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ABSTRACT 

The challenge encountered by industrial statisticians and engineers during statistical process control in other 

to build-up and formulates pharmaceutical optimization of drugs have prompted several choices of 

experimental design tool and regression models. The most commonly applied regression model is the second-

order polynomial which may perform poorly due to model misspecification. In this paper, we present two 

experimental design methods namely; the Full Factorial Design (FFD) and the Circumscribed Central 

Composite Design (CCCD) applied to an existing Adaptive Local Linear Regression (𝐿𝐿𝑅𝐴𝐵)  model to 

ameliorate the problem of boundary bias for a multi-response problem. The FFD do not make reference to the 

star points and as such could not address variability in the data, hence we also applied the CCCD to 

accommodate the star points in order to maintain rotatability and curvature in the data. In the application, we 

minimized Metformin Hydrochloride (Met-HCL) drug usage via FFD on 𝐿𝐿𝑅𝐴𝐵 and CCCD on 𝐿𝐿𝑅𝐴𝐵 and the 

results from the goodness-of-fit statistics, residual plots and optimization were obtained and analyzed. 

The 𝐿𝐿𝑅𝐴𝐵 that utilized CCCD outperformed 𝐿𝐿𝑅𝐴𝐵 that uses FFD in terms of the goodness-of-fit statistics, 

minimum  residual plots as it relates to the zero residual line and optimization of Met-HCL for Response 

Surface Methodology (RSM) data.  

 

Keywords: Adaptive local linear regression model, Circumscribed central composite design, Full factorial  

design, Metformin hydrochloride 

 

INTRODUCTION 

Recently, experimental design or design of experiments 

(DOE) and statistical process control have been modified by 

pharmaceutical industries, electric power generation 

companies, nuclear power plants, manufacturing industries, 

petroleum refineries, petrochemical plants, natural gas 

processing plants, food processing plants and several other 

industrial facilities with the aim to minimize cost, time and to 

optimized processes and products during process, product 

design and development. This suggest and gives a clear guild 

to the industries in other to scale-up for visibility studies  

alongside with cost reduction and better choice of 

management policies during production process. Response 

Surface Methodology (RSM) is an essential industrial 

statistical and engineering tool employed in the process and 

product development through three main stages namely; 

experimental design stage, modeling stage of the fitted 

regression model and in the optimization stage. It gives 

enlightenment to the industries in several ways such as 

pharmaceutical product design, process development, quality, 

manufacturing engineering and operations by improving their 

performances, design and formulations, and also in the 

optimization of the optimum control factors as well as the 

final products (Shubhasis et al., 2014; Eguasa et al., 2022). 

In other to resolve the challenge encountered during the 

continuous release dosage procedure, it is of necessity to find 

appropriate experimental design, model building and 

optimization of pharmaceutical formulation with a suitable 

conclusion rate in a record time and minimum number of 

experimental runs. Most commonly utilized model in this 

scenario is the second order polynomial model which may be 

inadequate due to model misspecification as given in  (Emami 

et al., 2008; Shubhasis et al., 2014; Eguasa, 2020). The 

optimization technique guarantee the use of genetic algorithm 

that employs a systematic design to minimize the number of 

trials, analysis of the response surfaces in order to aid 

understanding of the effect of the operating factors in 

obtaining suitable operating settings for the purpose of 

achieving the target goals either by a constrained 

optimization, two sided optimization, smaller the better 

optimization and lager the better optimization for a single and 

a multi-response optimization problem in practical 

preparation (Dan and Pal, 2013; Eguasa et al., 2022; 

Akhideno and Eguasa, 2022).  

The purpose of this study is to minimized Metformin 

Hydrochloride (Met-HCL) drug usage as the multi-response 

constrained problem with two operating factors such as 

Hydroxypropyl Methyl Cellulose K-15M (HPMC K-15M) 

and Polyvinyl Pyrrolidone K-30 (PVP K-30). In other to 

achieve this, two experimental design tool such as the Full 

Factorial Design (FFD) and the Circumscribed Central 

Composite Design (CCCD) were used to obtain the coded 

levels and thereafter be transformed to RSM data. Lastly, the 

data generated from FFD and CCCD were used to fit the 

Adaptive Local Linear Regression (𝐿𝐿𝑅𝐴𝐵 ) model for the 

multi-response problems.  

 

Parametric Regression Model 

The parametric regression models are superior if the user can 

specify a parametric form for the data, otherwise 

misspecified.  The nonparametric regression model is not 

constrained to a user specified form unlike the parametric 

counterpart. In spite of its flexibility, nonparametric 

regression models are confronted in a study such as RSM due 

to the peculiarities of RSM data namely; 

 The study utilizes more than one explanatory variable (a 

term referred to as curse of dimensionality) 

  Sparseness of RSM data  

 Cost efficient design (small sample sizes). 

