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ABSTRACT 

In the present work, we study numerically the motion of an infinitesimal fourth body near the equilibrium 

points (EPs) of the photogravitational restricted four-body problem (Lagrangian configuration) under the effect 

of circumstellar belt. We consider the case where  three the bodies of masses 𝑚1, 𝑚2and 𝑚3 (primaries) are 

sources of radiation as well as enclosed by a circumstellar belt and two of the primaries, 𝑚2and𝑚3, have equal 

masses (𝑚2 = 𝑚3 = 𝜇) and equal radiation factors (𝑞2 = 𝑞3) while the dominant primary body 𝑚1is of mass 

1 − 2𝜇. Firstly, these equilibria are determined and then the influence of the system parameters on their 

positions and stability is performed. In addition, the numerical exploration is performed using the Ross 104-

Ross775a-Ross775b stellar system to compute the locations of the equilibria and the eigenvalues of the 

characteristic equation. For this system where the value of the mass parameter is beyond Routh’s value, we 

observe that they may be ten (four collinear and six non-collinear) or eight (two collinear and six non-collinear) 

EPs depending on the mass of the circumstellar belt. The linear stability of each equilibrium point is also 

studied and it is found that in the case where ten equilibria exist, the new collinear point, 𝐿𝑛1is always linearly 

stable while the other nine equilibria are always linearly unstable. In the case where eight equilibria exist, all 

of them are always linearly unstable. The zero velocity surfaces for the stellar system are drawn and regions 

of motion are analyzed for increasing values of the mass belt.  

 

Keywords: Restricted Four-body problem, Radiation pressure, Circumstellar belt, Equilibrium points, 

Stability, Zero velocity surfaces 

 

INTRODUCTION 

The equilibrium points solutions, their parametric variation 

and their stability among other dynamical aspects of few-body 

celestial systems have always been an attractive and important 

field of research due to the discovery of a great amount of 

extrasolar planetary systems. The circular restricted three-

body problem (henceforth CR3BP) is one of the most 

attractive and important problems of study in space dynamics 

as well as in dynamical Astronomy and in its different 

modifications, has had extensive astronomical applications in 

several scientific fields, including among others; celestial 

mechanics, galactic dynamics, lunar and chaos theories (for 

details see Szebehely, 1967; Murray and Dermott, 1999; 

Musielak and Quarles, 2017). In this model, two finite bodies, 

known as primaries, rotate in circular orbits around their 

common center of mass, while the third infinitesimal body 

moves under the gravitational attraction of the primaries and 

does not affect their motion. In the gravitational restricted 

three-body problem (R3BP), Lagrange, in 1772 showed that 

there exists five libration points. Three of these points denoted 

by 𝐿1 , 𝐿2 , and 𝐿3 are called collinear and they lie on the 

𝑥 −axis while the other two denoted by 𝐿4and𝐿5are called 

triangular points and are away from the 𝑥 −axis (Szebehely, 

1967). The three collinear equilibrium points are generally 

unstable whereas the triangular points are stable for the mass 

ratio 0 < 𝜇 ≤ 0.03852. ... Tyokyaa and  Atsue (2020) studied 

the locations and  linear stability of equilibrium points in the 

CR3BP under radiation and oblatenes of the  bigger primary. 

The restricted four-body problem (R4BP) is an extension of 

the R3BP and a natural generalization of it. It deals with the 

motion of a body of infinitesimal (test particle) mass under 

the simultaneous gravitational attraction of three massive 

bodies (primaries) moving in circular periodic orbits around 

their center of mass fixed at the origin of the coordinate 

system. The infinitesimal fourth body does not affect the 

motion of the three bodies. In the case here considered, the 

primaries of the problem are located at the apices of an 

equilateral triangle (Lagrangian configuration). We refer to 

this as the R4BP. Moulton (1900) built this model and already 

studied its equilibria. Since then, this very special 

configuration has often been found to be the center of special 

scientific interest and many authors have focused on the study 

of the relative equilibrium solutions and their stability, 

computation of families of periodic orbits, etc not only for the 

gravitational case but also for cases that include additional 

forces other than the gravitational one (i.e., post-Newtonian 

potentials). Some interesting studies of the problem 

(gravitational case) appeared in the last few years. In the first, 

Simo (1978) studied the linear stability of the relative 

equilibrium solutions in the R4BP. In the second (Alvarez-

Ramirez and Vidal, 2009), the authors studied the model 

problem when the three massive primaries have equal masses. 

In the third one (Baltagiannis and Papadakis, 2011), the 

authors studied numerically the equilibrium points (EPs) and 

their stability under different combinations of mass, namely; 

all primary bodies with equal masses, two primary bodies 

with equal masses and all the primary bodies with unequal 

masses. The results indicate that equilibria and stability 

depend on the ratios of the masses. During the past, the 

Lagrange configuration of the R4BP has been investigated to 

understand the influence and effects of several parameters in 

realistic celestial systems (see e.g. Schwarz et al. 2009a, 

2009b; Ceccaroni and Biggs 2012; Baltagiannis and 

Papadakis 2013). 

Several authors have studied the existence of equilibrium 

points and their stability in the frame of the R4BP under 

different perturbing forces, but mainly considering three equal 

masses or two equal masses for the primary bodies. Without 
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being exhaustive, a number of articles are available in the 

literature, which are devoted to the study of the EPs and their 

properties such as their linear stability on the R4BP in the case 

where some or all the primaries are radiation sources together 

with additional terms, such as the Stokes drag and/or 

oblateness or even some versions such as the restricted 

problem of 2+2 bodies. Papadouris and Papadakis (2013) 

studied the existence and linear stability of the EPs on the 

plane, as well as out of the orbital plane in the framework of 

R4BP with the assumption that the first primary body is a 

radiation source when the masses of the three primary bodies 

or the masses of two of them are equal. In the planar motion 

of the problem where the two small primary bodies have equal 

masses, it was observed that the problem admits 2 collinear 

and 6 or 4 noncollinear EPs depend on the radiation 

coefficient of the dominant primary body. They have shown 

that the radiation pressure has significant effects on the 

topology of the zero velocity curves. Soon after, Singh and 

Vincent (2015, 2016), Ansari (2016), Osorio-Vergas et al. 

