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ABSTRACT 

This research paper examines the derivation of selected hybrid single-step block method for the numerical 

integration of third order ordinary differential equations. The method has the advantage of selecting only odd 

off-grid points within the interval of interest. The basis function for the formula is interpolated at three selected 

non-grid points within a single-step interval and collocated at all points. Further analysis of the basic numerical 

properties were established. The method was found to be A-stable, zero-stable and consistent. The small scale 

errors observed from numerical experiment indicate that the derived formula has better numerical 

approximations than some comparable methods in literature, while its application on practical thin film flow 

problem also showed improved solutions.  

 

Keywords: Selected single-step, basis function, Hybrid block formula, interpolation and collocation and thin  
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INTRODUCTION 

Interestingly, numerical integration remained an alternative 

approximation approach to analytical solutions for several 

modeled problems, either as initial value problems (IVPs) or 

boundary value problems (BVPs) in ordinary differential 

equations (ODEs). Such problems exist in biology, neural 

networks, electric circuits, electromagnetic waves and thin 

film flow on solid surfaces, deflection of a curve beam and a 

three layer beam in engineering. However, numerical 

methods have also been used by (see, Arqub & Maayah, 

2019a, 2019b and 2018) for the approximation of other 

differential equations as Bernoulli equations, fractional 

volterra-integro-differential equation, among others. Over the 

years, block methods have been introduced as one of the 

efficient numerical methods for the numerical integration of 

ODEs, Henrici, (1962). Subsequently, hybrid block methods 

were introduced to evaluate off-grid and grid points within 

any interval of discretization, (see Gragg & Stetter, 1964). 

Hybrid block methods have the advantages of varying step-

sizes, utilizing data at off-step points and most importantly, 

their ability to overcome Dahlquist barrier of zero-stability, 

(see Henrici, 1962) and Dahlquist (1956)). 

However, recently, several research scholars (see, Althemai 

et al., (2022), Kuboye et al., (2020), Duromola (2022), 

Duromola (2019), Abdelrahim & Omar (2016) and Adeyeye 

& Omar (2017)) among others have redirected their research 

quest for robust numerical methods to formulating single-step 

hybrid block methods. This is because most of the derivations 

of single-step hybrid block methods require less human 

efforts and reduced complex computer codes thereby 

minimize numerical errors. Because of sufficient stability 

properties in hybrid block methods as a result of fixed step 

discretization, ability to use smaller step-sizes for 

approximations without error growth resulting from 

perturbation, they have been widely used for solving third 

order ordinary differential equations (ODEs) (see, Duromola 

(2019), modebei et al., (2021), Haweel et al., (2021), Lawal et 

al., (2018), Aigbiremhon et al., (2021) and Obarhua & 

Kayode (2016), among others. Also, hybrid numerical 

methods have been used for the approximations of higher 

order ODEs (see, Abolarin et al., (2020) and Areo & Omole 

(2015)) and results from their applications showed improved 

absolute errors. Similarly, adaptive polynomial method was 

formulated and implemented on linear, non-linear and a thin 

film flow problem and compared with some other hybrid 

block methods (see, Momoniat and Mahomed (2010), 

Mecheel et al., (2013) and Yap et al., (2014)). 

In this research paper, selected single-step hybrid block 

method is proposed. The method has the advantage of 

selecting only odd off-grid points in the single-step 

considered thereby reducing human efforts and complex 

computer codes for the method. 

he research paper is structured as follows. The formulation of 

the method is considered in section two while the basic 

numerical properties are analyzed in section three. Section 

four considered numerical experiments of the method and 

results. In section five, the application of the method to thin 

film flow problem is considered. Section six presents results 

and discussions and finally, in section seven, we draw the 

conclusion and future research. 

 

Proposed Selected Single-step Hybrid Block Method 

Let the basis function for our method be given in a single variable x as: 
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Which is the approximate solution to the third order ordinary differential equation of the form: 

Where p and l denote points of collocation and interpolation respectively. So that the third derivative is:  

 

However, in this research work, four off-grid points have been 

introduced to formulate the method. We have selected the odd 

number off-step points only to ensure reduced human efforts 

at derivations, reduced complex computer program during 

implementation in order to minimize round-off errors and 

finally the zero-stability and consistency of the method in 

order to overcome the first and second Dahlquist barriers of 

zero-stability and consistency properties, which are critical 

stability properties for all numerical methods. 