Ordinary least Squares  

The Ordinary Least Squares (OLS) is an existing regression 

models applied in the estimation of the unknown function 𝑓 

FUDMA Journal of Sciences (FJS) 

ISSN online: 2616-1370 

ISSN print: 2645 - 2944 

Vol. 6 No. 6, December, 2022, pp 262 - 270 

DOI: https://doi.org/10.33003/fjs-2022-0606-1180    

mailto:oeguasa@biu.edu.ng
https://doi.org/10.33003/fjs-2022-0606-


MULTI-RESPONSE OPTIMIZATION OF MET…     Eguasa et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 6 No. 6, December, 2022, pp 262 - 270 263 

in Equation (1) (Anderson-Cook and Prewitt, 2005; Eguasa et 

al., 2020). The OLS model is applied in the estimation of the 

unknown parameters (coefficients) in the parametric 

(polynomial) model that the experimenter assumes adequate 

to approximate 𝑓 in Equation (1) (Wan and Birch, 2011). The 

OLS estimate �̂�𝑖
(𝑂𝐿𝑆)

 response in the 𝑖𝑡ℎ data point is given as:  

�̂�𝑖
(𝑂𝐿𝑆)

= 𝒙𝒊(𝑿
𝑻𝑿)−𝟏𝑿𝑻𝒚                  (1) 

where 𝒚 is a 𝑛 × 1 vector of response, 𝐗 is a n × p model 

matrix, 𝑝 is the number of model parameters (coefficients), 

𝑿𝑻  is the transpose of the matrix 𝐗, and 𝒙𝒊  is the 𝑖𝑡ℎ  row  

vector of the matrix 𝑿 (Pickle et al., 2008). 

In matrix notation, the vector of OLS estimated response is 

expressed as:  

�̂�(𝑶𝑳𝑺) =

[
 
 
 
 𝒉𝟏

(𝑶𝑳𝑺)

𝒉𝟐
(𝑶𝑳𝑺)

⋮

𝒉𝒏
(𝑶𝑳𝑺)

]
 
 
 
 

𝒚 = 𝑯(𝑶𝑳𝑺)𝒚,       (2)  

where the vector 𝒉𝒊
(𝑶𝑳𝑺)

= 𝒙𝒊(𝑿
𝑻𝑿)−𝟏𝑿𝑻 is the 𝑖𝑡ℎ row of the 

𝑛 × 𝑛 OLS Hat matrix 𝑯(𝑶𝑳𝑺). 

The OLS model requires several assumptions to be met for 

valid interpretation of its parameter estimates. Furthermore, it 

performs poorly if the assumed polynomial model is 

inadequate for the data (Wan and Birch, 2011).  

A second-order linear regression model is given as:      

 𝑦𝑖 =  𝛽0 +  ∑ 𝛽𝑗
𝑘
𝑗=1 𝑥𝑖𝑗 + ∑ 𝛽𝑗𝑗𝑥𝑖𝑗

2𝑘
𝑗=1 +

∑ ∑ 𝛽𝑗𝑟
𝑘
𝑟=𝑗+1

𝑘−1
𝑗=1 𝑥𝑖𝑗𝑥𝑖𝑟 + 𝜀𝑖, i= 1,2, … , 𝑛;  𝑟 = 𝑗 + 1, 𝑗 +

2,… , 𝑘              (3)   

where 𝑥𝑖𝑗 ,  𝑥𝑖𝑟 are the explanatory variables; 𝛽0 is a constant 

coefficient; the varying coefficients 𝛽𝑗 ,  𝛽𝑗𝑗  and 𝛽𝑗𝑟  are the 

coefficients of linear, quadratic and interaction terms 

respectively. 

 

MATERIALS AND METHODS  

As presented in the literature, the two explanatory variables 

are Hydroxypropyl Methyl Cellulose K-15M (HPMC K-

15M) and Polyvinyl Pyrrolidone K-30 (PVP K-30) and the 

response variable is the Met-HCL. All the experimental runs 

for these chemicals used were gotten from the same batch 

(Shubhasis et al., 2014). 

The idea behind the local linear regression model is because 

it is flexible and can adapt favourably in addressing boundary 

bias problem and is not constrained to user specified form for 

the data (Eguasa et al., 2022). 

 

The Local Linear Regression (LLR) 

The LLR model is a nonparametric regression form of the 

weighted least squares model (Fan and Gijbels, 1995; Hardle 

et al., 2005; Kohler et al., 2014). 

 The LLR estimate, �̂�𝑖
(𝐿𝐿𝑅)

of 𝑦𝑖, is given as: 

�̂�𝑖
(𝐿𝐿𝑅)

= �̃�𝒊(�̃�
𝑻𝑾𝒊�̃�)−𝟏�̃�𝑻𝑾𝒊𝒚 = 𝒉𝒊

(𝑳𝑳𝑹)
𝒚, (4) 

where �̃�𝒊 is the 𝑖𝑡ℎ row of the LLR model matrix �̃� given as:  

�̃� = [

1 𝑥11 𝑥12 ⋯ 𝑥1𝑘

1 𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮
1

⋮ ⋮
𝑥𝑛1 𝑥𝑛2

⋮ ⋮
⋯ 𝑥𝑛𝑘

]

𝑛×(𝑘+1)

, 

where 𝑥𝑖𝑗 , 𝑖 = 1,2,… , 𝑛, 𝑗 = 1,2,… , 𝑘, denotes the value of 

the 𝑗𝑡ℎ  explanatory variable in the 𝑖𝑡ℎ data point, 𝑾𝒊 is a 𝑛 ×
𝑛 diagonal weights matrix given as:  