(2020), Suraj et al. (2020) investigated this configuration 

including radiation of the primaries. Singh and Omale (2019) 

studied the combined effect of Stokes drag, oblateness and 

radiation pressure on the existence and stability of EPs in the 

R4BP. Vincent et al.  (2019) studied the existence, location 

and stability of EPs of the model problem when all the 

primaries are radiation sources together with Stokes drag 

effect. It was observed that in the presence of P–R drag effect, 

the collinear EPs of the problem cease to exist numerically 

and of course analytically.  

Studies of planetary and stellar systems have revealed disc of 

dust particles which are regarded as young analogues of the 

Kuiper Belt in the Solar System (Greaves et al., 1998). These 

discs play important roles in the origin of planets’ orbital 

elements if they are massive enough. The importance of the 

problem in astronomy has been addressed by Jiang and Yeh 

(2004, 2006) where it was shown that the presence of disc 

resulted to additional equilibria of the system. Many scientists 

took into account the gravitational potential from the belt/disc 

under various assumptions in R3BP and found that these 

perturbations exhibit significant changes in the equilibrium 

position and stability (see e.g., Kishor and Kushvah, 2013; 

Singh and Taura, 2013; Jiang and Yeh, 2014; Vincent et al., 

2022; Vincent and Kalantonis, 2022). Taura and Leke (2022) 

derived the equations of motion of the CR3BP when the 

masses of the primaries vary and surrounded by a belt. 

Furthermore, extensions to more realistic problems in stellar 

or solar dynamics appeared in some previous works on the 

R4BP by considering gravitational potential from the belt/disc 

with additional terms, such as the radiation pressure and 

Manev potential (Singh and Omale, 2020 and Mahato et al., 

2021).  

In this study, the inclusion of radiation pressure and 

gravitational potential from the belt in the R4BP, allow us to 

model in a more realistic way the dynamics of an infinitesimal 

particle. In this premise, stellar system Ross 104-Ross775a-

Ross775b provides suitable astrophysical model for this 

problem. In extending the research work by Singh and 

Vincent (2015, 2016), we aim to study the motion of an 

infinitesimal body near the equilibrium points of the R4BP 

when the primaries are modeled as radiation sources with the 

three stars enclosed by a disc. New equilibrium points, zero-

velocity surfaces and allowed regions of motion make a 

qualitative difference to the dynamical features of the model.  

 

Mathematical formulation and equations of motion 

We consider the motion of an infinitesimal particle, say 𝑚 

under the gravitational attraction of three primary bodies 

𝑚1,𝑚2and 𝑚3, called primaries. We assume that the three 

primaries can be radiating sources and that primaries 𝑚2and 

𝑚3have the same mass 𝑚2 = 𝑚3 = 𝜇and the same radiation 

factor 𝑞2 = 𝑞3.  We assume that the primaries are in an 

equilateral triangle configuration. Specifically, bodies 𝑚2and 

𝑚3 have the horizontal 𝑥 -axis as symmetric axis such that the 

body 𝑚1lies on the negative 𝑥 -axis at the origin of time. The 

mutual distances of the three primaries remain unchanged 

with respect to time. The motion of the system is referred to 

axes rotating with uniform angular velocity. Their motion 

consists of circular orbits around their center of gravity. We 

choose the units of distance, mass and time in such a way that 

the gravitational constant 𝐺 = 1. Hence, the coordinates of 

the primaries 𝑚1, 𝑚2 , 𝑚3 in the synodic frame (coplanar 

primaries) are, (−𝜇√3, 0) , (
√3

2
(1 − 2𝜇), −

1

2
),  and (

√3

2
(1 −

2𝜇),
1

2
),  respectively, and 0 < 𝜇 <

1

3
, with 𝜇  the so-called 

mass-ratio parameter. 

The equations of motion of the photogravitational restricted 

four-body problem are written as Singh and Vincent (2015, 

2016) 

�̈� − 2�̇� = 𝛺𝑥 ,                �̈� + 2�̇� = 𝛺𝑦,                        (1)         

where the potential function,𝛺 may be written as 

𝛺 =
(𝑥2+𝑦2)

2
+

(1−2𝜇)𝑞1

𝑟1
+

𝜇𝑞2

𝑟2
+

𝜇𝑞2

𝑟3
                      (2) 

where  

𝑟1 = √(𝑥 + √3𝜇)2 + 𝑦2,
       

𝑟2 = √(𝑥 −
√3

2
(1 − 2𝜇))2 + (𝑦 +

1

2
)2,                (3) 

𝑟3 = √(𝑥 −
√3

2
(1 − 2𝜇))2 + (𝑦 −

1

2
)2 ,𝑞2 = 𝑞3. 

𝑟1, 𝑟2 
and 𝑟3 are the distances of the test particle from the three 

primaries 𝑚1,𝑚2and 𝑚3 , respectively, 𝑞1,𝑞2, 𝑞3(𝑞𝑖 ≤ 1, 𝑖 =

1,2,3) are the radiation pressure of the first, second and third 

primary, respectively, while the dot is the differentiation w.r.t 

time 𝑡.  
Let us recall that according to Miyamoto and Nagai (1975), 

the gravitational potential from the disc is given by 

𝑉(𝑟, 𝑧) = −
𝑀𝑏

√𝑟2+(𝑎+(√𝑧2+𝑏2)
2
,                           (4) 

where  𝑀𝑏(𝑀𝑏 << 1) stands for the mass of the disc, 𝑟is the 

radial distance of the dust particle so that 𝑟2 = 𝑥2 + 𝑦2 , 𝑎 

and 𝑏 are the flatness and core parameters, respectively.  

Restricting to coplanar primaries, equation (4) becomes  

𝑉(𝑟) = −
𝑀𝑏

√𝑟2+𝑇2
,                                            (5) 

where 𝑇 = 𝑎 + 𝑏denotes the density profile of the disc taken 

to the value 𝑇 = 0.02 (Vincent et al., 2022).        

 

Denoting by𝑛the mean motion of the fourth body, from Singh 

and Omale (2020), Vincent et al. (2022) and Mahato et al. 

(2022), we have the following expression  

𝑛2 = 1 +
2𝑀𝑏𝑟𝑐

(𝑟𝑐
2+𝑇2)

3
2

                                           (6)  

with 𝑟𝑐
2 = 1 − 𝜇 + 𝜇2, the radial distance of the test particle. 