Interpolating (1) at 𝑥𝑛+𝑖 , 𝑖 =
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, 1 we get a system of nonlinear equations of 

the form: 

AX = B      (4) 

Where, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

whose unknowns ays are solved for using Gaussian elimination technique and results are substituted into Equation 1 to give 

a continuous linear multistep method of the form: 

 

 

 

where, i = 0(1)5 with 𝜎𝑖 = 0,
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𝑎𝑛𝑑 1, from which we have: 
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Evaluating Equations 6 and 7 at non-interpolating points, 𝑥𝑛+𝜎𝑖
, where 𝜎𝑖 = 0,

7

8
 𝑎𝑛𝑑 1, and set 𝜀 = 𝑥 − 𝑥𝑛 , so that 𝜀 =

0ℎ,
7ℎ

8
 𝑎𝑛𝑑 1ℎ  in Equation 5 gives: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Again, we take the first and second derivatives of Equation 5 and 7, evaluating at all points, that is, 𝑥𝑛+𝜎𝑖 
𝑎𝑛𝑑 𝜎𝑖 =
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 𝑎𝑛𝑑 ℎ in Equation 7 gives: 
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Equations 8 – 22 are then put in matrix form to produce: 

𝑅𝑌𝑚 =  𝑆𝑌𝑚−1 +  𝑇𝐹𝑚−1 + 𝑈𝐹𝑚          (23) 

Where, 

 

 

 

 

The block matrices in Equation 23 is then resolved by multiplying throughout by R-1 to give the following discrete schemes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, Equations 24 - 28 represent the formulated selected single-step hybrid block (SSHB) method for the solution of 

(2) and their associated first and second derivative discrete schemes are given below: 
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ANALYSIS OF THE METHOD 

In this section, we shall consider the order, error constants, 

zero-stability and consistency of SSHB method. 

 

Order and Local Truncation Errors (LTEs) of the method 

Theorem 1 (Dahlquist first barrier of zero-stability). 

No zero-stable linear multistep method of step number k can 

have order exceeding k + 1 when k is odd, or k + 2 when k is 

even. If the method is also explicit, then it cannot attain an 

order greater than k. 

Remark: (See Henrici (1962) and Lambert (1973)). 

Therefore, the new method in Equation 5 and their associated 

linear differential operator 𝛾[𝑦(𝑥); ℎ] is defined by: 
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Where, 𝑖 = 0(1)4, 𝜎𝑖 =
1

8
,

3

8
,
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8
,

7

8
, 1 and y(x) is an arbitrary function which is continuously differentiable in the interval [a, b]. 

Taylor series expansion of 𝑦(𝑥𝑛 + 𝑗ℎ), 𝑦′′′(𝑥𝑛 +  𝑗ℎ) and 𝑦′′′(𝑥𝑛 + 𝜎𝑖ℎ) gives: 

 

 

 

Definition 1. The linear differential operator Υ and its associated selected single-step hybrid block (SSHB) method is said to 

be of order p if 𝐶0 =  𝐶1 = 𝐶2 = ⋯ = 𝐶𝑝 = 𝐶𝑝+1 = 𝐶𝑝+2 = 0, 𝐶𝑝+3  ≠ 0.  

 

Definition 2. The term 𝐶𝑝+3 in Definition 1 is called the error constant and it indicates the local truncation error, which is 

given by: 

𝑡𝑛_𝑘 = 𝐶𝑝+3ℎ𝑝+3𝑦𝑝+3(𝑋𝑛) + 0(ℎ𝑝+3) 

Expanding (39) in Taylor’s series gives: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing Equations 41 - 45 in terms of powers hj and yj, we get the order of our method as: 

[ 6 6 6 6 6]T 
With the error constants: 

 
 

Theorem 2. Henrici (1962) A linear multistep method is said to be convergent if it is consistent  

(that is, p ≥ 1) and it is zero-stable. 
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Consistency 

From Equation 10, observe that: 

 

 

 

 

Therefore, our method in Equations 24 - 28 is said to be consistent if:  

i. The order, p ≥ 1. Thus, Our method whose order is 6 satisfied this condition. 

 

ii.  

 

 

iii. Since, 

 

 

 

 

 

 

 

iv.  
 