                   𝑾𝒊 = [

𝑤1𝑖

0
0

𝑤2𝑖

⋯
⋯

0
0

⋮ ⋮ ⋱ ⋮
0 0 0 𝑤𝑛𝑖

]

𝑛×𝑛

  (5) 

For instance, 𝑤1𝑖, 𝑖 = 1, is obtained from the product  kernel 

as: 

 𝑤11 = ∏
𝑗=1
𝑘

𝐾 (
𝑥𝑖𝑗−𝑥1𝑗

𝑏
) ∑ ∏

𝑗=1
𝑘

𝐾 (
𝑥𝑖𝑗−𝑥1𝑗

𝑏
)𝑛

𝑖=1⁄ , 

𝑖 = 1,2,… , 𝑛, 𝑗 = 1,2,… , 𝑘,         (6)           

where 𝐾 (
𝑥𝑖𝑗−𝑥1𝑗

𝑏
) = 𝑒

−(
𝑥𝑖𝑗−𝑥1𝑗

𝑏
)
2

 is the simplified Gaussian 

kernel function and 𝑏𝑖 , 0 < 𝑏 ≤ 1,  𝑖 = 1,2,… , 𝑛 ,  𝑗 =
1,2,… , 𝑘,   is the fixed bandwidth (smoothing parameter) 

(Myers et al., 2009; Eguasa, 2020). 

 

Experimental design 

In RSM, the factors are usually more than one. Hence, if the 

number of factors is too large, it may directly affect the 

response of interest, and since not all factors are desirable to 

be included in the experimental design for reason due to cost 

implication, it required the use of factor screening approach 

or two-level full factorial design to identify the variables with 

main effects (Montgomery, 2009; Nair et al., (2014); Eguasa 

et al., 2022).  

The choice of suitable levels to be studied for the explanatory 

variables is also vital as it can affect model correctness. 

The Experimental Design stage permits an appropriate design 

that can offer adequate and substantial estimation relationship 

between the response and one or more factors. Usually 

applied DOEs in RSM include: 2𝑘  full factorial design, 3𝑘 

full factorial design, and the Central Composite Design 

(CCD).   

 

Table 1:  Coded stages and range for the design of experiments (Dan et al., 2014; Shubhasis et al., 2014 ) 

Factors or Input parameters -1(Low) 0(Medium) 1(High) 

X1= HPMC K 15M 100 300 500 

X2= PVP K30 50 75 100 

 

Table 2: Experimental range for constrained multi-responses (Dan et al., 2014) 

Response(s) Experimental range for responses % by range for responses (Met-

HCL) 

𝑦1 Not more than 30 percentage 𝑦1 ≤ 30 

𝑦2 Not more than 40 percentage 𝑦2 ≤ 40 

𝑦3 Not more than 60 percentage 𝑦3 ≤ 60 

𝑦4 Not more than 70 percentage 𝑦4 ≤ 70 

𝑦5 Not more than 80 percentage 𝑦5 ≤ 80 
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Table 3:  Coded stages and range for the design of experiments  

Factors or Input parameters Coded Levels 

-2(-𝜶) -1(Low) 0(Medium) 1(High) 2(+𝜶) 
X1= HPMC K 15M 50 100 300 500 550 

X2= PVP K30 25 50 75 100 125 

 

The central composite design 

A Central Composite Design permits for modeling of the 

second-order regression model in a given response that is 

often used for process optimization (Sivarao et al., 2010; 

Eguasa, 2020; Akhideno and Eguasa, 2022). The three types 

of CCD are centered on the locations of the factorial and star 

points in the design space namely; Circumscribed CCD 

(CCCD), Faced-Centered CCD and the Inscribed CCD. 

 

The circumscribed central composite design 

The most common CCD utilized in RSM is the circumscribed 

CCD because it permits for the estimation of curvature and 

the values of star points maintain rotatability which in turn 

hinge on the factorial point of the design (Dutka et al., 2015).  

The circumscribed CCD comprises of three types of trials 

namely; two levels (2𝑘) full factorial designs, 2𝑘  axial (star) 

points which are located at distance 𝛼 = √2𝑘4
 from the center 

point and 𝑘𝑐 , k
th central points (Bezerra et al., 2008).   

In this study, the CCCD has been employed because it is cost 

efficient, maintain rotatability and accommodates small 

number of experimental runs in the design.  

The mathematical expression for the CCCD is given as: 

𝐶𝐶𝐶𝐷 =  2𝑘 + 2𝑘 + 𝑘𝑐    (7)  

where 2𝑘 is the factorial portion, 2𝑘 is the axial or star points 

and 𝑘𝑐  is at least kth central points utilized in the design. In 

this design 𝑘 = 2 and 𝑘𝑐 = 1 which from equation (7) sum to 

9 experimental runs.