Therefore, using equations (6) and (5) and following Singh 

and Omale (2020) and Singh and Vincent (2016), the 

pertinent equations of motion (1) in the 𝑥𝑦 -plane are finally 

written as  

3

1

12 )3)(21(
2

r

qx
xnynx

 +−
−=− 

3

2

2 ))21(
2

3
(

r

xq −−

− −

−−

−
3

3

2 ))21(
2

3
(

r

xq  𝑀𝑏𝑥

(𝑟2+𝑇2)
3
2

,                (7) 
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3

1
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2

r
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1
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r

yq +

− ,

)(
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1
(

2

3

22

3

3

2

Tr

yM

r

yq
b
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−

−

−


       

 

where the potential function due to the combined effect of 

radiation pressure and circumstellar belt becomes 

𝛺 =
𝑛2(𝑥2+𝑦2)

2
+

(1−2𝜇)𝑞1

𝑟1
+

𝜇𝑞2

𝑟2
+

𝜇𝑞3

𝑟3
+

𝑀𝑏

(𝑟2+𝑇2)
1
2

           

Equations of motion admits the energy (Jacobi) integral (𝐶is 

the Jacobi constant) 

𝐶 + (�̇�2 + �̇�2) = 2𝛺                           (8) 

Linear stability of the equilateral triangle configuration 

In the photogravitational R4BP, the necessary condition for 

the stability of the Lagrange central configuration is described 

by the inequality (Papadouris and Papadakis, 2013): 

 
𝑞1𝑚1𝑞2𝑚2+𝑞2𝑚2𝑞3𝑚3+𝑞1𝑚1𝑞3𝑚3

(𝑞1𝑚1+𝑞2𝑚2+𝑞3𝑚3)
2

<
1

27
,  (9) 

where 𝑞1, 𝑞2and 𝑞3are the corresponding radiation factors of 

the primaries. The gravitational case, i.e. 𝑞1 = 𝑞2 = 𝑞3 = 1, 
was first studied by Gascheau (1843). In the 

photogravitational R4BP where one or all the three primary 

bodies radiate, there are combinations of the system 

parameters where lead to the equilateral triangle configuration 

to be linearly stable (Papadouris and Papadakis 2013, Singh 

and Vincent 2016, Vincent et al. 2019). For this reason, we 

will adopt sets of (𝑚𝑖 , 𝑞𝑖 , 𝑀𝑏) which satisfy the condition (9). 

Existence and position of equilibrium points 

The equilibrium (Lagrangian) points are those points at which 

the velocities �̇�, �̇�  and accelerations �̈�, �̈�  of the fourth 

infinitesimal particle are zero, so that �̇� = �̇� = �̈� = �̈� = 0. 

Invoking these conditions in equations (7), we get, 

3

1

12 )3)(21(

r

qx
xn

 +−
−

3

2

2 ))21(
2

3
(

r

xq −−

−

2

3

22

3

3

2

)(

))21(
2

3
(

Tr

xM

r

xq
b

+

−

−−

−

 =0,    (10) 

and  

3

1

12 )21(

r

yq
yn

−
−  

3

2

2 )
2

1
(

r

yq +

− 0

)(

)
2

1
(

2

3

22

3

3

2

=

+

−

−

−

Tr

yM

r

yq
b


      (11) 

It is well-known that in the gravitational R4BP (Lagrangian 

configuration) where the two small primary bodies have the 

same mass there are two kinds of equilibria or solution (as in 

the R3BP) depending on whether 𝑦 = 0  or 𝑦 ≠ 0 . A 

complete discussion of the gravitational case of the problem 

can be found in Baltagiannis and Papadakis (2011). It is 

important to stress that in the case where 𝑀𝑏 = 0and 𝑞2 =
𝑞3 = 1, that is the photogravitational version of the R4BP, has 

been studied in full detail by Papadouris and Papadakis (2013) 

where, for 𝑞1 ∈ (0,1], the authors examined the existence, 

location and linear stability of the EPs.  

In Fig. 1 we illustrate the eight EPs, two collinear equilibrium 

points 𝐿1,2  (on the 𝑥  -axis) and six noncollinear 𝐿𝑖 , 𝑖 =
3, . . . ,8 (out of the 𝑥 -axis) ones of the model problem, which 

we have found by solving numerically the equations (10) and 

(11). So, for𝜇 = 0.006, 𝑞1 = 0.95, 𝑞2 = 0.98,𝑀𝑏 = 0.03and 

𝑇 = 0.02 (Fig. 1a), is easily seen that the problem admits 

eight EPs. It is worth mentioning that the equilibrium points 

in the 𝑥𝑦  -plane are given by mutual intersections of both 

curves marked by green dots while the centers of the primary 

bodies, 𝑚𝑖 , 𝑖 = 1,2,3are denoted by blue dots. More so, the 

intersection points of these curves are the coordinates (𝑥0, 𝑦0) 

of the equilibria by means of an iterative process and that the 

couples 𝐿3,5, 𝐿4,6and 𝐿7,8are symmetric w.r.t the 𝑥 -axis.  In 

Fig. 1b we give the position diagram of Papadouris and 

Papadakis (2013) when 𝜇 = 0.005, 𝑞1 = 0.65, 𝑞2 = 𝑞3 =
1and 𝑀𝑏 = 0, which was reproduced here for comparison and 

for checking purposes. For this particular case, the numerical 

solution shown in Fig. 1b agrees with the result presented in 

Papadouris and Papadakis (2013, see Fig. 7 of that paper).
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Figure 1: (Color online) The positions (green dots) of the eight equilibrium points𝐿𝑖 , 𝑖 = 1, . . . ,8 when: (a) ,006.0= 𝑞1 =

0.95,  q2 = 0.98. 𝑀𝑏 = 0.03and𝑇 = 0.02, (b) 𝜇 = 0.005, q1 = 0.65, 𝑞2 = 𝑞3 = 1and 𝑀𝑏 = 0. Blue points indicate the 

position of the three primary bodies, 𝑚𝑖 , 𝑖 = 1,2,3. 