 

Therefore, since the conditions above are met, it follows that our new method is consistent. 

 

Zero stability 

Definition 3. The continuous implicit linear multi-step method in Equation 5 is said to be zero stable if no root of the first 

characteristic polynomial, ρ(r) has modulus greater than one and if every root of modulus one has multiplicity not greater than 

one, (see, Abolarin et al., (2020)). 

Therefore, 

 
Where, R1 and S1 are coefficients of 

 

 

 

in Equations 24 - 28 respectively and are given by: 

 

 

 

 

 

 

 

 

 

 

 

Evaluating Equation 46 and solving for r gives the roots of 

the fist characteristic polynomial as: ri = 0, 0, 0, 0 and 1,  i 

= 1(1)5. Thus, our new (SSHB) method is zero stable. 

Hence, the selected single-step hybrid block (SSHB) method 

converges in line with Theorem 2 and Definitions 2 and 3. 

 

 

Absolute Stability Region of the SSHB 

Definition 4 (Source: (Lambert, 1991)). 

The linear multistep method (SSHB) is said to be A-Stable if 

its region of absolute stability contains the whole of the left 

hand half plane (that is, Re(hλ) < 0).  

In line with Butcher (2008), we determine the stability region 

by a single stability function. Therefore, for the differential 

equation 𝑦′′′ = 𝑞𝑦, Equation 10 becomes: 

 

 

 

 

 

 

 

After some necessary substitutions, manipulations and collection of like terms using Maple software environment, we arrived 

at a polynomial of the form: 
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Where w is nth order polynomial, h3q = z and it is the complex plane for which Equation 47 has only bounded solution as     

n → ∞. Therefore, all solutions to (47) converge to zero as n → ∞ if the interior stability region is considered for z in this 

set. Equation 48 is then solved for z and setting 

 

 

 

 

 

 

 

The above equation is in the form: 

𝑧(𝑤) =
𝜌(𝑤)

𝜎(𝑤)
. 

Therefore, the above procedures for finding the stability 

region of our method by using a single stability function is 

called “Boundary Locus Method”. Equation 49 is then coded 

in MATLAB software environment and the stability of our 

method is as shown below: 

From Figure 1 below and in accordance with Definition 4, it 

follows that our new formulated (SSHB) method is A-stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Absolute Stability Region of SSHB(6) 

 

Numerical examples and implementation 

Therefore, we present the numerical examples to justify the 

accuracy and performance of our method via Taylor series 

expansion and their corresponding derivatives which 

represent our explicit method that will incorporate all initial 

values for our derived formula and for the approximation of 

(2) and are implemented on MATLAB software environment. 

Thus, we take the Taylor series expansion that are of the same 

order as the order of our method: 𝑦𝑛+1,  where 𝑖 =
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Example 1. Consider the Initial Value Problem below: 

 

 

Theoretical solution: 𝑦(𝑥) = cos 𝑥 

The absolute errors for our method are compared with Kuboye et al. (2020) in Table 1. 

 

Example 2.  

 

Theoretical solution: 𝑦(𝑥) = 3 cos 𝑥 +
𝑥2

2
  − 2 

 

The absolute errors for our method are compared with Kuboye et al., (2020), Kashkari et al. (2019) and Adeniran et al., (2016) 

and are shown in Tables 2, 3 and 4 respectively. 

 

Example 3. Consider the initial value problem of the form: 

 

 

Theoretical solution: 𝑦(𝑥) = 2 + 2𝑥2 + 𝑒𝑥 

 

Our new method is compared in terms of absolute errors with Kuboye et al., (2020) whose method is of order 6 and the results 

are as shown in Table 5. 

 

Example 4. Consider the third order linear problem: 

 
Theoretical solution: 𝑦(𝑥) = 2(1 + 𝑥2) − 𝑒𝑥 
 

Source: Kayode & Obarhua (2017) and Ogunware et al., (2020) 

The results for Test Example 4 are presented in Table 6. 

 

Example 5. Consider the non-linear initial value problem: 

 

Theoretical solution: 𝑦(𝑥) = 1 +
1

2
ln  (2+𝑥

2−𝑥
) 

 

Table 7 provides the results for Test Example 5 and results are compared with Kayode & Obarhua (2017). 