 

Table 4: Factor combinations as per the chosen experimental design (Dan et al., 2014) 

Exptal. Run X1= HPMC K 15M X2= PVP K30 

1 -1 -1 

2 -1 0 

3 -1 1 

4 0 -1 

5 0 0 

6 0 1 

7 1 -1 

8 1 0 

9 1 1 

 

Table 5: Experimental coded level for RSM data  

Exptal. Run 𝒙𝟏= HPMC K 15M 𝒙𝟐= PVP K30 

1 -1 -1 

2 1 -1 

3 -1 1 

4 1 1 

5 -1.4142 0 

6 1.4142 0 

7 0 -1.4142 

8 0 1.4142 

9 0 0 

 

Hereafter, the circumscribed CCD shall be referred to as 

CCCD for easy reference. A CCCD has an advantage over 3𝑘 

full factorial design because it reduces the number of 

experimental runs (e.g. 31 points in CCCD as against 81 

points in 3𝑘 design for k= 4). 

 

Data transformation using central composite design 

(CCD) to RSM data 

The values of the explanatory variables are coded between 0 

and 1. The data collected via a CCD is transformed by a 

mathematical relation: 

 

 𝑥𝑁𝐸𝑊 =
𝑀𝑖𝑛(𝑥𝑂𝐿𝐷)−𝑥0

(𝑀𝑖𝑛(𝑥𝑂𝐿𝐷)−𝑀𝑎𝑥(𝑥𝑂𝐿𝐷))
  

     (8)  

 

where 𝑥𝑁𝐸𝑊  is the transformed value, 𝑥0 is the target value 

that needed to be transformed in the vector containing the old 

coded value,  represented as 𝑥𝑂𝐿𝐷 , Min (𝑥𝑂𝐿𝐷) 

and 𝑀𝑎𝑥(𝑥𝑂𝐿𝐷) are the minimum and maximum values in the 

vector 𝑥𝑂𝐿𝐷 respectively, (Eguasa et al., 2022). 

The natural or coded variables in Table 1 can be transformed 

to explanatory variables in Table 2 using Equation (8).  

 

Target points needed to be transformed for location 2 under 

the coded variables are given below: 

Target points 𝑥0 : − 1 ,−1;  𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) : −
1 , −1;  𝑀𝑎𝑥(𝑥𝑂𝐿𝐷): 1, 1  

𝑥𝑁𝐸𝑊 =
𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) − 𝑥0

(𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) − 𝑀𝑎𝑥(𝑥𝑂𝐿𝐷))
 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥1 ∶  𝑥21 =
−2 − (1)

((−2) − (2))
= 0.0000 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥2 ∶  𝑥22 =
−2 − (−1)

((−2) − (2))
= 0.5000 

 

where 𝑥1 =  HPMC K 15M, 𝑥2 =  PVP K30
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Table 6: Factor combinations as per the chosen experimental design (Dan et al., 2014) 

Exp. Run 𝒙𝟏 𝒙𝟐 𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 

1 0.0000 0.0000 30 35 55 70 75 

2 0.0000 0.5000 25 40 60 65 76 

3 0.0000 1.0000 27 32 60 68 80 

4 0.5000 0.0000 28 36 45 60 80 

5 0.5000 0.5000 30 38 58 69 74 

6 0.5000 1.0000 26 34 52 70 78 

7 1.0000 0.0000 28 39 48 62 72 

8 1.0000 0.5000 22 40 50 64 79 

9 1.0000 1.0000 24 35 57 66 80 

 

Table 7: Experimental CCCD for the transformed RSM data that are coded btw 0 and 1 

Exp. Run 𝒙𝟏 𝒙𝟐 𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 

1 0.1464 0.1464 30 35 55 70 75 

2 0.8536 0.1464 25 40 60 65 76 

3 0.1464 0.8536 27 32 60 68 80 

4 0.8536 0.8536 28 36 45 60 80 

5 0.0000 0.5000 30 38 58 69 74 

6 1.0000 0.5000 26 34 52 70 78 

7 0.5000 0.0000 28 39 48 62 72 

8 0.5000 1.0000 22 40 50 64 79 

9 0.5000 0.5000 24 35 57 66 80 

 

Genetic algorithm  

Once the data has been modeled, the resulting fitted curve is 

used in obtaining the setting of the explanatory variables that 

optimizes the response based on the Met-HCL requirement. 

This apparently summarizes the aim of the optimization stage 

of RSM (Mays et al., 2001; Johnson and Montgomery, 2009). 

In this paper, we accomplished all the optimization tasks 

using the Genetic Algorithm (GA) optimization toolbox 

available in Matlab software. 

 

The individual desirability 

In the multiple-response studies that include 𝑚  responses, 

𝑚 > 1,   it is vital to obtain an optimal setting of the 

explanatory variables that would simultaneously optimize all 

the responses with respect to their individual Met-HCL 

requirements (Wan and Birch 2011; He et al., 2012; 

Shubhasis et al., 2014; Sestelo et al., 2017). The most 

common criterion applied in the optimization of multiple 

responses is the Desirability function.  

Based on the process requirement of a response, the 

desirability function transforms the estimated response, �̂�𝑝(𝒙) 

into a scalar measure, 𝑑𝑝 (�̂�𝑝(𝒙)).  