 

Next, the locations of the equilibrium points of the test particle 

for circumstellar belt variation, 𝑀𝑏 ∈ [0,0.12]  when the 

radiation parameters 𝑞1and𝑞2vary in the interval 𝑞𝑖 ∈ (0,1] 
shall be discussed. In this case, we consider sets of variation 

parameters that satisfy condition (9). 

To investigate the effect of the radiation pressure of the first 

primary on the locations of the equilibrium points we set 

for 𝜇 = 0.006, 𝑞2 = 0.9,𝑀𝑏 = 0.05 and 𝑇 = 0.02 with the 

variation of 𝑞1 . The coordinates of the numerically 

determined equilibrium points are shown in Table 1 for 

different values of the 𝑞1. We observe that with the increase 

of 𝑞1(1to 0.70) for fixed 𝜇, 𝑞2, 𝑀𝑏and 𝑇, the coordinates of 

the eight equilibrium points increase upward or decrease 

downward. That is, both 𝑥 -coordinates of 𝐿1and 𝐿2decrease 

while both the 𝑥 and 𝑦 coordinates of points 𝐿3, 𝐿5 and 

𝐿7decrease. Fig. 2 is a plot of the locations of the equilibrium 

points when 𝑞1  varies for fixed values of the chosen 

parameters model. We observe that with the increase of 𝑞1, 

the locations of points𝐿5and 𝐿6tend to the primaries 𝑚3and 

𝑚2 , correspondingly whereas the locations of all the 

equilibria move close to the position of the primary body 𝑚1. 

As we see, the numerical results of the equilibrium positions 

in Table 1 is similar to the corresponding results presented in 

Fig. 1.  

 

Table 1: The locations of the equilibrium points 𝑳𝒊, 𝒊 = 𝟏, . . . , 𝟖as a function of 𝒒𝟏 for 𝝁 = 𝟎. 𝟎𝟎𝟔, 𝒒𝟐 = 𝟎. 𝟗,𝑴𝒃 =
𝟎. 𝟎𝟓and𝑻 = 𝟎. 𝟎𝟐 

𝑳𝒊        𝒒𝟏 = 𝟏     𝒒𝟏 = 𝟎.𝟖𝟓      𝒒𝟏 = 𝟎. 𝟕𝟎 

𝐿1(𝑥, 𝑦) (0.977043, 0) (0.926891, 0) (0.870646, 0) 

𝐿2(𝑥, 𝑦) (−0.988149, 0) (−0.939046, 0) (−0.884127, 0) 

𝐿3,4(𝑥, ±𝑦) (0.752608, ±0.440456) (0.733892, ±0.429518) (0.707169, ±0.413699) 

𝐿5,6(𝑥, ±𝑦) (0.957651, ±0.559552) (0.947551, ±0.553516) (0.939267, ±0.548605) 

𝐿7,8(𝑥, ±𝑦) (0.259063, ±0.945657) (0.220535, ±0.904982) (0.181070, ±0.857736) 
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Figure 2: The locations of the eight equilibrium points 𝐿𝑖 , 𝑖 = 1, . . . ,8 (green dots) for 𝜇 = 0.006, 𝑞2 = 0.9,𝑀𝑏 = 0.05and𝑇 =
0.02 when only the radiation pressure of the first primary varies, i.e., panels: (a) for 𝑞1 = 1, (b) 𝑞1 = 0.5, and (c) 𝑞1 = 0.3. 
The centers of the primary bodies, 𝑚𝑖 , 𝑖 = 1,2,3are denoted by blue dots. 

 

The influence of the common radiation factor 𝑞2 of the 

primary bodies 𝑚2 and 𝑚3 on the locations of the eight 

equilibrium points is presented in Table 2 for fixed values of 

the chosen parameters. Here, it is observed that with the 

increase of radiation factor 𝑞2 (1 to 0.70) for fixed values of 

𝜇, 𝑞1, 𝑀𝑏and 𝑇 , 𝑥  -coordinates of both 𝐿1  and 𝐿2  decrease; 

both 𝑥  and 𝑦 coordinates of 𝐿3   increase; both the 𝑥  and 

𝑦coordinates of𝐿5 decrease while the 𝑥 and 𝑦 coordinates of 

𝐿7  increase and decrease, respectively. In Fig. 3, we have 

presented numerically the locations of the eight equilibrium 

points for various values of the parameter 𝑞2 when the values 

of the remaining parameters 𝜇, 𝑞1, 𝑀𝑏 and 𝑇 are fixed. We 

observe that for increasing values of the radiation factor of 

both primary bodies 𝑚2  and 𝑚3 , locations of points𝐿1and 

𝐿2 both approach the dominant primary body 𝑚1 ; 

𝐿3, 𝐿5, 𝐿7tend to the primary body 𝑚3while at the same time 

𝐿4, 𝐿6, 𝐿8tend to 𝑚2. These effects can be easily seen in Table 

2. 

 

Table 2. The locations of the equilibrium points 𝑳𝒊, 𝒊 = 𝟏, . . . , 𝟖as a function of 𝒒𝟐 for 𝝁 = 𝟎. 𝟎𝟎𝟔, 𝒒𝟏 = 𝟎.𝟗,𝑴𝒃 =
𝟎. 𝟎𝟓and𝑻 = 𝟎. 𝟎𝟐 

𝑳𝒊      𝒒𝟐 = 𝟏      𝒒𝟐 = 𝟎. 𝟖𝟓   𝒒𝟐 = 𝟎. 𝟕𝟎 

𝐿1(𝑥, 𝑦) (0.944465, 0) (0.944082, 0) (0.943703, 0) 

𝐿2(𝑥, 𝑦) (−0.956081, 0) (−0.955933, 0) (−0.955785, 0) 

𝐿3,4(𝑥, ±𝑦) (0.737715, ±0.431508) (0.742551, ±0.434721) (0.748022, ±0.438333) 

𝐿5,6(𝑥, ±𝑦) (0.954697, ±0.557579) (0.948596, ±0.554235) (0.941786, ±0.550468) 

𝐿7,8(𝑥, ±𝑦) (0.196452, ±0.928198) (0.252527, ±0.913934) (0.312452, ±0.894562) 
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Figure 3: The locations of the eight equilibrium points 𝐿𝑖 , 𝑖 = 1, . . . ,8  (green dots) for 𝜇 = 0.006, 𝑞1 = 0.9,𝑀𝑏 =
0.05and𝑇 = 0.02 when only the common radiation pressure of the  primary bodies 𝑚2and 𝑚3radiates, i.e., panels: (a) for 

𝑞2 = 1, (b) 𝑞2 = 0.5, and (c) 𝑞2 = 0.3. The centers of the primary bodies, 𝑚𝑖 , 𝑖 = 1,2,3are denoted by blue dots. 