The following abbreviations are used in the tables: 

ES → Exact solution 

CS → Computed solution 

AbsErr → Absolute errors 

EIFBM(6) → Error in fist block method with s = 52 of order 6 in Kuboye et al., (2020) 

EISBM(6) → Error in second block method with s = 94 of order 6 in Kuboye et al., (2020) 

BHCM → Block hybrid collocation method of order 6 in Yap et al., (2014) 

SSHB(6) → The new formulated selected single-step hybrid block of uniform order 6. 

 

Table 1: Absolute errors comparing our method with Kuboye et al., (2020) for Test Example 1 when h=0.01 

X ES CS EIFBM(6) EISBM(6) SSHB(6) 

0.01 0.999950000416665260 0.999950000416665260 1.1102230E-16 0.000000E+00 0.000000E+00 

0.02 0.999800006666577760 0.999800006666577870 5.5511151E-16 5.5511151E-16 1.110223E-16 

0.03 0.999550033748987540 0.999550033748988880 8.6597396E-15 8.7707619E-15 1.332268E-15 

0.04 0.999200106660977920 0.999200106660985020 6.4837025E-14 6.4614980E-14 7.105427E-15 

0.05 0.998750260394966280 0.998750260394991150 2.6301183E-14 2.6290081E-14 2.486900E-14 
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Figure 2: Efficiency curves for Table 1 

 

Table 2: Absolute errors comparing our method with Kuboye et al., (2020) for Test Example 2 when h=0.1 

x ES CS EIFBM(6) EISBM(6) SSHB(6) 

0.1 0.990012495834077020 0.990012495834077240 6.8911543e-13 5.9885430e-13 2.220446e-16 

0.2 0.960199733523725120 0.960199733523724900 4.4015902e-12 3.8212766e-12 2.220446e-16 

0.3 0.911009467376818090 0.911009467376818200 1.0999868e-11 9.5831121e-12 1.110223e-16 

0.4 0.843182982008655380 0.843182982008655270 2.0601632e-11 1.7947976e-11 1.110223e-16 

0.5 0.757747685671118280 0.757747685671118500 2.6853520e-11 3.2626124e-11 2.220446e-16 

0.6 0.656006844729035250 0.656006844729034810 6.7268413e-11 6.0369598e-11 4.440892e-16 

0.7 0.539526561853465480 0.539526561853466920 1.1150603e-10 1.0098744e-10 1.443290e-15 

0.8 0.410120128041496110 0.410120128041499110 1.6985002e-10 1.5461399e-10 2.997602e-15 

0.9 0.269829904811993430 0.269829904811998030 2.4948449e-10 2.2891933e-10 4.607426e-15 

1.0 0.120906917604419300 0.120906917604426250 3.6226498e-10 3.3474887e-10 6.952772e-15 

1.1 -0.034211635723267797 -0.034211635723257514 5.0769700e-10 4.7182869e-10 1.028344e-14 

1.2 -0.192926736569979160 -0.192926736569964700 6.8618927e-10 6.4034714e-10 1.446065e-14 

 

Table 3: Absolute errors comparing our method with Kashkari et al., (2019) for Test Example 2 when h=0.1 and h=0.01 

x 

Error in 

Kashkari et al., (2019) 
p = 6, h = 0.1 

Error in our method 
p = 6, h = 0.1 

Error in 

Kashkari et al., (2019) 
p = 6, h = 0.01 

Error in our method 
p = 6, h = 0.01 

0.1 4.1078E-15 2.2205E-16 4.4409E-16 2.2205E-16 

0.2 1.6875E-14 2.2205E-16 1.2212E-15 4.4409E-16 

0.3 5.0848E-14 1.1102E-16 2.4425E-15 2.2205E-16 

0.4 1.1779E-13 1.1102E-16 3.7748E-15 2.2205E-16 

0.5 2.4081E-13 2.2205E-16 5.5511E-15 2.2205E-16 

0.6 4.3709E-13 4.4409E-16 8.4377E-15 3.3307E-16 

0.7 7.3708E-13 1.4433E-15 1.1324E-14 2.2205E-16 

0.8 1.1662E-12 2.9976E-15 1.4544E-14 5.5511E-17 

0.9 1.7587E-12 4.6074E-15 1.8985E-14 5.5511E-16 

1.0 2.5466E-12 6.953E-15 2.3870E-14 1.0131E-15 
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Table 4: Absolute errors in our method in comparison with Adeniran et al., (2016) for Test Example 2 when h = 0.1 

x ES CS 
Error in Our Method 

SSHB(6) 