 

For a smaller-the-better (STB) response, 𝑑𝜚 (�̂�𝜚(𝒙)) , 𝜚 = 3  is given as:    

 𝑑1(�̂�1(𝒙))    = {

1,

{
𝑈−�̂�1(𝒙)

29−28
}
𝑡2

0,

,        

�̂�1(𝒙) < 28,

        28 ≤ �̂�1(𝒙) ≤ 29

�̂�1(𝒙) > 29,

,      𝑠. 𝑡 𝒙𝜖 𝜑 ,         (9) 

where 𝜌 = 28 and 𝑈 = 29 are the minimum acceptable value and upper limit, respectively, of the 𝜚𝑡ℎ response. However, for 

RSM data, the parameters values of 𝑡1 𝑎𝑛𝑑 𝑡2 are weights taken to be 1 for linearity (Eguasa et al., 2022). 

 

For a smaller-the-better (STB) response, 𝑑𝜚 (�̂�𝜚(𝒙)) , 𝜚 = 3  is given as:    

 𝑑2(�̂�2(𝒙))    = {

1,

{
𝑈−�̂�2(𝒙)

37−36.5
}
𝑡2

0,

,        

�̂�2(𝒙) < 36.5,

        36.5 ≤ �̂�2(𝒙) ≤ 37

�̂�2(𝒙) > 37,

,      𝑠. 𝑡 𝒙𝜖 𝜑 ,         (10) 

where 𝜌 = 36.5 and 𝑈 = 37 are the minimum acceptable value and upper limit, respectively, of the 𝜚𝑡ℎ response.  

 

For a smaller-the-better (STB) response, 𝑑𝜚 (�̂�𝜚(𝒙)) , 𝜚 = 3  is given as:    

 𝑑3(�̂�3(𝒙))    = {

1,

{
𝑈−�̂�3(𝒙)

59−58
}
𝑡2

0,

,        

�̂�3(𝒙) < 58,

        58 ≤ �̂�3(𝒙) ≤ 59

�̂�3(𝒙) > 59,

,      𝑠. 𝑡 𝒙𝜖 𝜑 ,         (11) 

where 𝜌 = 58 and 𝑈 = 59 are the minimum acceptable value and upper limit, respectively, of the 𝜚𝑡ℎ response.  

 

For a smaller-the-better (STB) response, 𝑑𝜚 (�̂�𝜚(𝒙)) , 𝜚 = 3  is given as:    
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 𝑑4(�̂�4(𝒙))    = {

1,

{
𝑈−�̂�4(𝒙)

67−65
}
𝑡2

0,

,        

�̂�4(𝒙) < 65,

        65 ≤ �̂�4(𝒙) ≤ 67

�̂�4(𝒙) > 67,

,      𝑠. 𝑡 𝒙𝜖 𝜑 ,         (12) 

where 𝜌 = 65 and 𝑈 = 67 are the minimum acceptable value and upper limit, respectively, of the 𝜚𝑡ℎ response.  

 

For a smaller-the-better (STB) response, 𝑑𝜚 (�̂�𝜚(𝒙)) , 𝜚 = 3  is given as:    

 𝑑5(�̂�5(𝒙))    = {

1,

{
𝑈−�̂�5(𝒙)

79.9−79.5
}
𝑡2

0,

,        

�̂�5(𝒙) < 79.5,

        79.5 ≤ �̂�5(𝒙) ≤ 79.9

�̂�5(𝒙) > 79.9,

,      𝑠. 𝑡 𝒙𝜖 𝜑 ,        (13) 

where 𝜌 = 79.5 and 𝑈 = 79.9 are the minimum acceptable value and upper limit, respectively, of the 𝜚𝑡ℎ response.  

 

In all cases, 𝑡2 is the parameter that controls the shape of the 

desirability function, allowing the user to accommodate 

nonlinear desirability functions. However, for RSM data, the 

values of 𝑡2 is taken to be 1 (Castillo, 2007; He et al., 2012).  

The overall desirability 

The overall objective of the desirability criterion is to obtain 

the setting of the explanatory variables that maximize the 

geometric mean (D) of all the individual desirability measures 

given as: 

 

𝐷 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒√𝑑1(�̂�1(𝒙))𝑑2(�̂�2(𝒙))𝑑3(�̂�3(𝒙))𝑑4(�̂�4(𝒙))𝑑5(�̂�5(𝒙))
5

   (14) 

 

RESULTS AND DISCUSSION 

In Tables 8 to 12 gives the constraints of Met-HCL drug 

dosage and the adaptive bandwidths for  𝑦1 (≤ 30) ,  𝑦2 (≤
40), 𝑦3(≤ 60), 𝑦4(≤ 70)  and  𝑦5 (≤ 80)  were obtained via 

genetic algorithm tool in Matlab and it is only applicable to 

local linear regression model, since it accommodates the 

diagonal weight matrix as given in equation (7). 