 

Similarly, for the investigation of the effect of the mass of disc 

𝑀𝑏on the locations of the  EPs we set for 𝜇 = 0.006, 𝑞1 =
0.85, 𝑞2 = 0.95 and 𝑇 = 0.02 while 𝑀𝑏  varies. The 

coordinates of the corresponding EPs are shown in Table 3 for 

various values of mass of the disc 𝑀𝑏. With the increase of 

𝑀𝑏 from 0 to 0.05, 𝑥 -coordinates of both 𝐿1 and 𝐿2 decrease; 

both the𝑥 and 𝑦coordinates of 𝐿3 and 𝐿5decrease while the 𝑥 

and 𝑦 coordinates of 𝐿7 increase and decrease, respectively. 

In Fig. 4 we plot the respective locations of the equilibrium 

points when the mass of disc varies for fixed values of the 

parameters. As we observe, the variational trend of the 

equilibrium locations in Fig. 4 is similar to the corresponding 

scenario presented in Table 3. It can be seen that locations of 

points𝐿1,𝐿2,𝐿3and 𝐿4all tend to the dominant primary body 

𝑚1 , 𝐿5 and 𝐿7 tend to the primary body 𝑚3 whereas 

points𝐿6and 𝐿8tend to 𝑚2. These effects can be easily seen in 

Table 3. 

 

Table 3: The locations of the equilibrium points 𝑳𝒊, 𝒊 = 𝟏, . . . , 𝟖as a function of 𝑴𝒃for 𝝁 = 𝟎. 𝟎𝟎𝟔, 𝒒𝟏 = 𝟎.𝟖𝟓, 𝒒𝟐 =
𝟎. 𝟗𝟓and𝑻 = 𝟎. 𝟎𝟐 

𝑳𝒊      𝑴𝒃 = 𝟎   𝑴𝒃 = 𝟎.𝟎𝟑  𝑴𝒃 = 𝟎. 𝟎𝟓 

𝐿1(𝑥, 𝑦) (0.939005, 0) (0.931553, 0) (0.926995, 0) 

𝐿2(𝑥, 𝑦) (−0.95144, 0) (−0.943792, 0) (−0.939096, 0) 

𝐿3,4(𝑥, ±𝑦) (0.734128, ±0.429463) (0.733034, ±0.428847) (0.732322, ±0.428446) 

𝐿5,6(𝑥, ±𝑦) (0.955369, ±0.557959) (0.951767, ±0.555891) (0.949568, ±0.554627) 

𝐿7,8(𝑥, ±𝑦) (0.196536, ±0.922992) (0.199799, ±0.914665) (0.201813, ±0.909542) 
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Figure 4: The locations of the eight equilibrium points 𝐿𝑖 , 𝑖 = 1, . . . ,8 (green dots) for 𝜇 = 0.006, 𝑞1 = 0.85, 𝑞2 = 0.95and𝑇 =
0.02 when the mass of the disc varies, i.e., panels: (a) for 𝑀𝑏 = 0, (b) 𝑀𝑏 = 0.03, and (c) 𝑀𝑏 = 0.1. The centers of the 

primary bodies, 𝑚𝑖 , 𝑖 = 1,2,3are denoted by blue dots 

 

It is obvious from Tables 1—3 and Figures 2—4 that the 

system parameters (𝑞1, 𝑞2, 𝑀𝑏 ) effect the locations of the 

equilibrium points significantly. We also observed from the 

aforementioned discussion that the locations of the 

equilibrium points vary in a relatively small range with 

𝑀𝑏compared to the radiation pressure𝑞2and to 𝑞1.  

 

Stability of the equilibrium points  

The stability of the equilibrium points can be determined by 

linearizing the equations of motion. In doing this, we let the 

position of an equilibrium point be denoted by (𝑥0, 𝑦0) and 

consider a small displacement (𝜉, 𝜂) from the point such that  

𝑥 − 𝑥0 = 𝜉, 𝑦 − 𝑦0 = 𝜂.    (12) 

Substituting equations (12) into equations (7), we obtain the 

variational form of the equations of motion as  

𝜉̈ − 2𝑛�̇� = 𝜉(𝛺𝑥𝑥
0 ) + 𝜂(𝛺𝑥𝑦

0 ),   (13) 

 �̈� + 2𝑛𝜉̇ = 𝜉(𝛺𝑦𝑥
0 ) + 𝜂(𝛺𝑦𝑦

0 )    (14)   

where only linear terms in 𝜉and 𝜂 have been taken.  

Accordingly, the characteristic equation corresponding to 

equations (13) and (14) is given as 

𝜆4 + (4𝑛2 −𝛺𝑥𝑥
(0)

− 𝛺𝑦𝑦
(0)
)𝜆2 + 𝛺𝑥𝑥

(0)
𝛺𝑦𝑦
(0)

− [𝛺𝑥𝑦
(0)
]2 = 0  15) 

where the second partial derivatives are denoted by subscripts 

while the superscript (0) means evaluation at the coordinates 

(𝑥0, 𝑦0) of the EPs with  

𝛺𝑥𝑥
(0)

= 𝑛2 −
(1 − 2𝜇)𝑞1

𝑟10
3 +

3𝑞1(1 − 2𝜇)(𝑥0 + √3𝜇)2

𝑟10
5 −

𝜇𝑞2

𝑟20
3 +

3𝜇𝑞2(𝑥0 −
√3
2
(1 − 2𝜇))2

𝑟20
5 −

𝜇𝑞2

𝑟30
3 + 

+
3𝜇𝑞2(𝑥0−

√3

2
(1−2𝜇))2

𝑟30
5 −

𝑀𝑏

(𝑇2+𝑟2)
3
2

+
3𝑀𝑏𝑥0

2

(𝑇2+𝑟2)
5
2

,        (16)  

𝛺𝑦𝑦
(0)