Error in 

Adeniran et al., (2016) 
p=6 

0.1 0.990012495834077020 0.990012495834077240 2.2205e-16 1.0000e-14 

0.2 0.960199733523725120 0.960199733523724900 2.2205e-16 2.7100e-13 

0.3 0.911009467376818090 0.911009467376817980 1.1102e-16 1.1450e-12 

0.4 0.843182982008655380 0.843182982008655270 1.1102e-16 2.9620e-12 

0.5 0.757747685671118280 0.757747685671118500 2.2205e-16 6.0710e-12 

0.6 0.656006844729035250 0.656006844729035700 4.4409e-16 1.0800e-11 

0.7 0.539526561853465480 0.539526561853466920 1.4433e-15 1.7439e-11 

0.8 0.410120128041496110 0.410120128041499110 2.9976e-15 2.6274e-11 

0.9 0.269829904811993430 0.269829904811998030 4.6074e-15 3.7598e-11 

1.0 0.120906917604419300 0.120906917604426250 6.9528e-15 5.1625e-11 

 

Table 5: Absolute errors comparing our method with Kuboye et al., (2020) for Test Example 3 when h=0.1 

x ES CS EIFBM(6) EISBM(6) SSHB(6) 

0.1 3.125170918075647700 3.125170918075647700 1.5227819E-12 1.3447021E-12 0.000000E+00 

0.2 3.301402758160169700 3.301402758160169700 9.6922470E-12 8.5487173E-12 0.000000E+00 

0.3 3.529858807576003300 3.529858807576002900 2.4267699E-11 2.1475266E-11 4.440892E-16 

0.4 3.811824697641270600 3.811824697641270600 4.5451198E-11 4.0219827E-11 0.000000E+00 

0.5 4.148721270700128200 4.148721270700126400 7.8387963E-11 7.0274453E-11 1.776357E-15 

0.6 4.542118800390508900 4.542118800390507100 1.3159340E-10 1.1942358E-10 1.776357E-15 

0.7 4.993752707470476600 4.993752707470473100 2.0471091E-10 1.8746782E-10 3.552714E-15 

0.8 5.505540928492466800 5.505540928492462300 2.9804159E-10 2.7454572E-10 4.440892E-15 

0.9 6.079603111156949100 6.079603111156942000 4.1925841E-10 3.8885162E-10 7.105427E-15 

1.0 6.718281828459044600 6.718281828459034000 5.8107297E-10 5.4199667E-10 1.065814E-14 

 

Table 6: Absolute errors comparing our method with Kayode et al., (2017) and Ogunware et al., (2020) for Test 

Example 4 when h=0.1 

x ES CS 

Error in our 

Method 

SSHB(6) 

Error in Kayode et al., 

(2017), p=6 

Error in Ogunware 

et al., (2020) 

0.1 0.914829081924352310 0.914829081924352420 1.110223E-16 1.82410E-13 3.473600E-14 

0.2 0.858597241839830220 0.858597241839830330 1.110223E-16 1.67078E-12 3.326900E-13 

0.3 0.830141192423996980 0.830141192423997420 4.440892E-16 6.00142E-12 3.709100E-14 

0.4 0.828175302358729940 0.828175302358730710 7.771561E-16 1.48598E-11 5.791840E-13 

0.5 0.851278729299871810 0.851278729299873690 1.887379E-15 3.01205E-11 3.581010E-13 

0.6 0.897881199609490870 0.897881199609493860 2.997602E-15 5.38418E-11 1.209298E-12 

0.7 0.966247292529523350 0.966247292529527900 4.551914E-15 8.83157E-11 1.179995E-12 

0.8 1.054459071507532400 1.054459071507539000 6.661338E-15 1.36060E-10 2.514500E-12 

0.9 1.160396888843050300 1.160396888843059800 9.547918E-15 1.99870E-10 2.409110E-12 

1.0 1.281718171540954500 1.281718171540968000 1.354472E-14 2.82814E-10 4.870670E-12 

 

Table 7: Absolute errors comparing our method with Kayode et al., (2017) for Test Example 5 when h=0.1 

x Exact. sol. Approx. sol. Error in Our 

Method SSHB(6) 

