the 22 TPC-H benchmark queries while

ensuring privacy.

In conclusion, the recent explosion of digital content

ownership has both increased the popularity of data

outsourcing and fueled concerns over data security. The need

to facilitate storage and processing of large amounts and

types of sensitive data is of particular importance in modern

enterprise especially where the server is not trusted and

client resources are limited. This research contributes in no

small measure to eliminating the tradeoff between security

and efficient query processing through its secureSQL design

as is evidenced in the results.

References

Alhanjouri M. and Al Derawi A.(2012) “A New Method of

Query over Encrypted Data in Database using Hash Map”,

International Journal of Computer Applications (IJCA),

41(4): 46-51, March 2012. Published by Foundation of

Computer Science, NY, USA. Retrieved from:

http://research.ijcaonline.org/volume41/number4/pxc387758

0.pdf

Bachhav A., Kharat V. and Shelar M. (2017). Query

Optimization for Databases in Cloud Environment: A

Survey. In International Journal of Database Theory and

Application. Vol.10, No.6 (2017), pp.1-12

http://dx.doi.org/10.14257/ijdta.2017.10.6.01

Davida G.I., Wells D.L. and Kam J.B. (1981). A Database

Encryption System with Subkeys. ACM Trans. Database

Syst., 6(2):312-328.

Elmasri R. (2008). Fundamentals of database systems.

Pearson Education India.

Gentry C. (2009). A fully homomorphic encryption scheme.

(Unpublished PhD thesis). Stanford University. Retrieved

June 2, 2014 from: https://crypto.stanford.edu/craig/craig-

thesis.pdf.

Gerardnico (2014, January 23). TPC - TPC-H Decision

Support Benchmark Sample Schema [Web log post].

Accessed June 10, 2015 from:

http://gerardnico.com/wiki/performance/tpc-h.

Hacıgümüş H., Iyer B. and Mehrotra S. (2004). Efficient

execution of aggregation queries over encrypted relational

databases. In Proceedings of the 9th International

Conference on Database Systems for Advanced Applications,

Jeju Island, Korea. Pages 633-650.

Hacıgümüş H., Iyer B., Li C. and Mehrotra S. (2002a).

Providing Database as a Service. In Proceedings of the 18th

International Conference on Data Engineering (ICDE'02).

Sanjose CA. Pages 29-38. DOI:

10.1109/ICDE.2002.994695.

SEQURESQL – A FRAMEWORK… Dima, R.M., Obunadike, G.N. FJS

FUDMA Journal of Science (FJS) Vol. 1 No. 1, November, 2017, 49-57

57

57

Hacıgümüş H., Iyer B., Li C. and Mehrotra S. (2002b).

Executing SQL over encrypted data in the database service

provider model. In SIGMOD Conference, pages 216–227.

Halitsch (2014). Implementation of TPC-H schema into

MySQL DBMS [Web log post]. Accessed February 27, 2015

from:

https://sites.google.com/site/halitsch88/Implementation-

TPC-H-schema-into-MySQL-DBMS.

Jacob S. (2010). Cryptanalysis of a Fast Encryption Scheme

for Databases and of its Variant. IACR Cryptology ePrint

Archive 2010: 554. Retrieved June 15, 2015 from:

https://eprint.iacr.org/2010/554.pdf

Kamara S. and Lauter K.(2010). Cryptographic cloud

storage. In RLCPS, 2010

Kaul A. (2013). Query Processing in Encrypted Cloud

Databases. (Unpublished Master’s Thesis). Indian Institute

of Science, Bangalore. Retrieved March 25, 2014 from:

http://dsl.serc.iisc.ernet.in/publications/thesis/akshar.pdf.

Liu J. and Ting L.H. (2010). Dynamic Route Scheduling for

optimization of Cloud Database. Presented at the Intelligent

Computing and Integrated Systems (ICISS) pp. 680-682

Mykletun E. and Tsudik G. (2006). Aggregation Queries in

the Database-as-a-Service Model. Retrieved August 20, 2014

from: http://www.ics.uci.edu/~gts/paps/mt06.pdf.

Popa R.A., Redfield C.M.S., Zeldovich N., and Balakrishnan

H. (2011). CryptDB: Protecting Confidentiality with

Encrypted Query Processing. In Proceedings of the 23rd

ACM Symposium on Operating Systems Principles (SOSP

2011), Cascais, Portugal, October 2011.

Raybourn T. (2013). Bucketization Techniques for encrypted

databases: Quantifying the impact of Query

Distributions.(Unpublished Master’s Thesis). Bowling

Greenstate University. Available December 2, 2014 from:

https://etd.ohiolink.edu/ap/10?0::NO:10:P10_ACCESSION_

NUM:bgsu1363638271.

Sharma M., Chaudhary A. and Kumar S. (2013). Query

Processing and Performance and Searching over encrypted

data by using an Efficient Algorithm. Retrieved on June 20,

2014 from:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30

3.6449.

Song D.X., Wagner D. and Perrig A. (2000). Practical

techniques for searches on encrypted data. In IEEE

Symposium on Security and Privacy, Berkeley, CA, USA.

pages 44-55.

Transaction Processing Performance Council (2014):

Benchmarking TPC-H. Available from: http://www.tpc.org.