= 𝑛2 −
(1−2𝜇)𝑞1

𝑟10
3 +

3𝑞1𝑦0
2(1−2𝜇)

𝑟10
5 −

𝜇𝑞2

𝑟20
3 +

3𝜇𝑞2(𝑦0+
1

2
)2

𝑟20
5 −

𝜇𝑞2

𝑟30
3 +

3𝜇𝑞2(𝑦0−
1

2
)2

𝑟30
5 −

𝑀𝑏

(𝑇2+𝑟2)
3
2

+
3𝑀𝑏𝑦0

2

(𝑇2+𝑟2)
5
2

,   (17) 

 

                            

𝛺𝑥𝑦
(0)

= 𝛺𝑦𝑥
(0)

=
3𝑦0𝑞1(1−2𝜇)(𝑥0+√3𝜇)

𝑟10
5 +

3𝜇𝑞2(𝑦0+
1

2
)(𝑥0−

√3

2
(1−2𝜇))

𝑟20
5 +

3𝜇𝑞2(𝑦0−
1

2
)(𝑥0−

√3

2
(1−2𝜇))

𝑟30
5 +

3𝑀𝑏𝑥0𝑦0

(𝑇2+𝑟2)
5
2

,    (18) 



MOTION AROUND THE EQUILIBRIUM…      Vincent et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 7 No. 3, June (Special Issue), 2023, pp 110 - 121 117 

 

and 

𝑟10 = √(𝑥0 + √3𝜇)2 + 𝑦0
2,

             
𝑟20 = √(𝑥 −

√3

2
(1 − 2𝜇))2 + (𝑦 +

1

2
)2,  

𝑟30 = √(𝑥0 −
√3

2
(1 − 2𝜇))2 + (𝑦0 −

1

2
)2,          𝑟0 = √𝑥0

2 + 𝑦0
2        (19) 

       

Solving equation (15), we have, 

 

𝜆1,2 = ±
1

√2
(−𝑏 + √𝑏2 − 4𝑐)

1

2,     𝜆3,4 = ±
1

√2
(−𝑏 − √𝑏2 − 4𝑐)

1

2,      20) 

where, 𝑏 = 4𝑛2 − 𝛺𝑥𝑥
(0)

− 𝛺𝑦𝑦
(0)

 and 𝑐 = 𝛺𝑥𝑥
(0)
𝛺𝑦𝑦
(0)

− (𝛺𝑥𝑦
(0)
)2. 

 

Here, discriminant, 𝛥 = 𝑏2 − 4𝑐         (21) 

Equations (20) are the eigenvalues of the characteristics equation (15). 

 

The stability or instability of motion around an equilibrium point can be accomplished through the numerical computation of 

the characteristic roots of equation (15).  

 

Stability of the collinear equilibrium points 

For the collinear equilibrium points (𝑥0, 0), condition 𝑦 = 0and the quantities are 

𝛺𝑥𝑥
(0)

= 𝑛2 −
(1 − 2𝜇)𝑞1

𝑟∗10
3 +

3𝑞1(1 − 2𝜇)(𝑥0 + √3𝜇)2

𝑟∗10
5 −

𝜇𝑞2

𝑟∗20
3 +

3𝜇𝑞2(𝑥0 −
√3
2
(1 − 2𝜇))2

𝑟∗20
5 −

𝜇𝑞2

𝑟∗30
3 + 

 +
3𝜇𝑞2(𝑥0−

√3

2
(1−2𝜇))2

𝑟∗30
5 −

𝑀𝑏

(𝑇2+𝑟2)
3
2

+
3𝑀𝑏𝑥0

2

(𝑇2+𝑟2)
5
2

,        (22) 

𝛺𝑦𝑦
(0)

= 𝑛2 −
(1−2𝜇)𝑞1

𝑟∗10
3 −

𝜇𝑞2

𝑟∗20
3 +

3𝜇𝑞2

4𝑟∗20
5 −

𝜇𝑞2

𝑟∗30
3 +

3𝜇𝑞2

4𝑟∗30
5 −

𝑀𝑏

(𝑇2+𝑟2)
3
2

,        (23) 

  𝛺𝑥𝑦
(0)

= 𝛺𝑦𝑥
(0)

= 0             (24) 

with 𝑟∗10 = |𝑥0 + √3𝜇|,      𝑟∗20 = 𝑟∗30 = √(𝑥0 −
√3

2
(1 − 2𝜇))2 +

1

4
 

Let us note that linear stability condition will be accomplished if  

    𝑏2 − 4𝑐 > 0,     𝑏 > 0,   𝑐 > 0.          (25) 

 

Stability of the non-collinear equilibrium points. 

The stability of the noncollinear EPs of the problem may be 

approximated by equations (15) —(19). An equilibrium point 

(𝑥0, 𝑦0) is said to be stable if equation (15), evaluated at the 

equilibrium, has pure imaginary roots or complex roots with 

negative real parts; otherwise, it is unstable. Due to the 

symmetry of the model problem, we conclude that the 

stability of a negative equilibrium is the same that the stability 

of its symmetric positive equilibrium. For this reason, it will 

be sufficient to study the stability of the positive equilibria. It 

is expedient to make stability analysis of the obtained 

equilibrium solutions in the domain restricted by equation (9).  

As a particular example we compute the characteristic roots 

𝜆1,2, 𝜆3,4of the equilibrium points 𝐿𝑖(𝑖 = 1, . . . ,8), which are 

shown in Table 4 for the values of 𝜇 = 0.006, 𝑇 = 0.02and 

relatively extreme values of the mass disc and radiation 

factors,𝑀𝑏 = 0.08, 𝑞1 = 0.24and𝑞2 = 0.5, respectively. It is 

observed that there are cases in which the eigenvalues are all 

pure imaginary (equilibrium points 𝐿1, 𝐿7,8) leading thus to 

stability while for the equilibrium points 𝐿2, 𝐿3,4, 𝐿5,6 we 

obtain two opposite real roots and two imaginary which 

means that these points are unstable due to the real roots. 