Error in Kayode et al., 

(2017) , p=6 

0.1 1.050041729278491400 1.050041729278490900 4.44E-16 9.49E-08 

0.2 1.100335347731075600 1.100335347723219400 7.86E-12 1.32E-06 

0.3 1.151140435936466800 1.151140417012499700 1.89E-08 5.65E-06 

0.4 1.202732554054082100 1.202732428419503100 1.26E-07 1.58E-05 

0.5 1.255412811882995200 1.255412330374608100 4.82E-07 3.55E-05 

0.6 1.309519604203111900 1.309518197933271100 1.41E-06 6.97E-05 
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0.7 1.365443754271396200 1.365440267755764900 3.49E-06 1.25E-04 

0.8 1.423648930193601700 1.423641168185924900 7.76E-06 2.11E-04 

0.9 1.484700278594051700 1.484684221401156200 1.61E-05 3.41E-04 

1.0 1.549306144334054800 1.549274550494045900 3.16E-05 5.32E-04 

 

 
Figure 3: Efficiency curves for Table 2 

 

 
Figure 4: Efficiency curves for Table 3 
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Figure 5: Efficiency curves for Table 4 

 

 
Figure 6: Efficiency curves for Table 5 
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Figure 7: Efficiency curves for Table 6 

 

 
Figure 8: Efficiency curves for Table 7 
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Figure 9: Efficiency curves for thin film flow problem, k=2, h=0.1 in Table 8 

 

 
Figure 10: Efficiency curves for thin film flow problem, k=2, h=0.01 in Table 9 
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Method Application to Thin Film Flow Problem 

In order to further test the viability of our derived formula, we 

applied it to solve the well-known physical problem in fluid 

dynamics. However, the motion of fluid on a plane surface in 

which the flow is in the direction of motion along the plane 

has been extensively discussed by Tuck and Schwartz (1990). 

Similarly, Momoniat and Mahomed (2010) considered 

successive reduction of order of thin film flow problem below 

to a first order ODE, which is then solved by a fourth- order 

Runge –Kutta method. Mechee, Senu, Ismail, Nikouravan & 

Siri (2013) have also solved thin film flow problem by using 

the fifth-order Runge-Kutta method. Also, this same thin film 

flow problem has been solved by Yap et al., (2014) and is 

majorly compared with our derived formula below. However, 

their methods gave reduced computational burden, as well as 

improved solutions. Therefore, this thin film problem was 

formulated in the form of a special third order ODEs: 

𝑦′′′ = 𝑦−𝑘   (50) 

 

with the initial conditions: 𝑦(0) = 𝑦′(0) = 𝑦′′(0) =
1 for 𝑘 = 2, 3, ℎ = 0.1 and ℎ = 0.01. The numerical results 

are presented in Tables 8, 9, 10 and 11 respectively. 

 

Table 8: Numerical results comparing our method with Mechee et al., (2013) and Yap et al., (2014) for Thin Film Flow 

Problem (50) with h = 0.1 and k = 2 

x 

Exact SSHB(6) Approx. 

Error in 

Mechee et al., (2013) 

Error in 

BHCM(6) 

Error in 

SSHB(6) 

0.2 1.221211030 1.221210005 1.07x10-6 1.03x 10-6 1.03x 10-6 

0.4 1.488834893 1.488834781 4.13x10-7 1.12x 10-7 1.12x 10-7 

0.6 1.807361404 1.807361405 8.51 x 10-7 2.07x10-9 1.00x 10-9 

0.8 2.179819234 2.179819255 1.71x10-6 1.02x 10-8 2.10x 10-8 

1.0 2.608275822 2.608274912 3.86x 10-6 9.35x 10-7 9.10x 10-7 

 

Table 9: Numerical results comparing our method with Momoniat et al., (2010), Mechee et al. (2013) and Yap et al., 

(2014) for Thin film Flow Problem (50) with h = 0.01 and k = 2 

x Error in 

Momoniat, (2010) Error in Mechee, (2013) 

Error in 

BHCM(6), Yap et al., (2014) Error in SSHB(6) 

0.2 1.03x 10-6 1.03x 10-6 1.03x 10-6 1.03x 10-6 

0.4 1.14x 10-7 1.13x 10-7 1.13x 10-7 1.13x 10-7 

0.6 7.00x 10-9 6.30x 10-9 6.32x 10-9 6.00x 10-9 

0.8 1.00x 10-9 1.00x 10-10 7.83x 10-11 0.00 x10+00 

1.0 9.55x 10-7 9.54x 10-7 9.54x 10-7 9.54x 10-7 

 

Table 10: Numerical results comparing our method with Mechee et al., (2013) and Yap et al., (2014) for Thin film Flow 

Problem (50) with h = 0.1 and k = 3 

x Mechee et al., Approx., (2013) BHCM(6) Approx. SSHB(6) Approx. 