   

Table 8: Adaptive bandwidths for the 𝑭𝑭𝑫 𝑳𝑳𝑹𝑨𝑩 and 𝑪𝑪𝑪𝑫 𝑳𝑳𝑹𝑨𝑩 

𝒊 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 𝑓𝑜𝑟  𝑦1 FFD 𝐿𝐿𝑅𝐴𝐵 for  𝑦1 

𝒃𝒊𝟏 𝒃𝒊𝟐 𝒃𝒊𝟏 𝒃𝒊𝟐 

1 0.1314 0.8130     0.2028     0.3441 

2 0.0611 0.8130     0.2028     0.0001 

3 0.1314 0.2581     0.2028     0.3665 

4 0.0611 0.2581     0.0008     0.3441 

5 0.1493 0.4968     0.0008     0.0001 

6 0.0498 0.4968     0.0008     0.3665 

7 0.0929 0.9666     0.2562     0.3441 

8 0.0929 0.1819     0.2562     0.0001 

9 0.0929 0.4968     0.2562     0.3665 

  

Table 9: Adaptive bandwidths for the 𝑭𝑭𝑫 𝑳𝑳𝑹𝑨𝑩 and 𝑪𝑪𝑪𝑫 𝑳𝑳𝑹𝑨𝑩 

𝒊 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 𝑓𝑜𝑟 𝑦2 FFD 𝐿𝐿𝑅𝐴𝐵 𝑓𝑜𝑟  𝑦2 

𝒃𝒊𝟏 𝒃𝒊𝟐 𝒃𝒊𝟏 𝒃𝒊𝟐 

1 0.9310 0.1663 0.3527     0.1824 

2 0.6612 0.1663 0.3527     0.0174 

3 0.9310 0.0281 0.3527     0.4777 

4 0.6612 0.0281 0.0379     0.1824 

5 0.9926 0.0828 0.0379     0.0174 

6 0.6112 0.0828 0.0379     0.4777 

7 0.7904 0.2093 0.9669     0.1824 

8 0.7904 0.0139 0.9669     0.0174 

9 0.7904 0.0828 0.9669     0.4777 

 

Table 10: Adaptive bandwidths for the 𝑭𝑭𝑫 𝑳𝑳𝑹𝑨𝑩 and 𝑪𝑪𝑪𝑫 𝑳𝑳𝑹𝑨𝑩 

𝑖 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 𝑓𝑜𝑟 𝑦3 FFD 𝐿𝐿𝑅𝐴𝐵  𝑓𝑜𝑟 𝑦3 

𝑏𝑖1 𝑏𝑖2 𝑏𝑖1 𝑏𝑖2 

1 0.1151 0.0610     0.5770     0.2228 

2 0.0908 0.0610     0.5770     0.0114 

3 0.1151 0.5738     0.5770     0.4700 

4 0.0908 0.5738     0.0851     0.2228 

5 0.2226 0.0651     0.0851     0.0114 

6 0.1884 0.0651     0.0851     0.4700 

7 0.0004 0.2070     0.0311     0.2228 
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8 0.0004 0.9321     0.0311     0.0114 

9 0.0004 0.0651     0.0311     0.4700 

 

Table 11: Adaptive bandwidths for the 𝑭𝑭𝑫 𝑳𝑳𝑹𝑨𝑩 and 𝑪𝑪𝑪𝑫 𝑳𝑳𝑹𝑨𝑩 

𝑖 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 𝑓𝑜𝑟  𝑦4 FFD 𝐿𝐿𝑅𝐴𝐵 for  𝑦4 

𝑏𝑖1 𝑏𝑖2 𝑏𝑖1 𝑏𝑖2 

1 0.3043 0.1535 0.3639     0.9749 

2 0.0065 0.1535 0.3639     0.7320 

3 0.3043 0.4661 0.3639     0.5239 

4 0.0065 0.4661 0.0387     0.9749 

5 0.4214 0.0212 0.0387     0.7320 

6 0.0003 0.0212 0.0387     0.5239 

7 0.0999 0.3773 0.9933     0.9749 

8 0.0999 0.8193 0.9933     0.7320 

9 0.0999 0.0212 0.9933     0.5239 

 

Table 12: Adaptive bandwidths for the 𝑭𝑭𝑫 𝑳𝑳𝑹𝑨𝑩 and 𝑪𝑪𝑪𝑫 𝑳𝑳𝑹𝑨𝑩 

𝑖 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 𝑓𝑜𝑟  𝑦5 FFD 𝐿𝐿𝑅𝐴𝐵 for  𝑦5 

𝑏𝑖1 𝑏𝑖2 𝑏𝑖1 𝑏𝑖2 

1 0.0568 0.1315 0.6430     0.1751 

2 0.5422 0.1315 0.6430     0.0354 

3 0.0568 0.1869 0.6430     0.6315 

4 0.5422 0.1869 0.0235     0.1751 

5 0.1936 0.0012 0.0235     0.0354 

6 0.8800 0.0012 0.0235     0.6315 

7 0.0620 0.2780 0.2450     0.1751 

8 0.0620 0.3563 0.2450     0.0354 

9 0.0620 0.0012 0.2450     0.6315 

 

Table 13: Model goodness-of-fits statistics for 𝑭𝑭𝑫 𝑳𝑳𝑹𝑨𝑩 and 𝑪𝑪𝑪𝑫 𝑳𝑳𝑹𝑨𝑩 

Response Model 𝑫𝑭 𝑷𝑹𝑬𝑺𝑺∗∗ 𝑷𝑹𝑬𝑺𝑺 𝑺𝑺𝑬 𝑴𝑺𝑬 𝑹𝟐(%) 𝑹𝑨𝒅𝒋
𝟐 (%) 

𝑦1 
𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 0.6651 6.7861 43.1104 1.7615 2.6485 96.96 63.47 

𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 0.0694 2.2450 13.6193 0.0179 0.2582 99.97 96.44 