 

Table 4: The eigenvalues 𝝀𝟏,𝟐, 𝝀𝟑,𝟒of equation (15) and the corresponding positions of the equilibrium points 𝑳𝒊, 𝒊 =

𝟏, . . . , 𝟖for𝑴𝒃 = 𝟎. 𝟎𝟖, 𝝁 = 𝟎. 𝟎𝟎𝟔, 𝒒𝟏 = 𝟎. 𝟐𝟒, 𝒒𝟐 = 𝟎. 𝟓and𝑻 = 𝟎. 𝟎𝟐 

𝑳𝒊     (𝒙𝟎, 𝒚𝟎)     𝝀𝟏,𝟐     𝝀𝟑,𝟒     Remark 

𝐿1 (0.641331, 0) ±0.474408𝑖 ±0.94912𝑖       Stable 

𝐿2 (−0.654644, 0) ±0.186018 ±1.08818𝑖       Unstable 

𝐿3,4 (0.545991, ±0.329458) ±0.485349 ±1.14054𝑖       Unstable 

𝐿5,6 (0.904721, ±0.528587) ±5.596970 ±4.12410𝑖       Unstable 

𝐿7,8 (0.217003, ±0.609500) ±0.294843𝑖 ±1.03291𝑖       Stable 

 

Numerical Application  

In this section, the existence, location and stability of the 

equilibrium points as discussed numerically and graphically, 

in the previous sections 3 and 4 are explored numerically for 

the stellar system: Ross 104-Ross775a-Ross775b for some 

assumed various values of the mass of the disc. We consider 

the system because it is of astrophysical interest and its 

practical applicability to our system model. The values of the 

data used for the system were borrowed from Vincent et al. 

(2019). The dominant star, Ross 104 has a mass  0.42𝑀𝑆𝑢𝑛 

and bolometric luminosity 0.020 along with its binary star, 

Ross 775a and Ross 775b each having equal mass 0.23𝑀𝑆𝑢𝑛 

and bolometric luminosity of 0.20, respectively, which gives 

a mass ratio 𝜇 =0.261363636 that lies above interval where 

the triangle configuration is linearly stable. 

The mass reduction factors are given by the relations: 𝑞𝑖 =

1 −
𝐴𝜅𝐿

𝛼𝜌𝑀
, 𝑖 = 1,2,3, (Xuetang and Lizhong 1993) where 𝑀, 𝐿, 
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𝛼 and 𝜌 are the mass, luminosity, radius and density of the 

dust grain particle, respectively.  Also 𝐴 = 2.9838 × 10−5 is 

a constant in the C.G.S system of unit, and 𝜅 is the radiation 

pressure efficiency factor of a star, and it is considered as a 

unity following Stefan-Boltzmann’s law. Now given a test 

particle with radius 𝛼 = 2 × 10−2𝑐𝑚  and density 𝜌 =
1.4𝑔. 𝑐𝑚−3  (Xuetang and Lizhong, 1993), 

then𝑞𝑅𝑂𝑆𝑆104=𝑞1 = 0.9995264, and 𝑞𝑅𝑂𝑆𝑆775=𝑞2 = 𝑞3 =
0.9913514. We now proceed to study the influence of mass 

of the disc on the motion of a test particle using the 

astrophysical parameters presented above. 

In Fig. 5 we present numerically the exact positions of the 

equilibrium points of the stellar system, for two different 

values of the mass disc𝑀𝑏. In particular, Fig. 5a depicts the 

position of the eight equilibrium points (two collinear and six 

noncollinear) for the case where 𝑀𝑏 = 0.01 . For 𝑀𝑏 =
0.05we observe in Fig. 5b, that the problem has two more 

collinear points𝐿𝑛𝑖 , 𝑖 = 1,2 located on the negative𝑥  -axis 

between the primary body 𝑚1 and the origin and the problem 

now has four collinear EPs, making up a total of ten EPs of 

the problem. In both cases we have fixed the remaining 

parameters to 𝜇 = 0.261363636, 𝑞1 = 0.9995264 , 𝑞2 =

𝑞3 = 0.9913514and 𝑇 = 0.02. From these figures (Fig. 5a, 

b) we can observe that the mass of belt affects the number of 

EPs of the problem.  

Table 5 shows the location of the eight equilibrium points and 

the corresponding characteristics roots for the stellar system 

when 𝑀𝑏 = 0.01 and 𝑇 = 0.02. Result analysis of Table 5 

shows no case in which the roots are pure imaginary. Hence, 

we conclude that all the EPs are unstable. In Table 6, we 

compute the location of the ten EPs and the corresponding 

characteristic roots for the stellar system when 𝑀𝑏 = 0.05 

and 𝑇 = 0.02. In this case, our numerical exploration in the 

computation of these roots as shown below reveals that the 

motion of the test body within the neighborhood of each of 

the equilibria 𝐿1, 𝐿𝑛2, 𝐿2, 𝐿3(4), 𝐿5(6), 𝐿7(8) is linearly unstable 

due to the absence of pure imaginary roots or a complex root 

with a negative real while point 𝐿𝑛1 is linearly stable due to 

pure imaginary roots. For the below results we conclude that 

the circumstellar disc effect on a moving test particle leads to 

the stability (i.e., out the interval where the Lagrange 

configuration is linearly stable) of point𝐿𝑛1 arising due to the 

mass of the disc.  

 

   
Figure 5 (a) Locations of the eight equilibrium points  of Ross 104-Ross775a-Ross775b stellar system for fixed values of 

𝑀𝑏 = 0.01and 𝑇 = 0.02, (b) Locations of the ten equilibrium points of Ross 104-Ross775a-Ross775b stellar system for fixed 

values of 𝑀𝑏 = 0.05and 𝑇 = 0.02. The locations of the primary bodies, 𝑚𝑖 , 𝑖 = 1,2,3are denoted by blue dots while green 

dots indicate the location of the equilibrium points. 