0.0 1.000000000 1.000000000000000000 1.000000000000000000 

0.2 1.2211550887 1.2211551426800236 1.221155142607257800 

0.4 1.48881049238 1.48881052873784077 1.488105288187583100 

0.6 1.8042615558 1.8042625625912998 1.804262566929343300 

0.8 2.1715208324 2.1715228333017014 2.171522848573748600 

1.0 2.5909549758 2.5909583248983960 2.590958361354658300 

 

Table 11: Numerical results comparing our method with Momoniat et al., (2010), Mechee et al., (2013) and Yap et al., 

(2014) for Thin film Flow Problem (50) with h = 0.01 and k = 3 

x 
Approx. in Momoniat et 

al., (2010) 

Approx. in Mechee et 

al., (2013) 

Approx. in BHCM(6) Approx. in SSHB(6) 

0.0 1.000000000 1.000000000 1.000000000000000000 1.000000000000000000 

0.2 1.221155142 1.2211551423 1.2211551423957325 1.221155142395771400 

0.4 1.488105284 1.4881052838 1.4881052842194118 1.488105284220057700 

0.6 1.804262548 1.8042625471 1.8042625481474530 1.804262548150244800 

0.8 2.171522797 2.1715227960 2.1715227981283490 2.171522798135284000 

1.0 2.590958258 2.5909582556 2.5909582591167280 2.590958259130050000 

 

RESULTS AND DISCUSSIONS 

This research paper has considered five numerical examples, 

excluding special physical problem from thin film flow. 

While Table 1 shows improved accuracy with its efficiency 

curves shown in Figure 2. Tables 2 - 4 indicate better 

approximate solutions that are very close to the exact 

solutions. This gave the new method better performance in 

terms of accuracy, as the efficiency curves in Figures 3-5 
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show small scale errors in our method. In general, varying 

step-sizes improves the stability of hybrid block methods as 

this is evident in applying our method to Test Problem 4.2 in 

Table 3. Similarly, convergency is evident in Table 5 when 

compared with methods of the same order. Figure 6 clearly 

depicts very small scale errors as numerical results are close 

to their exact solutions. Also, Table 6 clearly shows the 

efficiency of our formula over methods of the same and higher 

order 7 with improved performance in our method and with 

the efficiency curves shown in Figure 7. Table 7 has been 

compared with Kayode et al., (2017) of the same order. 

Results indicate that our method gave improved accuracy, as 

can be seen from the efficiency curves in Figure 8. Tables 8 

and 9 show slight difference in absolute errors from applying 

our method on thin film flow problem with k = 2, 3 and h = 

0.1,0.01 respectively. Similarly, with k = 3 and h = 0.1, the 

numerical results of our method agree with BHCM(6) in 

Table 10 to ten decimal places. Also, in Table 11, the 

numerical results in our method comply to a thirteen decimal 

places when compared with BHCM(6) in Yap et al., (2014). 

This clearly shows the viability of our method over 

BHCM(6). 

 

CONCLUSION AND FUTURE RESEARCH 

This paper has derived and implemented single-step hybrid 

block method with four off-grid points considered. Six (6) 

numerical experiments have been considered, including thin 

film flow problem in engineering, and results from 

experiment showed that the new method (SSHB), which is of 

a uniform order 6 gave improved approximations than some 

of the existing numerical formulae compared in this research. 

Therefore, we recommend that our derived formula becomes 

an alternative hybrid block method for the numerical solution 

of the specific third order ODEs considered. However, future 

research should consider the formulation of hybrid block 

methods with adequate odd off-grid points with fixed step 

discretization and with increased order of accuracy. Their 

strength should also be confirmed on practical problems. 
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