𝑦2  
𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 1.0543 3.6278 25.3250 0.5215 0.4946 99.19 93.84 

𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 0.7071 12.8319 85.5988 0.3568 0.5046 99.44 93.71 

𝑦3 
𝐹𝐹𝐷  𝐿𝐿𝑅𝐴𝐵 0.1603 18.3169 112.3068 0.4574 2.8536 99.81 90.28 

𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 0.0145 55.7651 335.3824 0.0096 0.6620 99.99 97.75 

𝑦4 
𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 3.0229 16.6531 119.2933 17.9236 5.9292 82.43 53.50 

𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 0.3614 12.8116 80.4416 1.1435 3.1638 98.88 75.19 

𝑦5 
𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 0.3366 12.7527 80.3087 0.3311 0.9839 99.53 88.90 

𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 0.1137 7.1742 43.3214 0.2594 2.2814 99.63 74.25 

 

The results obtained from Table 13 clearly shows that 

𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵  from the respective Met-HCL gave the better 

performance statistics as compared with drug dosage over 

𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 in twenty two cells as against eight cells for the 

multi-response Met-HCL problem. The bolded cells indicates 

a better performance over cells that are not bold and obviously 

gives a better predictive power over the 𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵.  

 

 
Figure 1: Residual plot for the two regression models 𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 and 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵  𝑦1  
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Figure 2: Residual plot for the two regression models 𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 and 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 𝑦2 

 

 
 

Figure 3: Residual plot for the two regression models 𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 and 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 𝑦3 

 

 
Figure 4: Residual plot for the two regression models 𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 and 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 𝑦4 

 

 
Figure 5: Residual plot for the two regression models 𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 and 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 𝑦5 

 

In Figures 1-5, the 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 gave a smaller residual (red 

line) over 𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 (green line) with residual line spread 

away more from the zero residual line. This is a justification 

of result obtained from the goodness-of-fit statistics that 

𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵  is a better regression model over the 

𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵.
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Table 14: Model optimal solution based on the multi-response Desirability function  

Model 𝒙𝟏 𝒙𝟐 �̂�𝟏 �̂�𝟐 �̂�𝟑 𝒚𝟒 𝒚𝟓 𝒅𝟏(�̂�𝟏) 𝒅𝟐(�̂�𝟐) 𝒅𝟑(�̂�𝟑) 𝒅𝟒(�̂�𝟒) 𝒅𝟓(�̂�𝟓) 𝑫(%) 

FFD  
𝐿𝐿𝑅𝐴𝐵 

0.6574 0.4359 27.0505 36.2059 46.3372 65.0155 76.5808 1.0000 1.0000 1.0000 0.9922 1.0000 99.84 

𝐶𝐶𝐶𝐷  
𝐿𝐿𝑅𝐴𝐵 

0.5574 0.4359 27.5138 35.7426 55.5432 63.1012 79.1100 1.0000 1.0000 1.0000 1.0000 1.0000 100.00 

 

From Table 14, 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 provides a better multi-

response Met-HCL over 𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵  in terms of overall 

desirability for the respective factors  𝑥1 =  HPMC K 15M,
𝑥2 =  PVP K30 . Obviously, 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵  gave a better 

process requirement with 100% desirability and with 

operating factors  𝑥1(HPMC K 15M) = 0.5574,
𝑥2( PVP K30) = 0.4359 with the best choice of Met-HCL 

drug dosage. 

 

CONCLUSION 

The minimization of Metformin Hydrochloride (Met-HCL) 

drug usage for individual and the overall desirability functions 

were analyzed for a multi-response constrained problem with 

two operating factors such as Hydroxypropyl Methyl 

Cellulose K-15M (HPMC K-15M) and Polyvinyl Pyrrolidone 

K-30 (PVP K-30). The results show that 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 from 

the respective Met-HCL performed better in terms of 

goodness statistics as compared with drug dosage over 

𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 in twenty two cells as against eight cells for the 

multi-response Met-HCL problem. The bolded cells indicates 

a better performance over cells that are not in bold and 

apparently gives a better predictive power over 

the 𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵. Thus, for the residual plots, it is obvious that 

the 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵  offer a smaller residual (red line) over 

𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 (green line) with residual line spread away more 

from the zero residual line. Lastly, the 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 provides 

a better multi-response Met-HCL over 𝐹𝐹𝐷 𝐿𝐿𝑅𝐴𝐵 in terms 

of overall desirability for the respective factors  𝑥1 =
 HPMC K 15M, 𝑥2 =  PVP K30 . Obviously, 𝐶𝐶𝐶𝐷 𝐿𝐿𝑅𝐴𝐵 

gave a better process requirement with 100% desirability with 

settings of the factors  𝑥1(HPMC K 15M) = 0.5574  and 

𝑥2( PVP K30) = 0.4359.  

  

REFERENCES 
Anderson-Cook C. M. and Prewitt K. (2005). Some 

guidelines for using    nonparametric models for modeling 

data from response surface designs. Journal of Modern 

Applied Statistical Models, 4, 106-119. 

 

Bezerra M. A., Santelli R. E., Oliveira E. P., Villar L. S. and 

Escaleira L. A. (2008). Response surface methodology (RSM) 

as a tool for optimization in analytical chemistry. Talanta, 76, 

965-977. 