 

Table 5 The eigenvalues 𝝀𝟏,𝟐, 𝝀𝟑,𝟒 of equation (15) and the corresponding locations (𝒙𝟎, 𝒚𝟎) of the eight equilibria for 

Ross 104-Ross775a-Ross775b stellar system when 𝑴𝒃 = 𝟎. 𝟎𝟏and 𝑻 = 𝟎. 𝟎𝟐 

Point     (𝒙𝟎, 𝒚𝟎)           𝝀𝟏,𝟐      𝝀𝟑,𝟒 Remark  

𝐿1 (0.943018, 0) −0.861291±1.00123𝑖 0.861291±1.00123𝑖 Unstable 

𝐿2 (−1.14837, 0) ±1.08262 ±1.29637𝑖 Unstable 

𝐿3,4 (0.0728597, ±0.238108) ±3.06217 ±2.13587𝑖 Unstable 

𝐿5,6 (0.761376, ±0.909749) ±1.36798 ±1.42345𝑖 Unstable 

𝐿7,8 (−0.296565, ±0.87182) −0.746164±0.972082𝑖 0.746164±0.972082𝑖 Unstable 

 

Table 6: The eigenvalues 𝝀𝟏,𝟐, 𝝀𝟑,𝟒 of equation (15) and the corresponding locations (𝒙𝟎, 𝒚𝟎) of the ten equilibria for 

Ross 104-Ross775a-Ross775b stellar system when 𝑴𝒃 = 𝟎. 𝟎𝟓and 𝑻 = 𝟎. 𝟎𝟐 

Point     (𝒙𝟎, 𝒚𝟎)           𝝀𝟏,𝟐      𝝀𝟑,𝟒 Remark  

𝐿1 (0.922616, 0) −0.902507±1.04984𝑖 0.902507±1.04984𝑖 Unstable 

𝐿𝑛1 (−0.000247, 0) ±77.955𝑖 ±80.078𝑖 Stable 

𝐿𝑛2 (−0.115165, 0) ±9.143 ±6.59792𝑖 Unstable 

𝐿2 (−1.129200, 0) ±1.14138 ±1.36139𝑖 Unstable 

𝐿3,4 (0.136703, ±0.222941) ±3.76263 ±2.62670𝑖 Unstable 
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𝐿5,6 (0.749644, ±0.896645) ±1.45194 ±1.50111𝑖 Unstable 

𝐿7,8 (−0.289553, ±0.856112) −0.778658±1.01727𝑖 0.778658±1.01727𝑖 Unstable 

 

Zero velocity surfaces (zvs) when𝑀𝑏 = 0 or 𝑀𝑏 > 0 

We plot in Fig. 6 the zero velocity surface (8) for Ross 104-

Ross775a-Ross775b stellar system for various values of 

𝑀𝑏when: (a) the mass of the disc is absent and (b and c) the 

mass of the disc varies. From these figures we can observe 

three main results. The first is a change of the Jacobi constant 

values which correspond to all equilibrium points with or 

without circumstellar belt due to which results of zvs show 

the chaotic behavior. Note the different values of the Jacobi 

constants C of the panels (b and c) w.r.t panel (a). The second 

is the emergence, on the side of 𝑚1,  the new collinear 

equilibrium points besides the two gravitational points (see 

panels (b) and (c)).  The third is an enlargement of the 

“chimneys” which increase the area of the permitted fourth 

body’s motion in the neighborhood of the massive primary 

body as well in the neighborhood of the other two primaries.  

The test particle is permitted to move inside the “chimney” 

and below it. In this case, for a given value of the Jacobi 

constant C and as the mass of the disc increases, the allowed 

regions of the fourth body motion around the three primaries 

expand (panel c). This means theoretically that, fourth body 

can move free around the primaries for bigger and bigger 

values of the Jacobian constant C as the mass of disc 

parameter increases. It is obvious from these figures that the 

circumstellar belt under consideration have significant effect 

where the motion of the test particle is allowed or forbidden 

in the vicinity of the stellar system, comparing the first frame 

with the second and third ones. 

 

   
                              (a)                                                                                     (b) 

                                     

 
(c) 

 

Figure 6: (Colour figure online) Zero velocity surfaces of Ross 104-Ross775a-Ross775b stellar system for (a)   𝑀𝑏 = 0, 
(b)𝑀𝑏 = 0.04, (c) 𝑀𝑏 = 0.12.  For all cases, the parameter 𝑇 = 0.02 has been used. Motion is allowed inside the chimneys 

and below it. Note the different scale of C in the first and the next frames. 
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DISCUSSION  

In this study we have numerically explored the 

photogravitational restricted four-body problem under 

gravitational potential from the belt when three bodies of 

masses 𝑚1, 𝑚2 and 𝑚3  
lie always at the apices of an 

equilateral triangle (Lagrangian configuration). The fourth 

body in this system does not affect the motion of the three 

bodies, and its motion is perturbed by radiation pressure and 

circumstellar belt from the three primary bodies. In particular, 

we studied the existence, position and stability of the 

equilibrium points as the involved parameters vary in the case 

of two equal masses and two equal radiation factor for the 

primaries. We found that eight equilibrium points may lie on 

the plane of motion in a stable Lagrangian configuration of 

the primaries (see Figs. 1—4 and Tables 1—3). It was 

observed that the parameters of the model problem not only 

affect the total number and locations of the equilibrium points 

but they play remarkable role on their linear stability since it 

was observed that there are values of these parameters for 

which the equilibria may be stable. As a particular example, 

the characteristics roots for the equilibrium points under the 

combined effect of the involved parameters are calculated 

numerically and presented in Table 4.  It is found that all the 

equilibria are unstable except𝐿1 ,𝐿7 and 𝐿8 which are stable 

due to the existence of purely imaginary roots. 

 

CONCLUSION 

These results have been applied to the stellar system: Ross 

104-Ross775a-Ross775b as presented in Figs. 5 and 6 and 

Tables 5 and 6. It was observed that the total number and 

distribution of equilibrium points on the plane of motion 

differ as a result of the mass belt effect. Specifically, it is 

observed that when the influence of the belt is considered, a 

pair of collinear points 𝐿𝑛1, 𝐿𝑛2may appears very near to the 

origin of the plane for the system, in addition to the two 

critical points 𝐿1, 𝐿2 , of the gravitational case, making up a 

total of four collinear points (Fig. 5). More so, the region 

permitted to motion of the test particle (see Fig. 6) is sensitive 

to change in the mass of belt for the stellar system. We 

linearized the equations of motion and computed the 

characteristic roots for the stellar system. It is observed that 

the stability state in the case where eight EPs exists are 

unstable (Table 5), while for the case of ten equilibrium 

points, all points of equilibrium are always linearly unstable, 

except equilibrium point 𝐿𝑛1, which is stable (see Table 6).  

The model of this study can be used to study the behavior of 

other phenomenon of interest in astronomy, celestial 

mechanics and astrophysics. 
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