 

Castillo D. E. (2007). Process Optimization: A Statistical 

Method. New York: Springer International Series in 

Operations Research and Management Science. 

 

Dan S., Dan N. and Pal T. K. (2014). Application of response 

surface methodology (RSM) in statistical optimization and 

pharmaceutical characterization of a matrix tablets 

formulation using Metformin HCL as a model drug. 

Innoriginal International Journal of Sciences, 1, 1-6. 

 

Dan S., Pal T. K. (2013). Sustained Release Matrix Tablet of 

Diltiazem Hydrochloride: Formulation Development, in-vitro 

Evaluation and Statistical Optimization by Response Surface 

Methodology (RSM). Electronic Journal of Biosciences, 1, 

06-22.  

 

Dutka M., Ditaranto M. and Lovas T. (2015). Application of 

a Central Composite Design for the study of  𝑁𝑂𝑋 Emission 

Performance of Low 𝑁𝑂𝑋 Burner. Energies, 8, 3606-3627. 

 

Eguasa O. (2020). Adaptive Nonparametric Regression 

Models for Response Surface Methodology (RSM). 

Dissertation, Department of Mathematics, University of 

Benin, Benin City, Nigeria. 

 

Eguasa O., Edionwe E. and Mbegbu J. I. (2022). Local Linear 

Regression and the problem of dimensionality: a remedial 

strategy via a new locally adaptive bandwidths selector, 

Journal of Applied Statistics. 

https//doi:10.1080/02664763.2022.2026895 

 

Akhideno I. O. and Eguasa O. (2022). An Adaptive Local 

Linear Regression Method for Mobile Signal Strength with 

Application to Response Surface Methodology. FUDMA 

Journal of Sciences (FJS), 6 (5), 41 – 49. 

 

Emami J., Taj A. M. and Ahmadi F. (2008). Preparation and 

In Vitro Evaluation of Sustained-Release Matrix Tablets of 

Flutamide Using Synthetic and Naturally Occurring 

Polymers. Iranian Journal of Pharmaceutical Research, 247-

257.  

 

Fan J. and Gijbels I. (1995). Data-driven bandwidth selection 

in local polynomial fitting: A variable bandwidth and spatial 

adaptation. Journal of the Royal Statistical Society, Series b 

371 – 394. 

 

Hardle W., Muller M., Sperlich S. and Werwatz A.   (2005).  

Nonparametric and Semiparametric Models: An Introduction 

Berlin: Springer-Verlag. 

 

He Z., Zhu P. E. and Park S. H. (2012). A robust desirability 

function for multi-response surface optimization. European 

Journal of Operational Research, 221, 241-247. 

 

Johnson R.T. and Montgomery D.C. (2009). Choice of 

second-order response surface designs for logistics and 

Poisson regression models, Int. Journal of Experimental 

Design and Process Optimization, 1, 2 – 23. 

 

Kohler M. A., Schindler A. and Sperlich S. A. (2014). review 

and comparison of bandwidth selection methods for kernel 

regression. International Statistical Review, 82, 243–274. 

 

Mays J. E., Birch J. B. and Starnes B. A. (2001).  Model robust 

regression: Combining parametric, Nonparametric and semi-

parametric models. Journal of Nonparametric Statistics, 13, 

245 - 277. 

 

Montgomery D. C. (2009). Introduction to statistical quality 

control. 7th edition, John Wiley & Sons, New York. 

 



MULTI-RESPONSE OPTIMIZATION OF MET…     Eguasa et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 6 No. 6, December, 2022, pp 262 - 270 270 

 ©2022 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 
International license viewed via https://creativecommons.org/licenses/by/4.0/ which  permits  unrestricted  use,  
distribution,  and  reproduction  in  any  medium, provided the original work is cited appropriately.  

Myers R., Montgomery D. C. and Anderson-Cook C. M. 

(2009). Response Surface Methodology: Process and Product 

Optimization Using Designed Experiments Wiley. 

 

Nair A. T., Makwana A. R. and Ahammed M. M. (2014). The 

use of Response Surface Methodology for modelling and 

analysis of water and waste – water treatment processes: A 

Review. Water Science and Technology, 69(3), 464 – 478. 

 

Pickle S. M., Robinson T. J., Birch J. B. and Anderson-Cook 

C.M. (2008). “A semi-parametric model to robust parameter 

design. Journal of Statistical Planning and Inference, 138, 

114-131. 

 

Sestelo M., Villanueva N. M., Meira-Machado L. and Roca-

Pardinas J.  (2017). An R package for Nonparametric 

estimation and inference in life sciences, Journal of Statistical 

Software, 82, 1- 27. 

 

Sivarao I., Anand T. J. S. and Shukor A. (2010). RSM Based 

Modeling for Surface Roughness Prediction in Laser 

Machining. International Journal of Engineering and 

Technology IJET-IJENS, 10 (4), 26 – 32. 

 

Wan W. and Birch J. B. (2011). A semi-parametric technique 

for multi-response optimization. Journal of Quality and 

Reliability Engineering International, 27, 47-59.

 

 

 

 

https://creativecommons.org/licenses/by/4.0/

